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1  | INTRODUC TION

The study of proximate and ultimate causes of animal coloration 
has played a significant role in our understanding of evolutionary 

processes (for a review on the study of coloration see Cuthill et al., 
2017). To study the selective forces acting on an organism coloration, 
it is crucial to understand how color patches are perceived by po-
tential selective agents (e.g. a predator; Endler, 1990). Furthermore, 
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Abstract
The development of color vision models has allowed the appraisal of color vision in-
dependent of the human experience. These models are now widely used in ecology 
and evolution studies. However, in common scenarios of color measurement, color 
vision models may generate spurious results. Here I present a guide to color vision 
modeling (Chittka (1992, Journal of Comparative Physiology A,	170,	545)	color	hexa-
gon,	Endler	&	Mielke	(2005,	Journal Of The Linnean Society,	86,	405)	model,	and	the	
linear and log- linear receptor noise limited models (Vorobyev & Osorio 1998, 
Proceedings of the Royal Society B,	 265,	 351;	 Vorobyev	 et	al.	 1998,	 Journal of 
Comparative Physiology A,	183,	621))	using	a	series	of	simulations,	present	a	unified	
framework that extends and generalize current models, and provide an R package to 
facilitate the use of color vision models. When the specific requirements of each 
model are met, between- model results are qualitatively and quantitatively similar. 
However, under many common scenarios of color measurements, models may gener-
ate spurious values. For instance, models that log- transform data and use relative 
photoreceptor outputs are prone to generate spurious outputs when the stimulus 
photon catch is smaller than the background photon catch; and models may generate 
unrealistic predictions when the background is chromatic (e.g. leaf reflectance) and 
the stimulus is an achromatic low reflectance spectrum. Nonetheless, despite differ-
ences, all three models are founded on a similar set of assumptions. Based on that, I 
provide a new formulation that accommodates and extends models to any number of 
photoreceptor types, offers flexibility to build user- defined models, and allows users 
to easily adjust chromaticity diagram sizes to account for changes when using differ-
ent number of photoreceptors.
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animal vision may also evolve in response to environmental condi-
tions, as is suggested by the correlation between light conditions and 
peak wavelength sensitivities of marine mammal photoreceptors 
(Fasick & Robinson, 2000).

There are several axes of variation in animal vision, such as 
density and distribution of receptors in the retina (Hart, 2001), eye 
resolution	 (Land	&	Nilsson,	 2012),	 and	 presence	 of	 oil-	droplets	 in	
photoreceptors cells (Hart, Partridge, Bennett, & Cuthill, 2000). 
In terms of color vision, the most obvious differences are found in 
the spectral sensitivity of photoreceptors cells (Kelber, Vorobyev, & 
Osorio,	2003;	Osorio	&	Vorobyev,	2008).	For	 instance,	most	non-
mammal vertebrates are tetrachromats, most insects are trichro-
mats, and, contrary to mammals, both have a color perception that 
spans into the ultraviolet (Bowmaker, 1998; Briscoe & Chittka, 2001; 
Kelber	 et	al.,	 2003;	Osorio	&	Vorobyev,	 2008).	A	 fascinating	 illus-
tration of how photoreceptor sensitivity may affect perceptual dif-
ferences comes from human subjects that have undergone cataract 
treatment. The sensitivity curve of the human blue photoreceptor 
spans into the ultraviolet (UV) range, but humans are UV- insensitive 
because	pigments	in	crystallin	filter	out	wavelengths	below	400	nm.	
Cataract surgery occasionally replaces the crystallin with a UV- 
transmitting lens, and anecdotal evidence suggests that those in-
dividuals are then able to see the world differently: new patterns 
are observed in flower petals, some garments originally perceived 
as black appear purple, and black light is perceived as blue light 
(Cornell, 2011; Stark & Tan, 1982).

