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Abstract: The next generation of 5G networks is being developed to provide services with the highest
Quality of Service (QoS) attributes, such as ultra-low latency, ultra-reliable communication, high data
rates, and high user mobility experience. To this end, several new settings must be implemented in
the mobile network architecture such as the incorporation of Network Function Virtualization (NFV)
and Software-Defined Networking (SDN), along with the shift of processes to the edge of the network.
This work proposes an architecture combining the NFV and SDN concepts to provide the logic for
Quality of Service (QoS) traffic detection and the logic for QoS management in next-generation mobile
networks. It can be applied to the mobile backhaul and the mobile core network to work with both
5G mobile access networks or current 4G access networks, keeping backward compatibility with
current mobile devices. In order to manage traffic without QoS and with QoS requirements, this work
incorporates Multiprotocol Label Switching (MPLS) in the mobile data plane. A new flexible and
programmable method to detect traffic with QoS requirements is also proposed, along with an
Evolved Packet System (EPS)-bearer/QoS-flow creation with QoS considering all elements in the
path. These goals are achieved by using proactive and reactive path setup methods to route the traffic
immediately and simultaneously process it in the search for QoS requirements. Finally, a prototype is
presented to prove the benefits and the viability of the proposed concepts.

Keywords: 5G architecture; multiprotocol label switching; network function virtualization;
QoS management; QoS traffic detection; software-defined networks

1. Introduction

In the last few decades, the growth in the number of mobile devices has increased mobile network
traffic. The diversity of mobile applications such as Voice over IP (VoIP), web navigation, virtual
reality, mobile TV, online games, etc., has also expanded the variety of QoS traffic requirements,
which drives operators to improve their services. The fifth-generation (5G) of mobile networks is
emerging with the purpose of satisfying those increasing demands by providing the highest QoS traffic
characteristics such as ultra-low latency, ultra-reliable communication, high data rates, and high user
mobility experience [1].
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The existing 4G cellular technology developed by 3GPP (Third Generation Partnership
Project) [2] has significantly improved the characteristics of the previous cellular technology. However,
4G technology still has a number of limitations. The mobile logical entities of a 4G architecture are
based on customized hardware configured and deployed in a static and cost-ineffective manner.
The customization limits the elasticity of on-demand provisioning processes and the network
innovation cycle. The control and data plane are coupled in the SGW—Serving Gateway—and in the
PGW—Packet Data Network (PDN) Gateway, which increases complexity in network management
possibilities and limits the network scalability. Additionally, the 4G mobile network data plane is
centralized, so the traffic to and from the User Equipment (UE) always has to be routed through the
PGW, which can be an inefficient routing alternative when the UEs involved in the communication are
close to each other.

To mitigate the weaknesses of the 4G architecture and to achieve the goals for the 5G cellular
technology, the works in [3–5] have proposed the use of Network Function Virtualization (NFV) in the
mobile network architecture. NFV [6,7] technology allows the virtualization of the main entities of
mobile architecture, which can be implemented as a software layer placed in less expensive commodity
hardware or run in a cloud computing environment. NFV offers a flexible scaling alternative, which can
be adapted in order to attend to variations of different demands and provide scaling in a distributed
way, while increasing the robustness of the mobile network architecture.

Another widely-proposed alternative to overcome the limitations of the 4G technology is the
incorporation of SDN concepts [8,9]. SDN architecture moves the control plane of mobile entities to
central devices called controllers, which have a global view of the network and are responsible
for managing the data plane of mobile networks. SDN offers a standard open interface to the
communication between the controller and the data plane equipment, increasing the network flexibility
and programmability and simplifying the data plane elements [10]. However, some disadvantages of
a logically-centralized network control are the excessive dependence of every node on the controller,
the large amount of information the controller must process, and the additional delay in the specific
QoS flow creation, since the packet must wait for the controller response to be forwarded [11].

With SDN and QoS in mind, this paper proposes a new way to address the QoS traffic detection
and the QoS traffic management, two of the principal requirements of next-generation 5G networks [12].
If the traffic with QoS requirements is faster and efficiently detected, it can be processed faster. Then,
with the specialized QoS treatments, an optimal end-to-end QoS flow with the appropriate QoS
characteristics can be created. The results show that the proposed logic is flexible and programmable,
and it is applied very closely to the generated traffic (close to the UE), which increases the traffic
engineering possibilities.

The architecture proposed by our approach provides a network control application able to route
traffic immediately with or without QoS requirements, eliminating the waiting times in the creation
of new flows by the controller. The traffic is routed and inspected simultaneously to detect the QoS
requirements, providing the necessary information to create a specific QoS path end-to-end. In addition,
the architecture reduces the overload on the controller by decreasing the number of messages that
must to be processed.

As a proof of concept, a prototype with the proposed logic using Open vSwitches, Mininet,
and Ryu Controller has been built. The quantitative result shows an SDN architecture that reduces
problems related to the controller high response times, and it is able to route QoS traffic on demand
immediately. Additionally, two levels for QoS traffic detection are implemented, one on the edge of
mobile network at evolved NodeB (eNB) or next generation NodeB (gNB) and another in centralized
specialized elements. The comparative analysis shows a flexible and scalable traffic detection logic,
which distributes traffic processing at the borders of the mobile network and, at the same time, reduces
the centralized processing requirement, increasing the solution’s robustness. As the architecture is
created using OpenFlow, it can take advantage of the traffic engineering possibilities that the SDN
implementation provides.
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The structure of this paper is as follows. Section 2 presents the considerations of the proposed
architecture and the related works. Section 3 provides a complete description of the proposed
architecture, starting with the initial configuration, and focused on the 4G eNB or 5G gNB logic
proposal, traffic detection tables, and specific Evolved Packet System (EPS)-bearer/QoS-flow creations.
In Section 4, the prototype is described and operation examples are provided. Section 5 provides
quantitative and qualitative analysis comparing the characteristics of the proposed architecture
with current Evolved Packet Core (EPC) and other proposals. Finally, Section 6 presents the main
conclusions of this work.

2. General Architecture Considerations and Related Works

The next generation of mobile networks will bring deep modifications to the mobile architecture,
with the requirement of maintaining interoperability with the previous generations of mobile
technology. 5G networks are evolving to incorporate NFV, to move the control to the edge of the mobile
network, and to be SDN-capable, increasing the separation between the control and data planes [13].