Thus, studies of animal coloration can clearly benefit from ap-
praisals of how color patches are perceived by nonhuman observ-
ers.	Moreover,	the	same	color	patch	may	be	perceived	differently	
depending not only on the observer, but also on the conditions of 
exposure of the color patch (e.g. background color and environmen-
tal light conditions; Endler, 1990). With the advent of affordable 
spectrometers for reflectance measurements, application of color 
vision models became commonplace in the ecology and evolution 
subfields (Kemp et al., 2015). Together, some of the most important 
color vision papers have been cited over 2,800 times (Endler, 1990 
(919); Vorobyev & Osorio, 1998 (601), Vorobyev, Osorio, Bennett, 
Marshall,	&	Cuthill,	1998	(460);	Chittka,	1992	(324);	Chittka,	Beier,	
Hertel,	 Steinmann,	&	Menzel,	 1992	 (128);	 Endler	&	Mielke,	 2005	
(445);	Google	Scholar	search	on	October	31st	2016).

Knowledge of model strength and limitations is crucial to as-
sure reproducible and meaningful results from model applications. 
Thus, the motivation of this study is twofold: firstly, to compare 
and illustrate the consistency of between- model results in com-
mon scenarios of color measurements; and secondly, to facilitate 
the use of color vision models by evolutionary biologists and ecolo-
gists by giving a unified framework which extends and generalizes 
the most commonly used color vision models. I did not aim to give 
an in- depth analysis of the physiology of color vision, but rather, 
to provide a practical guide to the use of color vision models and 
to demonstrate their limitations and strengths so that users avoid 
the	common	pitfalls	of	color	vision	modeling.	Guidance	on	other	
aspects of color vision models can be found elsewhere (Bitton, 

Janisse,	&	Doucet,	2017;	Endler	&	Mielke,	2005;	Hempel	de	Ibarra,	
Vorobyev,	&	Menzel,	2014;	Kelber	et	al.,	2003;	Kemp	et	al.,	2015;	
Lind	 &	 Kelber,	 2009;	Olsson,	 Lind,	 &	 Kelber,	 2017a,b;	 Osorio	 &	
Vorobyev, 2008; Renoult, Kelber, & Schaefer, 2017; Vorobyev, 
Osorio,	 Peitsch,	 Laughlin,	 &	 Menzel,	 2001;	 White,	 Dalrymple,	
Noble, & O’Hanlon, 2015).

2  | GUIDELINES AND LIMITATIONS

As	any	model,	color	vision	models	are	simplified	representations	of	
reality. Their mathematical formulation imposes limits to their pre-
dictive	power.	Many	of	these	limitations	have	been	pointed	out	by	
several	authors	(Bitton	et	al.,	2017;	Lind	&	Kelber,	2009;	Vorobyev,	
1999; Vorobyev & Brandt, 1997; Vorobyev, Hempel de Ibarra, 
Brandt,	&	Giurfa,	1999).	Nonetheless,	as	stressed	recently,	several	
papers in the evolution and ecology subfields still misuse color vision 
models	(Marshall,	2017;	Olsson	et	al.,	2017b).	Some	of	these	limita-
tions may be obvious to scientists working directly on color vision, 
but are not by many nonspecialists that apply color vision models to 
their research. In this section, I compile and illustrate those limita-
tions	by	a	series	of	simulations.	My	focus	is	on	the	limitations	arising	
from the mathematical formulation of each model, which are often 
obscure to many nonspecialists in the field.

I modeled the perception of the honeybee (Apis mellifera) using 
the following color vision models: Chittka (1992) color hexagon 
model	(hereafter	CH	model),	Endler	and	Mielke	(2005)	model	(here-
after	EM	model),	and	linear	and	log-	linear	versions	of	the	receptor	
noise	model	 (hereafter	 linear-	RNL	 and	 log-	RNL	models	 (Vorobyev	
et al., 1998; Vorobyev & Osorio, 1998). I began with a basic model 
setup using simulated data. I then proceeded to make a series of 
changes to this basic model to illustrate how models behave with 
typical	input	data	used	in	ecology	and	evolution	papers.	At	the	end,	
I used real flower reflectance data to compare model results. I vio-
lated	some	model	assumptions,	for	example,	I	applied	the	linear-	RNL	
model to nonsimilar colors, so that model behaviour could be visual-
ized under suboptimum conditions.

Human color perception can be divided into two components: 
the chromatic (hue and saturation) and achromatic (brightness/
intensity) dimensions. These models are representations of the 
chromatic component of color vision (Renoult et al., 2017). Color 
vision models are based on photoreceptor photon catches of each 
photoreceptor type in the retina. Photon catches depend on the 
illuminant spectrum reaching the observed object, the reflec-
tance of the observed object, the sensitivity curve of photorecep-
tors, and the background reflectance (for details see Supporting 
Information	Appendix	S1).

These models assume that color vision is achieved by neural op-
ponency mechanisms, which is supported by experimental data (Kelber 
et	al.,	2003;	Kemp	et	al.,	2015,	but	see	Thoen,	How,	Chiou,	&	Marshall,	
2014	for	an	exception	to	this	rule).	The	exact	opponent	channels	are	
usually	not	known	(Kelber	et	al.,	2003;	Kemp	et	al.,	2015),	but	empir-
ical studies suggest that the exact opponency channels do not need 
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to be known for a good prediction of behavioural responses by color 
vision	models	(Cazetta,	Schaefer,	&	Galetti,	2009;	Chittka	et	al.,	1992;	
Spaethe, Tautz, & Chittka, 2001; Vorobyev & Osorio, 1998). Taking that 
into account, the three models presented here assume that inputs from 
photoreceptors are weighted equally and are all opposed against each 
other.

In addition, photoreceptor values are adjusted taking into consid-
eration the photon catch arising from the environment background 
(Supporting	 Information	 Appendix	 S1,	 Equation	 S3),	 which	 tries	 to	
emulate the physiological adaptation of photoreceptors to the envi-
ronmental light conditions and the color constancy (Chittka, Faruq, 
Skorupski,	&	Werner,	2014).	Photon	catches	relative	to	the	background	
are then transformed to represent the relationship between photore-
ceptor input and output. Each model will apply a different transforma-
tion (e.g. identity, ln, hyperbolic; for details see Supporting Information 
Appendix	S1),	but	the	rationale	behind	all	these	are	the	nonlinear	rela-
tionship between photoreceptor input and output. However, only the 
EM	(Endler	&	Mielke,	2005)	and	log-	RNL	models	(Vorobyev	et	al.,	1998)	
apply the natural logarithm as formulated by the Fechner- Weber law of 
psychophysics. The CH model applies a hyperbolic transformation that 
also simulates a nonlinear relationship between photoreceptor input 
and	output,	and	the	 linear	RNL	models	 is	 to	be	applied	only	to	simi-
lar colors so that the relationship is nearly linear (Vorobyev & Osorio, 
1998).	Furthermore,	EM	model	uses	only	relative	photoreceptor	out-
put values (sum of photoreceptor values equal 1), not their absolute 
values, which is based on the biological observation that only relative 
differences in photoreceptor outputs are used in a color opponency 
mechanisms	(Endler	&	Mielke,	2005).

2.1 | First simulation: basic setup

I used honeybee worker (A. mellifera) photoreceptor sensitivity 
curves (data from Peitsch et al., 1992 available in Chittka & Kevan, 
2005; Supporting Information Figure S1a). For the background re-
flectance spectrum, I created a theoretical achromatic reflectance 
with	 a	 constant	 7%	 reflectance	 across	 300–700	nm	 (Supporting	
Information Figure S1b). For the illuminant, I used the CIE D65, a 
reference illuminant that corresponds to midday open- air condi-
tions	 (Supporting	Information	Figure	S1c).	 In	addition,	RNL	mod-
els assume that, under bright light conditions, color discrimination 
threshold is limited by photoreceptor noise (Vorobyev & Osorio, 
1998; for dim light conditions shot noise also limits discrimina-
tion; Vorobyev et al., 1998; see Olsson et al., 2017a for a recent 
review). For these models, I used measurements of honeybee 
photoreceptor	noise	(0.13,	0.06	and	0.12	for	short-	,	medium-	,	and	
long- wavelength photoreceptors; data from Peitsch, 1992 avail-
able in Vorobyev & Brandt, 1997). With respect to the stimulus 
reflectance spectra, I generated reflectance curves using a logis-
tic	function	(see	Supporting	Information	Appendix	S1	for	details).	
I generated curves with reflectance values from of 10% to 60%, 
and	midpoints	varying	from	300	to	700	nm	with	5	nm	intervals,	in	
a total of 81 reflectance spectra (Supporting Information Figure 
S1d). For each model, I calculated photoreceptor outputs, color 