In [14], an interesting overview of the development of software-defined mobile networks was
provided, and the contributions were divided into three main issues: radio access network, with the
main objective to coordinate and control the radio resource; mobile control, focused on orchestrating the
packet processing, mobility, billing, and service provisioning; and Internet or traffic routing, for which
the main target is effective and efficient packet forwarding with the appropriate QoS characteristics.
The end-to-end mobile network solution must combine all these objectives to achieve the required
5G performance. Due to it being predominantly a survey work, the work in [14] accordingly lacks
a specific approach in some important topics, nor does it present tests or possible validations of the
presented subjects. In addition, the work in [14] focused on a mobile access network, but it still had a
gap in the mobile core network contributions.

This paper proposes an architecture that applies SDN to achieve a clear separation between
the user and the control planes of the PGW and the SGW mobile elements [15–18]. The SGW and
PGW user plane is implemented by simple OpenFlow [19] switches (called OF-Switch and OF-GW,
respectively), and the SGW and PGW control plane is implemented separately in a logical element
called PGW-C (PDN Gateway Control). The controller is responsible for managing the data plane
of all OF-GW and the physical mobile elements such as the router and switches (implemented as
OF-Switches), which are used to transport packets through the mobile core and backhaul (see Figure 1).
These separation criteria are applied in 5G [1,20,21], where the user plane of PGW is implemented in a
new element called UPF (User Plane Function) and the control plane of PGW is implemented in a new
element called SMF (Service Management Function).

As proposed in [22–25] and in the recently-presented 5G architecture, the NFV concepts are
incorporated into the mobile architecture for scalability reasons and demand variation adaption.
The election here consists of implementing the control plane of 4G logical mobile elements: PGW-C,
MME (Mobility Management Entity), PCRF (Policy and Charging Rules Function), HSS (Home
Subscriber Server), and the controller, or even implementing the control plane of 5G logical mobile
elements [1,21]: SMF, PCF (Policy Control Function), AMF (Access and Mobility Management
Function), and UDM (Unified Data Management) as a Virtual Network Function (VNF) over a cloud
environment. On the other hand, the OF-Switch, OF-GW, and base station (4G eNB or 5G gNB) are
implemented as physical elements distributed over the mobile domain (see Figure 1).

In [26], a description of how the SDN and NFV concepts can be combined to build a
software-defined wireless network was presented. In this work, the implementation of the control
plane of the mobile network entities as NFV in a centralized way was proposed, while the data plane
was implemented in a distributed way by simple elements managed by a Controller. The described
implementation is general and provides only a high-level interaction between the main mobile
architecture elements. In particular, it is noted that the QoS requirements are triggered by UE requests,
and the mechanisms can be considered fairly centralized. Our proposal uses the SDN and NFV



Sensors 2019, 19, 1335 4 of 21

concept in a similar way, but exploring more deeply the way it can be implemented. The detection
mechanism presented here is distributed and does not require that the UEs trigger QoS requests.
Additionally, the proposed architecture is focused on the reduction of delay in the specific QoS flow
creation (on-demand), and changes are not required in the OpenFlow protocol used.
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Figure 1. Architectural proposal, visualizing the 4G and 5G mobile control entities. UDM, Unified Data
Management; HSS Home Subscriber Server; VM, Virtual Machine; PCF, Policy Control Function; PCRF,
Policy and Charging Rules Function; SMF, Service Management Function; PGW-C, PDN Gateway
Control; AMF, Access and Mobility Management Function; MME, Mobility Management Entity;
SDD, Service Detector Device; OF, OpenFlow; NB, NodeB; E-UTRAN, Evolved UMTS Terrestrial
Radio Access Network; UMTS, Universal Mobile Telecommunication System; Uu, UMTS air interface;
NG-RAN, Next Generation Radio Access Network; UE, User Equipment.

4G eNB or 5G gNB are key elements in the proposed architecture. These elements keep the 4G
or 5G mobile access and control interfaces, but incorporate OpenFlow functionality at the same time
(these modified elements are called in this work OF-NB). In the proposal, the Controller is responsible
for creating all flow entries required to link the traffic between the OF-NB radio interfaces and the
backhaul interface. Figure 1 also shows that the OF-NB can optionally implement different types of
mobile access interfaces [27–29], as 4G E-UTRAN (Evolved UMTS Terrestrial Radio Access Network)
or 5G NG-RAN (Next Generation Radio Access Network) interfaces. This work is focused on the
backhaul and mobile core network and can be adapted to different access types. As an example of
specific QoS flow creation, in Section 3.4, the radio bearer creation is shown using the standard LTE
(Long-Term Evolution) procedures with E-UTRAN Uu interface and S1-MEE (Mobility Management
Entity) interfaces, as well as the interaction with 4G UE.

In [30], a software-defined architecture for next-generation (5G) wireless systems, namely SoftAir,
was introduced. More specifically, the concepts of network function cloudification and network
virtualization were exploited, decoupling the radio interface implementation from the base station
control, which allows the independent evolution of radio technology. The work in [30] also proposed
two levels to detect QoS requirements: (i) the local traffic classifiers placed in a software-based
centralized base station at the network edge and (ii) the global traffic learner implemented by the
network Controller. Our proposal implements two QoS traffic detection levels as well, but in a
significantly different way: (i) traffic detection at OF-NB using standard OpenFlow tables and
(ii) specialized software detection devices that can be implemented in a distributed way (not in
the Controller), increasing the solution scalability. Furthermore, the data plane proposed here is
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implemented as completely distributed, and the traffic to be routed does not require being sent to a
central device. Finally, the detection process is performed at the same time as the routing process.

A device-to-device communication algorithm able to enhance user quality of experience,
by improving the success probability of Internet access in both downlink and uplink directions,
was presented in [31]. The Controller is not only able to manage the base station, but also manages
the UEs, which can be configured to act as a traffic relay for another UE when the neighboring base
stations are congested. Differently, our work is not focused on the mobile access network, but on
the mobile backhaul and core network, and the Controller domain is extended to the base stations.
The interaction between OF-NB and UEs is performed using 4G standard access interfaces or future
5G access interfaces, and the incorporation of SDN protocols in the UEs is not required, increasing
the feasibility of the solution. In particular, a step-by-step procedure is described in order to create an
end-to-end path with the QoS requirement.

The proposed mobile architecture uses Multiprotocol Label Switching (MPLS) to implement the
data plane. MPLS provides an excellent match between traffic flows and bearers with labels, improving
the routing and increasing the traffic engineering possibilities [10]. However, the use of an MPLS data
plane is not mandatory, and other alternatives can be used, such as 802.1Q or 802.1ad [32,33] without
significant changes in the proposed architecture. It is important to note that the MPLS has 20 bits
to identify labels, and 802.1ad only uses 12 bits to identify the VLAN (Virtual Local Area Network);
therefore, MPLS increases the number of available identifiers. Additionally, the MPLS protocol is
thought to transport traffic through different Layer 2 technologies, which is a useful characteristic in
heterogeneous networks.

The use of an SDN data plane generates significant changes, as the use of the GPRS Tunneling
Protocol User plane (GTP-U) inside the mobile domain to provide mobility management is no longer
necessary [15,32–34]. Figure 2 shows the changes in the protocol stack if the proposed SDN-MPLS
data plane is combined with the LTE mobile access protocols. As shown, the radio-Bearer between the
OF-NB and the UE remains unchanged, but the S1-Bearer and S5/S8-Bearer are unified in a new bearer
called the OF-Bearer (managed and created by the Controller). The EPS-Bearer (in EPS terminology) or
QoS-Flow(in 5GS terminology [1]) is the concatenation of the Radio Bearer and the OF-Bearer, which is
responsible for providing to the UE the appropriate end-to-end QoS communication through the mobile
domain. For simplicity, this work references both terms, EPS-Bearer and QoS-Flow, as EPS-Bearer.
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Figure 2. Relationship between Evolved Packet System-Bearer/QoS-Flow with Radio Bearer and the
proposed OF-Bearer. MPLS, Multiprotocol Label Switching; EPC, Evolved Packet Core; PDCP, Packet
Data Convergence Control; RLC, Radio Link Control.
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Instead of adding a GTP-U header, with the appropriate Tunnel Endpoint Identifier (TEID),
to reach the target UE and to identify the appropriate EPS-Bearer/QoS Flow, this work adds two MPLS
labels to achieve the same objective. Routing through the EPS-Bearer is achieved by inspecting the
two MPLS labels, where the inner MPLS label identifies the UE/Radio Bearer and the outer MPLS
label identifies the appropriate OF-Bearer. Figure 3 shows the use of MPLS labels applied to a default
EPS-Bearer (Default OF-Bearer 2).

OF-Bearer 2Radio-Bearers

Label X IPLabel a
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Figure 3. Representation of: MPLS label, EPS-Bearer, Radio Bearer, and OF-Bearer.

Current mobile networks propose the use of elements called Application Functions (AF) to detect
traffic with specific QoS requirements. These elements must be placed in strategic sites, and the traffic
to be analyzed must pass through them, thus reducing the solution flexibility; and the AF must be
designed to detect the QoS requirement of a specific type of traffic. In the proposed logic, the QoS
requirements detection functionality is distributed in the OF-NBs, and it is placed in a flexible and
programmable way considering the different user profiles. When this policy detects traffic with QoS
requirements, it is addressed to entities (located in central sites such as the data center) that extract the
QoS requirements, increasing the traffic detection possibilities and the traffic engineering.

Different from traditional SDN technologies that must wait for the Controller response to route
the traffic or use per-configured flow entries to route the traffic, this work proposes a combined logic
capable of immediately routing packets using general rules and, at the same time, sending the packets
with QoS requirements in order to find the QoS characteristics. As will be described in the next
sections, this method increases the routing speed and, at the same time, reduces the impact during the
Controller high response times.

3. Proposed Architecture

3.1. Main Description

Our proposal creates two specialized logics for traffic routing. One is for traffic without QoS
requirements, and the other is for traffic with QoS. The first one maintains a central element in the
data plane called OF-GW, and all traffic has to be routed through the OF-GW to reach the destination.
Key design characteristics to route traffic without the QoS requirement are faster routing, simpler
routing policy, and network robustness. On the other hand, traffic with QoS requirements is routed



Sensors 2019, 19, 1335 7 of 21

creating specific EPS-Bearers configured to comply with specific QoS traffic requirements such as
ultra-low latency, ultra-reliable communication, high data rate, or other QoS requirements.

The proposed architecture uses the two OpenFlow path setup modes [35]: the proactive mode
where paths are set up in advance and the reactive mode where the Controller listens to the switches to
configure routes on-demand. Both methods have considerations. When the traffic arrives, the proactive
mode does not require the Controller actions; it is immediately routed using pre-configured rules,
but the packets are sent using general matching criteria. On the other hand, the reactive mode is perfect
for creating a specific QoS path on demand, but requires more Controller processing when the packets
arrive, and it must wait for the Controller’s response to be routed. Both methods are extensively used
in the OpenFlow or SDN academic literature, but this work proposes another option where the traffic
with QoS requirements is processed using both operation modes at the same time.

The general idea is summarized as follows. When UE is attached in a OF-NB, it initially has a
default EPS-Bearer to OF-GW, which is used to route all traffic without the QoS requirement. When UE
sends a packet with the QoS requirement, the OF-NB receives the packet and sends it through two
pipelines for simultaneous processing. One pipeline uses a default EPS-Bearer to route the packet
immediately (pipeline processing using proactive path setup mode), and the other detects the traffic
with QoS requirements and sends a copy of the packet to the new mobile elements called the Service
Detector Device (SDD) responsible for extracting the specific QoS requirements. The extracted QoS
information is sent to a management entity (as PCRF in 4G or PCF in 5G), and a procedure to create a
specific EPS-Bearer with QoS takes place (pipeline processing using reactive path setup mode). Then,
the next packets of the same QoS flows are sent using the created specific EPS-Bearer with QoS.

In Section 4.1, an example will be shown in which the prototype initially sends the traffic to the
application server through SW1–SW3–OF-GW 1–SW4– W6, using the default EPS-Bearer, and when
the specific EPS-Bearer with QoS is created, the traffic to the application server is re-routed using the
new EPS-Bearer with QoS (sent through the SW1–SW2–SW5 path).

3.2. Initial Configuration

Initially, the mobile network knows the different types of services that the mobile network
provides, for example: IMS traffic for VoIP, IMS traffic for video, connectivity with an online game
server, mobile TV, etc. (all with specific QoS requirements). Each UE hires a group of these services with
specific QoS characteristics to define its user profile. There is a certain number of user profiles, and each
UE is associated with one of them (the associations are kept in a database). Initially, the Controller
has the mobile network topology, so it is able to configure proactive flow entries in all OF-switches,
OF-NBs, and OF-GWs.