loci (x and y), and the chromatic distance to the background (ΔS) 
for	each	reflectance	spectra	using	equations	for	CH,	EM,	and	RNL	
models	 (Equations	S2–S19	see	Supporting	 Information	Appendix	
S1 for details on model calculations). To illustrate the generality of 
the results from these simulations, I ran the same simulations with 
a	Gaussian	function	to	generate	the	stimulus	reflectance	spectra,	
and for tetrachromatic avian vision (see Supporting Information 
Appendix	S1	for	methods	and	results;	results	are	qualitatively	very	
similar to the original simulations).

In this first setup, models are congruent with respect to their 
results. The chromaticity diagrams indicate a similar relative position 
of	reflectance	spectra	between	models	(Figure	1).	All	of	them	esti-
mate a bell- shaped ΔS curve, with maximum values around a 500- 
nm midpoint wavelength (Figure 1).

2.2 | Second simulation: stimulus reflectance lower 
than background reflectance

In the second simulation, I removed 10 percentage points to the 
stimulus reflectance spectra (Supporting Information Figure S2a). In 
this case, my aim was to (a) analyze how a relatively small change in 
reflectance curves affect model results, as small changes in overall 
reflectance values may be an artifact of spectrometric measurement 
error (for guidance on spectrometric reflectance measurements, see 
Anderson	&	Prager,	2006);	and	(b)	to	create	reflectance	spectra	that	
would generate a lower photoreceptor response from stimulus than 
the background.

In this simulation, results projected into chromaticity diagrams 
show differences between model predictions of color perception for 
the same reflectance spectrum (Figure 2). Contrary to the first simu-
lation,	in	the	EM	model,	points	follow	two	lines	increasing	in	opposite	
directions, with data points reaching values outside color space limits 
(Figure	2b).	The	EM	model	 estimates	 spurious	ΔS values for reflec-
tance	curves	with	midpoints	between	450	and	550	nm	(Figure	2b).	A	
maximum ΔS	of	116	is	reached	at	490	nm	midpoint	wavelength;	how-
ever, by the model definition, the ΔS maximum value is 0.75 (Endler & 
Mielke,	2005).	Photoreceptor	outputs	also	reach	nonsensical	negative	
values and values above 1 (by model definition, maximum photorecep-
tor output should vary between 0.0 and 1.0; Figure 2b). This happens 
when relative photon catches (qi;	Equation	S4,	Supporting	Information	
Appendix	S1)	are	below	1	(i.e.	background	photon	catch	is	higher	than	
stimulus photon catch), and therefore, the ln- transformation gener-
ates negative values. Consequently, the denominator in Supporting 
Information Equation S9 may reach values close to zero, which causes 
photoreceptor outputs to tend to infinity.

Comparable	 to	 the	 EM	 model,	 the	 log-	RNL	 model	 generates	
nonsensical negative photoreceptor excitation values (Figure 2d). 
Again,	this	happens	because	when	the	relative	photoreceptor	pho-
ton catch (qi;	Equation	S4,	Supporting	 Information	Appendix	S1)	 is	
below 1, the ln- transformation generates negative values (Equation 
S15,	Supporting	Information	Appendix	S1).	Consequently,	this	model	
now presents a sigmoid ΔS, increasing from short to long midpoint 
wavelengths (maximum ΔS at 700 nm; Figure 2d).
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Therefore, color vision models, especially those that are log- 
transformed	(EM	model	and	 log-	RNL	model)	and	convert	photore-
ceptor	output	to	relative	values	 (EM	model),	are	prone	to	produce	
nonsensical results when the observed reflectance generates a lower 
response than the background (Qi < QBi;	 Equation	 S4,	 Supporting	
Information	Appendix	S1).