The initial proactive steps are the following:

• To create OpenFlow flow entries for all equipment to reach the OF-GW, so they can reach the
other OF-GW’s and the mobile service application;

• To route the traffic without QoS requirements, the default OF-Bearer between the OF-NB and the
OF-GW is created. All OF-NB must have at least one default OF-Bearer to reach one OF-GW;

• To install the appropriate default route in the OF-GW to reach the PDN network;
• To transport massive services with QoS requirements, the OF-Bearer with QoS between the OF-NB

and the OF-GW connected to the services is created;
• To create the traffic detection tables at each OF-NB for all user profiles to detect traffic with QoS

requirements (see Section 3.3).

The OF-Bearers can optionally implement queue management to prioritize between different
OF-Bearer types, implement bandwidth reservation, guaranteed minimum delay paths, fast recovery
mechanisms to carry critical traffic, or other options. All OF-Bearers are univocally identified by an
MPLS label, which can change hop-by-hop as in any MPLS network. This MPLS label is the outer
MPLS label used to identify UE communication through the specific EPS-Bearer. EPS-Bearers with the
same QoS requirement can use the same OF-Bearer (see Figure 3).
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3.3. OF-NB Logic and Traffic Detection

The proposed logic at the OF-NBs is described for the uplink direction. The proposed traffic
detection logic is thought to replace elements of the 3GPP mobile architecture as AF and the Traffic
Detection Function (TDF) in a flexible and programmable way and to move the traffic analysis and the
billing counters closer to UEs. Moving the control functionalities closer to UE is one of the requirement
to achieve the 5G objectives [36,37].

All OF-NB have preconfigured all traffic detection tables, and during the attachment process,
each UE is linked with one of the traffic detection tables corresponding to its user profile. The user
profile can be obtained during the attachment procedure by querying an appropriate database, or using
a non-standard QoS Class Identifier (QCI) value from the HSS, or querying a new 5G database.

Figure 4 shows the different OpenFlow tables that compose the uplink forwarding logic or OF-NB;
it illustrates M traffic detection tables for M different users profiles, and only the traffic detection table
corresponding to user profile Y is detailed. As is depicted in Figure 4, the UE x is associated with the
user profile Y, which is linked using the default flow entry to UE x.

Flow entry to service  
detection 1

Table 0

The packets are sent by two pipe lines processing simultaneously

Traffic detection table 
(user profile Y)

Flow entry to service
detection k

Default flow entry

Specific service A 
flow entries

Default flow entry
to UE 1

Default flow entry
to UE x

Default flow entry
to UE n

General Default

Traffic detection table 
(user profile 1)

OF-Bearers with QoS

Specific service D 
flow entries

Specific service C 
flow entries

Specific service B 
flow entries

Traffic detection Table 
(user profile M)

2

1

Controller

Mobile
Orchestrator

SDD
2

Default 
OF-Bearers

Figure 4. Traffic detection logic at OF-NB.

In Figure 4, the proposed Table 0, implemented in OF-NB, consists of three types of flow entries:

• Specific service flow entries: This is used to forward traffic with specific QoS requirements from a
UE through a specific OF-Bearer with QoS created on demand.

• Default flow entries to UE: Each attached UE has its own default flow entry, and it is used as the
default route for all traffic originated in the UE. This flow entry is created during the attachment
procedure, and it is responsible for linking the default radio bearer with the default OF-Bearer
(creating the default EPS-Bearer for the attached UE). Additionally, this flow entry is responsible
for linking the UE traffic with the traffic detection table corresponding to its user profile.

• General default flow entry: This is responsible for dropping the traffic from an invalid source
mobile IP address.

Prior to the UE x attachment, the OF-NB has neither a specific service flow entry, nor a default
flow entry to UE x. During the specific UE x attachment procedure, the default flow entry to UE x
is created. The matching file used by the default flow entries to UE x is based on the source IPv4,
the source IPv6 prefix, or the default Radio Bearer, which univocally identifies the UE originator.
The default flow entry to UE x links the default radio Bearer with the default OF-Bearer to create the
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default EPS-Bearer for the UE x. If traffic from UE x does not match with specific service flow entries,
it is routed by the default flow entry to UE.

The proposed logic at OF-NB is detailed in Figure 4, and its flow diagram is described in Figure 5.
When the uplink traffic matches with a default flow entry to UE x, the traffic is sent by two simultaneous
pipeline processes, one proactively (indicated as one) to route a packet copy immediately as traffic
without QoS requirements (using the default OF-Bearer), and the other (indicated as 2) sends the
packets to traffic detection table to user profile Y. Next, the implementation of both pipeline processes
is explained.

Match with 

default flow entry 
to UE 1?

Match with a 

specific service 
flow entry

Input packet from UE x 

(with user profile Y)

Send the packet 

through the 

default OF-Bearer

? YES

NO

Send the packet to 

traffic detection flow 

table (user profile Y)

Match with a 

specific flow 
entry to service 

detection

The packet is sent to 

the SDD to check 

QoS requirement. 

The EPS-Bearer with 

QoS creation 

procedure is started

Match with default 
flow entry, which 

discards the packet 

without action

Send the packet through the 

appropriate OF-Bearer with 

QoS (previously created) 

Packets are sent by two 
pipelines processing 

simultaneously

Match with 

default flow entry 
to UE x?

Figure 5. Flow diagram of traffic detection logic at OF-NB.

1. The default flow entry to UE x has an instruction of apply-action and, within it, two Push-MPLS
actions responsible for univocally identifying the default EPS-Bearer used to send the traffic.
The inner MPLS label identifies the UE/default Radio Bearer, and the outer label identifies the
default OF-Bearer. Additionally, the instruction of apply-action type has the output-action to the
appropriate output port, which sends a copy of the packet to the default OF-Bearer (standard
behavior of the apply-action instruction as is specified in [19]).

2. Simultaneously, the default flow entry to UE x has goto tableinstructions, which sends the packet
to the traffic detection table for user profile Y. This traffic detection table consists of a group of flow
entries responsible for detecting traffic, which requires a specific QoS treatment in accordance
with its user profile. When traffic matches with a flow entry to service detection, the appropriate
MPLS labels are added, and the packets are sent to the SDD. On the other hand, if there are no
matches with a specific detection flow entry, the traffic is dropped without action because the
packet was already routed as traffic without the QoS requirement, as was indicated in Step 1.

Continuing Pipeline Processing 2, if the packet is sent to SDD, it processes the packet in search
of service characteristics such as the multimedia type, source IP address, destination IP address,
protocols, ports used, encoder type, QoS requirement, etc. Next, the SDD sends the service information
to the PCRF or PCF mobile element, and the procedure to create the specific EPS-Bearer with QoS
requirement is executed. It is important to note that the OF-Bearer with QoS and the Radio Bearer with
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QoS are linked using the specific service flow entry creating the EPS-Bearer with QoS, as is indicated
in Figure 4.

3.4. EPS-Bearer with QoS Requirement Creation

Figure 6 describes the procedure to create a specific EPS-Bearer with QoS considering a 4G
UE (a similar procedure can be defined using 5G access technology). As shown, it is not necessary
to make changes in the 4G EU. The proposed EPS-Bearer with the QoS creation procedure requires
significant changes if it is compared with those defined in the actual PCC (Policy Control and Charging)
architecture [38], and it is described next.

Flow
Table

OCS

UE
UL-TFT

OF-GW

1. QoS traffic is detected and 
sent to both, to the SDD and 
through the Default OF-Bearer

3. Policy decision 2. Credit information

5. Traffic classification
using UL-TFT

PCRF

OF-NB

0. Default radio 
bearer

4. Radio bearer
with QoS

0. Default OF-Bearer

0. or 4.  OF-bearer with QoS

Backhaul Mobile 
Network

PDN

5. Messages to create 
radio Bearer with QoS

Flow
Table

5. Traffic classification using 
specific services flow entries

S1
-M

M
E

Controller

Mobile
Orchestrator

MME

6. Flow-add message to 
create EPS-Bearer with QoS

E-UTRAN Uu

4. If the appropriate OF-Bearer with 
QoS does not exist , it is created SDD

Figure 6. EPS-Bearer with QoS creation. UL-TFT, Uplink Traffic Flow Template; OCS, Online
Charging System.

1. Initially, the traffic with QoS requirements is immediately forwarded through the default
OF-Bearer, and it is sent to the appropriate traffic detection table, which sends the packet to the
SDD. The SDD processes the packet and determines the service characteristics. This information
is sent to the PCRF (or a new element with its functions), which is responsible for defining the
policy to be applied.

2. If additional information is required, the PCRF could make an additional query to other mobile
elements. For example, it is possible to make a query to the OCS (Online Charging System) related
to the available credit for the service to be transported.

3. With the signaling information, the user profile, and the available credit, the PCRF defines the
policy to be applied (the EPS-Bearer characteristics are defined). The policy is communicated to
the MME and to the Controller.

4. If there is an OF-Bearer with the appropriate QoS for this traffic, it will be used. On the other
hand, if it does not exist, the Controller creates a new OF-Bearer with an appropriate QoS. To do
so, the Controller determines the outer labels and creates the appropriate flow entry in each
OpenFlow switch involved in the optimal OF-Bearer with the QoS path.

5. Next, performing the following steps, the Radio Bearer with appropriate QoS characteristics
is created:
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(a) The MME sends a standard 3GPP bearer setup requestmessage (through the standard
S1-MME interface) to the OF-NB indicating the need to create the appropriate radio bearer.

(b) OF-NB sends the corresponding standard RRC (Radio Resource Control) connection
reconfigurationto the UE (standard procedure using the E-UTRAN-Uu interface) indicating
that the Radio Bearer with QoS must be created. This message has the required information
associated with the QoS parameters and the TFT (Traffic Flow Template) filters to be applied
at the UE. These filters incorporate the rules to classify the uplink traffic and forward it to
the new Radio Bearer with QoS.

(c) The UE responds to the OF-NB with a standard RRC connection reconfiguration
completemessage.

(d) The OF-NB responds to the MME with a standard bearer setup responsemessage, completing
the Radio Bearer creation stage. At the end of this step, the traffic continues being routed
using the default OF-Bearer.

6. The Radio Bearer with QoS and the OF-Bearer with QoS are linked to create the EPS-Bearer with
QoS as described next.

(a) The Controller defines the necessary flow entry in the downlink direction (configured in
OF-NB) to link the traffic coming from the OF-Bearer with QoS with the newly-created Radio
Bearer with QoS. This step defines the inner MPLS label, which identifies the UE/Radio
Bearer.

(b) The Controller defines the flow entry in the downlink direction that must be applied at the
OF-GW to route the QoS service traffic through the OF-Bearer with QoS to the UE. These flow
entries are similar to a specific service flow entry put in the OF-NB (see Figure 4), and the
matching criteria are based on the service characteristics and target UE IP address (the
appropriate two MPLS labels must be added). In this step, the downlink traffic can already
be forwarded through the new EPS-Bearer with QoS.

(c) If not previously configured, the Controller creates the specific flow entries (at OF-GW) in
the uplink direction.

(d) Finally, as can be seen in Figures 4 and 6, the Controller creates the specific service flow entry
at the OF-NB to link the traffic from the Radio Bearer with QoS with the OF-Bearer with
QoS. This flow entry has its matching criteria based on the service characteristics and the
source UE IP address. In this step, the uplink and downlink traffic can already be forwarded,
and the EPS-Bearer with QoS is established in both directions.

The specific service flow entries have an appropriate OpenFlow priority, which determines the
order in which they are processed. In addition, the specific service flow entries always have higher
priority than the default flow entries to UE. Then, if the specific service flow entry exists, the traffic is
processed using it (see Figure 6).

It is important to note that the OF-GW are standard OpenFlow switches put at the edge of a
mobile network or connected to the application servers. The position where they are placed makes
them appropriate to be one end of the default OF-Bearer and, in several cases, one end of the OF-Bearer
with QoS, but this is not mandatory. The OF-Bearer with QoS can be created between any pair of
OpenFlow switches, for example directly between two OF-NB, as is shown in the prototype (see
Figure 8).

3.5. Other Considerations Regarding QoS Traffic and Processing

As traffic can be routed directly between two OF-NB, the traffic counter and time counter must
be moved to the edge of the mobile access to the OF-NB. In particular, the counters present in the
specific service flow entries and in the default flow entries to the specific UE can be used. If during an
EPS-Bearer with QoS creation, the OCS informs that the EPS-Bearer to be created has X minutes of
credit, the specific service flow entry must be established with an idle-timeout of X minutes. On the
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other hand, if the credit is related to an amount of remaining traffic, the specific service flow entry
should be checked periodically to know when the credit limit is reached.