The transformation of photoreceptor inputs also illustrates a 
common misconception related to the use of color vision models. 
Models	are	 intended	to	be	 insensitive	to	variation	 in	 intensity	only.	
Nonetheless, in practice, models are insensitive to variation in photo-
receptor outputs as long as the difference between outputs remains 
the same. However, this does not mean that reflectance spectra that 
only differ in intensity will generate identical model outputs. For in-
stance, a reflectance spectrum that generates photoreceptor out-
puts of E1 = 0.1, E2 = 0.2 and E3	=	0.3	will	lie	at	the	exact	same	color	
locus coordinates as another reflectance that generates photorecep-
tor outputs of E1 = 0.2, E2	=	0.3,	 and	 E3	=	0.4	 because	 differences	

between photoreceptor outputs remain the same (i.e. E3	−	E1 = 0.2; 
E2	−	E1 = 0.1; and E3	−	E2 = 0.1). Nonetheless, reflectance spectra 
that differ only in intensity (simulation 1 vs. simulation 2) will most 
likely generate distinct differences between photoreceptor outputs 
because of the photoreceptor transformation. Consequently, these 
spectra will lie at different positions in the animal color space (color 
locus coordinates; compare Figures 1 and 2). CH model, in special, 
predicts different color loci for reflectance curves that only differ in 
intensity due to the hyperbolic transformation (Chittka, 1992). There 
is a controversy whether this represents a biological phenomenon 
(Chittka, 1992, 1999) or it is a model limitation (Vorobyev et al., 1999).

2.3 | Third simulation: achromatic stimulus and 
chromatic background

In the basic model, I used an achromatic reflectance spectrum 
(7%	 reflectance	 from	 300	 to	 700	nm).	 In	 practice,	 however,	most	

F IGURE  1 Chromaticity diagrams, ΔS, and photoreceptor outputs of the basic setup of color vision model simulations: (a) Chittka (1992) 
color	hexagon	(CH),	(b)	Endler	and	Mielke	(2005)	color	triangle	(EM),	and	(c)	linear	and	(d)	log-	linear	Receptor	Noise	Limited	models	(Linear-	
RNL	and	Log-	RNL;	Vorobyev	&	Osorio,	1998;	Vorobyev	et	al.,	1998).	Colors	in	chromaticity	diagrams	correspond	to	reflectance	spectra	from	
Supporting Information Figure S1d. ΔS- values (middle row) and photoreceptor outputs (bottom row) as a function of reflectance spectra 
with	midpoints	from	300	to	700	nm.	Violet,	blue,	and	green	colors	represent	short,	middle,	and	long	λmax photoreceptor types, respectively. 
Vertical lines represent the midpoint of maximum ΔS- values
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studies that apply color vision models use chromatic reflectance 
backgrounds, such as a leaf (e.g. Vorobyev et al., 1998), or an aver-
age	of	background-	material	reflectance	spectra	(e.g.	Gawryszewski	
&	Motta,	2012).	Models	are	constructed	so	that	the	background	re-
flectance spectrum lies at the center of the color space. Vorobyev 
and Osorio (1998) specifically state that their linear receptor noise 
model is designed to predict perception of large targets, in bright 
light conditions and against an achromatic background. Despite this, 
given that photoreceptors adapt to the light environment condition, 
usage of chromatic background is probably reasonable (Vorobyev 
et al., 1998). I generated achromatic reflectance spectra ranging 
from 5% to 95% in 10 percent point intervals (Supporting Information 
Figure S2b), and instead of having an achromatic background, I used 
a chromatic background (Supporting Information Figurre S2c). The 
background is the average reflectance of leaves, leaf litter, tree bark, 
and twigs collected in an area of savanna vegetation in Brazil (data 
from	Gawryszewski	&	Motta,	2012).