During normal operation, the traffic without QoS requirements is routed using the default path
previously preconfigured, and the Controller interacts only if the traffic has QoS requirements (or in
the attachment process). This method reduces the number of OpenFlow messages that the Controller
must process, decreasing the Controller overload.

Additionally, since the proposed architecture always routes the packets using the default
OF-Bearer immediately, this architecture has less impact during the Controller high response times
since traffic continues to be routed through the default OF-Bearer. This behavior improves the
robustness of the solution if it is compared with traditional SDN implementations, in which the
packets of new flows must wait for the Controller response to be routed.

It is important to note that the proposed traffic detection logic is composed of two main
steps, one implemented in a distributed way at OF-NB using the OpenFlow traffic detection table
and the second one at SDD using dedicated software to customize the QoS characteristics to be
detected. The first step is limited by OpenFlow matching criteria, and the second one is unlimited.
Then, the proposed combined detection logic can be considered unlimited. As a practical example,
the necessity to identify specific content in the application layer when the packets are sent to a specific
server can be considered. In this case, the traffic detection table at OF-NB is responsible for matching
when a packet is sent to the server (and to a specific TCP port), as well as for sending the packet to the
appropriate SDD. Once the packet is received by the SSD, this element is responsible for extracting the
specific application layer requirement.

In order to reduce the processing in the SDD element, this can be implemented in a distributed
way in the mobile network domain. In this way, OF-NB can be divided into groups, and depending on
their geographical location, they will have a specific SDD associated. Another alternative is to create
specific SDDs for the analysis of different types of traffic, and the OF-NB will be responsible for routing
the traffic to the appropriate SDD.

Finally, to increment the architecture’s robustness, the Controller function can optionally be
divided and put into three different Controllers working together in a complementary way [39].
The optimal Controller separation for the proposed architecture is the use of a Controller for proactive
flow configuration, which will be responsible for default OF-Bearer creation, traffic detection tables,
and general routing rules. Another Controller for the attachment process will be responsible for the
default EPS-Bearer creation and for the association between UE and the traffic detection table. The last
one will be responsible for specific OF-Bearer with QoS creation.

4. Implementation and Analysis

As proof of concept, a prototype with the topology shown in Figure 7 was created. It is constituted
by eleven mobile network elements implemented as OpenFlow switches. Two of the switches represent
OF-GW; two represent OF-NB; and seven represent backhaul Switches 1–7 (SW1–SW7). Additionally,
four VMs (Virtual Machines) were created: three represent UE, and the fourth represents an application
server. The application server represents a service to mobile UEs that requires specific QoS treatments.

Mininet is used for the topology creation; Open vSwitch is used as the software switch that
implements the OF-NB, backhaul mobile switches, and OF-GW; while the Controller is implemented
using Ryu (all with support for OpenFlow 1.3 or higher due to the use of MPLS).

The prototype implements the traffic detection logic and the EPS-Bearer with QoS creation
procedure. Furthermore, it is implemented for both the backhaul and the core mobile network (the
mobile access network is outside the scope of this work). Finally, the Controller was implemented as
the mobile orchestrator with the functionalities of elements such as PCRF and SDD.

Summarizing, the prototype is built to show the contribution listed next:

• The proposed flexible traffic detection logic operation, giving an example of the different flow
entries that compose it.
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• The proactive OpenFlow creation, which makes routes for the traffic immediately possible using
the default EPS-Bearer without Controller interaction.

• The important characteristic of simultaneous traffic routing and traffic inspecting is detailed.
In particular, an example of flow entry is described, which sends the QoS traffic by two pipelines,
processing at the same time, one to route the traffic immediately using the default OF-Bearer and
the other to process the traffic to identify the QoS requirements.

• It is indicated that the Controller creates an optimal EPS-Bearer with QoS, and the traffic is rerouted
using it (examples of specific QoS flow entry to build the EPS-Bearer with QoS are given).

• The proposal uses MPLS, and the GTP-U protocol is not required.
• Finally, as all data plane mobile elements (as OF-GW, OF-NB, and switches) implement OpenFlow,

Section 4.2 shows the solution flexibility, creating an optimal path that does not require using
an OF-GW.

SW1

SW2

SW5

SW4

OF-NB 1
MPLS/OpenFlow Mobile Network

Initially, traffic to the server 
uses the default EPS-Bearer

OF-Bearer with QoS
Default OF-Bearer

UE 1

Application server

OF-GW 
1

OF-GW 
2

SW3

OF-NB 2

SDD/Controller

1

2

Traffic to Application server 
using EPS-Bearer with QoS

Traffic with QoS requirement is 
detected and sent to 
Controller/SDD

1

2 Flow-add messages are sent to 
create the EPS-Bearer with QoS

SW6
PDN

10.1.1.2

20.20.20.20

10.1.2.2

10.1.2.3

2UE 2

UE 3

1

SW7

Figure 7. Prototype: Example 1, EPS-Bearer with QoS to the application server. SW, Switch; PDN,
Package Data Network.

As described in previous sections, the Controller initially creates the general flow entry to all
OF-GW that can reach the other mobile elements, the application servers, and the PDN connection.
Next, the Controller creates the default OF-Bearer that connects each OF-NB with the appropriate
OF-GW and creates the OF-Bearers with QoS for massive services between OF-NBs and OF-GWs
(using the appropriate MPLS labels). Finally, the traffic detection tables are inserted at all OF-NBs.

The following examples start with the UEs attached and with the default EPS-Bearer created.
In the case of UE 1, both are created, the default flow entry to UE 1 at eNodeB 1 (the uplink direction)
and the default flow entry to UE 1 at OF-GW 1 (the downlink direction). These flow entries are
responsible for linking the default Radio Bearer to UE 1 with the default OF-Bearer, building the
default EPS-Bearer to UE 1 (a similar configuration is done to UE 2 at eNodeB 2 and OF-GW 2).
Examples of the Flow entries are described in the following section.

4.1. Example 1, EPS-Bearer with QoS to the Application Server

Figure 7 shows the default OF-Bearer between the OF-NB 1 and the OF-GW 1 (using SW1 and
SW4) and the OF-Bearers with QoS between OF-NB 1 and both OF-GWs (proactively created for
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massive QoS services). The OF-Bearers with QoS between OF-NB 1 and OF-GW 2 represent an optimal
path with minimal delay for the OF-NB 1 to reach the application server (Example 1).

Initially, the traffic from the UE 1 to the application server matches the default flow entry to UE 1.
Next is shown an example of this flow entry:

cookie=0x0, duration=35.568s, table=0, n_packets=0, n_bytes=0, ip,nw_src=10.1.1.2
actions=push_mpls:0x8847,set_field:1010102− >mpls_label,
push_mpls:0x8847,set_field:100001− >mpls_label, dec_mpls_ttl,output:1,goto_table:15

It can be seen that the flow entry processes the packets simultaneously through two pipelines:
one inserting the two MPLS labels and sending the packets copy through the output Port 1 using
the default OF-Bearer to reach the application server (see Figure 7); the other pipeline uses the goto
tableaction, which sends the packet to Table 15 (traffic detection table to service profile to UE 1).

When the packet arrives at the traffic detection table, it matches the flow entry to service detection,
which detects traffic with the destination to the 20.20.20.20 IP address:

cookie=0x0, duration=42.918s, table=15, n_packets=0, n_bytes=0, priority=3500,ip,nw_dst=20.20.20.20
actions=CONTROLLER:65535

As SSD is implemented in the Controller, the flow entry to service detection has an application
action of the Controller type; then, detected traffic is sent to the Controller.

The Controller processes the packet-in message, then determines that the traffic must be routed
using the OF-Bearer with QoS between OF-NB 1 and OF-GW 2. Next, the Controller creates the specific
service flow entry at OF-NB 1 and OF-GW2 to build the required EPS-Bearer with QoS (see Figure 7).

Finally, the specific service flow entry at OF-NB 1 routes the traffic from UE 1 to the application
server using the OF-Bearer with QoS.

cookie=0x0, duration=85.369s, table=0, n_packets=0, n_bytes=0, priority=4000,ip,nw_src=10.1.1.2,
ip,nw_dst=20.20.20.20 actions=push_mpls:0x8847,set_field:510102− >mpls_label,
push_mpls:0x8847,set_field:50102− >mpls_label, dec_mpls_ttl,output:1

The matching criteria used consider both the source UE 1 IP address (10.1.1.2) and the application
server target IP address (20.20.20.20). Furthermore, the default flow entry adds two MPLS labels to
define the EPS-Bearer with QoS. The 510102 (inner label) identifies the UE 1/Radio Bearer with QoS,
and the 50102 (outer label) identifies the OF-Bearer with QoS. Finally, it is important to note that the
specific service flow entry has more priority than other types of flow entries. Then, the traffic from UE 1
to the application service matches this specific flow entry and routes the traffic through the EPS-Bearer
with QoS, as can be seen in Figure 7.

4.2. Example 2, EPS-Bearer with QoS between UEs

The second example represents a case when an ultra-low latency communication between UE1
and UE2 is required, creating a specific EPS-Bearer. As can be seen in Figure 8, initially, the traffic
between UEs is routed using the UE 1 default OF-Bearer and the UE2 default OF-Bearer. Next,
the traffic requirement is detected and sent to the Controller, which decides on the creation of a new
specific OF-Bearer with ultra-low latency between OF-NB 1 and OF-NB 2. Then, the Controller inserts
the specific service flow entry in OF-NB 1 and OF-NB 2 to link the OF-Bearer created with the Radio
Bearer to UE 1 and UE 2, building the EPS-Bearer with ultra-low latency (see Figure 8).
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Figure 8. Prototype: Example 2, EPS-Bearer with QoS between UEs.

5. Quantitative and Qualitative Analysis

In this section, qualitative analyses are carried out to show the proposed architecture
characteristics when it is compared with other ones.

5.1. QoS Traffic Detection Strategies’ Comparison

Next, a qualitative comparison of different strategies used to detect traffic with QoS requirement
in mobile networks is done. The first two use the strategies of the current EPS architecture; the third
one is based on NFV, a VNF concept where the logical mobile element is implemented in data centers
in a centralized way; and the last one is implemented using the proposed QoS traffic detection logic.

• Mechanism based on the AF detection technique: This refers to the mechanism of the 4G
networks that use detection devices called AF, which are put in strategic points of the network.
These strategic location points are chosen such that the traffic to be inspected must pass through
the AF in its normal way. When the QoS requirements are found, they are sent to the central
device (PCRF) responsible for QoS policy implementation. The AF devices are usually placed
within or before application servers and are specialized in the detection of different types of traffic.
This alternative decrements the flexibility and programmability possibilities due to other types of
traffic being able to be routed using different paths. On the other hand, the AF element can be
placed in a distributed way, while low addition time is added in the QoS detection process.

• Mechanism based on an element as TDF: This occurs when the detection element is put in the
centralized data plane element as PGW in the current EPS architecture. As all traffic goes through
the PGW, this method could analyze all types of traffic, but a deep packet inspection could
compromise the PGW performance. In this alternative, the large amount of traffic to be processed
and the centralized nature of the solution significantly impact the scalability and robustness of
the solution.

• Mechanism in centralized data center inspections: Several works proposed [13] the implementation
of the data and control plane of mobile elements as VNF over VM using commodity hardware
put in data centers. In this alternative, all traffic is sent to a data center, and it is processed to find
the QoS requirements. This alternative generates additional delay due to routing of traffic to the
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data center and requires significant traffic inspection processing. On the other hand, the cloud
computing design increments the robustness even if it is implemented in a centralized data center,
due to it being an elastic environment able to adapt to the traffic requirement variations.

• Proposed detection mechanism: This alternative is able to send the QoS packet immediately as
traffic without QoS requirement, and at the same time, it sends a QoS packet copy to the centralized
SDD element to detect the QoS requirement (waiting time is not added). This option increments
the robustness due to the QoS traffic continuing to be routed even without the Controller response
or without SDD detection (as traffic without QoS requirement). The scalability in this solution
is incremented due to the traffic detection functionality is distributed in all OF-NB and all SDD
implemented (if only an SDD is implemented can it be considered a Centralized architecture as
well, but this could not be an optimal decision). Additionally, this alternative increments the QoS
detection possibilities, due to it combining the OF-NB detection and the SDD devices, which are
programmable elements able to detect all types of traffic. Finally, this solution could be considered
more generic than the previous one. The traffic detection table associated with UE can be changed
in the OF-NB at any time, and the new associated detection table can be created to route all the
traffic to the SDD element or to a data center (as in the previous alternative).

A summarized qualitative traffic detection comparison can be found in Table 1.

Table 1. Comparison of QoS traffic detection strategies. AF, Application Function; TDF, Traffic
Detection Function.

AF
Mechanism

TDF
Mechanism

Centralized
Data Center Proposed Mechanism

Robustness Low Low Good Very good
Scalability Good Low Very good Very good
QoS processing Distributed Centralized Centralized Distributed/Centralized
Traffic detection possibilities Good Good Very good Very good
Additional delay during QoS detection Low Low Intermediate Low

5.2. Architectural Comparison

Table 2 shows a qualitative comparison among mobile network architectures implemented using
current 4G EPC, using standard centralized SDN OpenFlow where the traffic must wait for the
Controller response to be routed, and using the 5G proposed architecture in terms of: (1) forwarding
response time; (2) traffic engineering possibilities; (3) GTP-U use requirement; (4) traffic detection
flexibility; (5) specific treatment for QoS traffic; and (6) controller processing requirement.

Table 2. Comparison of mobile network architectures. GTP-U, GPRS Tunneling Protocol User plane.

EPC
Architecture

Standard
OpenFlow

Proposed
Architecture

Forwarding response time Immediate Intermediate Immediate
Traffic engineering possibilities Good Very good Very good
GTP-U requirement Required Required Not required
Traffic detection flexibility Good Good Very good
Specific treatment for QoS traffic Intermediate High High
Controller processing requirement N/A very High Intermediate

5.3. High Controller Response Time and Network Overload Problem Simulation

In order to obtain quantitative results related to the proposed two-pipeline processing,
the standard OpenFlow control is implemented over the prototype as well, and the behavior on
routing traffic with the specific QoS requirement is compared for both the proposed architecture and
standard OpenFlow Control. It is important to note that the standard OpenFlow implemented uses
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the reactive path setup mode for initial configuration and for traffic without QoS requirement and
the reactive setup mode for traffic with QoS requirement; then, when a specific QoS packet arrives,
a packet-in message is generated, and the node must wait for the controller response to route the
QoS packet.

With the proposed architecture and the standard OpenFlow architecture implemented,
some problems related to the communication with the controller are emulated, and the behavior
of the architectures when a new packet with specific QoS requirement is sent from OF-NB 1 to the
application server is compared. In the comparative analysis, the following problems are considered:

1. Queuing delay in the controller;
2. Controller overload and controller high response time;
3. Requirement of TCP retransmissions in the packet-in request;
4. Delay on the path used for the packet-in request due to link saturation.

It is important to note that the first two mentioned problems affect the packet-in request and the
controller response (i.e., a two-way delay), whereas the third and fourth problems could only affect a
packet-in request (i.e., a one-way delay).

The tests consider the UE 1 attached and consist of erasing all specific OF-Bearer with QoS
(specific service flow entries) and generating traffic with QoS from the OF-NB 1 to the application
server with IP 20.20.20.20 (see Figure 7) to measure the average round-trip time between them. This test
is repeated for both the proposed and standard OpenFlow controls by adding a variable delay in the
communication of OF-NB 1 and OF-GW 1 with the controller. The introduced additional delay ranges
from 0 ms–100 ms, with increments of 10 ms. In addition, all tests are done simulating the two types of
controller communication delay (the two-way delay and the one-way delay), which are implemented
by programming a waiting time in the controller communication.

The results are shown in Figure 9. As can be seen, the round-trip time between the hosts is not
affected in the proposed architecture. This is due to the fact that the specific QoS packets do not have to
wait for the controller response to be routed; they are routed using the default OF-Bearer preconfigured
during the attachment process (see Figure 7). On the other hand, if the standard OpenFlow architecture
is used, the round-trip time between the hosts is linearly affected, the worst case being when a delay is
added in both directions of controller communication (two-way delay).
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Figure 9. Round-trip times in both architectures and for both additional delay types.

Another important point is that even without the additional delay, the standard OpenFlow
architecture presents a round-trip time 19 ms bigger than that in the proposed architecture. This delay
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represents two waiting times for the controller responses in the standard OpenFlow architecture,
one in the OF-NB 1−→application server direction and the other in the application server−→OF-NB 1
direction. The value of 19 ms is lower than that of a real case, because in the prototype, the controller is
implemented very close to the nodes. If a real network is considered, the delay curves for the standard
OpenFlow architecture significantly move up in the graph due to the propagation delay.

6. Conclusions

The next 5G mobile network generation is evolving to incorporate the NFV concept, to move
the control to the edge of the mobile network, and to incorporate the SDN concepts, increasing the
separation between the control and data plane. This work follows this mobile evolution, particularly
working with the weaknesses and strengths of the SDN network and also incrementing the use of this
technology in the mobile network architecture. As the programmability is put over all mobile element,
more specialized logics can be created.

This work proposes a specialized logic to route the traffic without QoS requirements, which is
created using proactive rules. This logic is designed to route the traffic immediately using a routing
policy that is as simple as possible. To route traffic without QoS requirements, the data plane of the
proposed mobile architecture continues using the centralized element called OF-GW. Then, traffic
without QoS must always be routed using an OF-GW. It is important to note that all equipment
that is part of control plane is implemented as simple OpenFlow switches, making it easy to replace
the switches. The data plane is distributed between more elements, improving the mobile network
robustness, and all OpenFlow switches can be configured to act as an OF-GW.

Additionally, a specialized logic to route the traffic with QoS requirements using proactive and
reactive methods at the same time is created. The proposed logic is designed to create a specific
EPS-Bearer able to use the optimal path with specific QoS characteristics, thereby, satisfying the 5G
mobile network objectives. This logic is composed of a programmable and flexible method for detecting
traffic with QoS requirements that are applied closer to the UE. The architecture created does not add
delays during the EPS-Bearer with QoS creation or the QoS traffic detection. Initially, the packets with
QoS requirements are sent by two pipelines processing at the same time, one immediately routing a
packet copy through the default OF-Bearer; the other is used to detect the QoS requirements creating
the appropriate specific EPS-Bearer with QoS.

The proposed control plane follows the concepts used by the 5GS architecture implementing
the mobile control element using the NFV concept. This technology allows the virtualization of the
main control entities of mobile architecture, which are implemented as a software appliance placed
on less expensive commodity hardware or run in the cloud computing environment. NFV offers a
flexible scaling alternative, which can be adapted to the demands’ variations and provide scaling in a
distributed way, while increasing the robustness of the mobile network architecture.

Finally, the proposed mobile backhaul and mobile core network architecture are created to interact
optionally with a future 5G UE, or 4G UE, utilizing the NG-RAN procedures or the standard procedures
using the E-UTRAN-Uu and S1-MME 3GPP interfaces.
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