The chromatic background causes differences in background 
photoreceptor photon catches. Consequently, achromatic reflec-
tance spectra do not lie at the center of the color spaces as would 
be expected. The CH model shows a maximum ΔS	value	of	0.31	at	
5%	 reflectance	 achromatic	 spectrum	 (Figure	3a).	 ΔS values then 
decrease as the reflectance value of achromatic spectra increases 
(Figure	3a).	The	EM	model	produces	 spurious	values	 at	5%	 reflec-
tance achromatic spectrum because it generates negative photore-
ceptor	output	values	(Figure	3b).	From	15%	and	beyond,	ΔS values 
then decrease as the reflectance value of achromatic spectra in-
creases	(Figure	3b).	The	linear-	RNL	model	shows	a	linear	increase	in	
ΔS values as the reflectance value of achromatic spectra increases 
(Figure	3c).	 Similarly,	 photoreceptor	 outputs	 also	 increase	 linearly	
as the reflectance value of achromatic spectra increases, but with 
different	 slopes	 for	each	photoreceptor	 type	 (Figure	3c).	Contrary	
to other models, ΔS-	values	 in	 the	 log-	RNL	 model	 do	 not	 change	
with	 varying	 reflectance	 values	 of	 achromatic	 spectra	 (Figure	3d).	

F IGURE  2 Chromaticity diagrams, ΔS, and photoreceptor outputs of the second simulation—10 percentage points removed from 
reflectance	values:	(a)	Chittka	(1992)	color	hexagon	(CH),	(b)	Endler	and	Mielke	(2005)	color	triangle	(EM),	and	(c)	linear	and	(d)	log-	linear	
Receptor	Noise	Limited	models	(Linear-	RNL	and	Log-	RNL;	Vorobyev	&	Osorio,	1998;	Vorobyev	et	al.,	1998).	Colors	in	chromaticity	diagrams	
correspond to reflectance spectra from Supporting Information Figure S2d. ΔS- values (middle row) and photoreceptor outputs (bottom row) 
as	a	function	of	reflectance	spectra	with	midpoints	from	300	to	700	nm.	Violet,	blue,	and	green	colors	represent	short,	middle,	and	long	λmax 
photoreceptor types, respectively. Vertical lines represent the midpoint of maximum ΔS-values
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Although	 photoreceptor	 outputs	 increase	 as	 reflectance	 value	 of	
achromatic	 spectra	 increases	 (Figure	3d),	 the	 difference	 between	
photoreceptor outputs remains the same. Consequently, ΔS- values 
do not change.

This	 simulation	 shows	 that	 CH	 and	 EM	models	 predict	 coun-
terintuitive values because a highly reflective achromatic stimulus 
is predicted to have a lower ΔS- value than a spectrum with simi-
lar reflectance to the background. This phenomenon has already 
been discussed previously both theoretically and experimentally 
(Stoddard & Prum, 2008; Vorobyev, 1999; Vorobyev & Brandt, 
1997; Vorobyev et al., 1999). For instance, in a laboratory experi-
mental setup, Vorobyev et al. (1999) showed that bees made more 
mistakes when trying to detect a grey target against a green back-
ground than when trying to detect a white target again the same 
green background.

Another	common	misconception	arises	from	the	use	of	detect-
ability/discriminability	thresholds.	The	RNL	model,	for	instance,	is	a	
good predictor of the detectability of monochromatic light against 
a gray background (Vorobyev & Osorio, 1998). For this model, and 
given the experimental condition, a ΔS = 1 equals one unit of just 
noticeable difference (JND; Vorobyev & Osorio, 1998). However, 
this threshold is not fixed. For zebra finches, for instance, the same 
pair of similar red objects have a discriminability threshold of ca. 1 
JND when the background is red, but much higher when the back-
ground	is	green	(Lind,	2016).	Furthermore,	the	relationship	between	
ΔS values and probability of discriminability varies between species 
and it is not necessarily linear, in particular for ΔS values that greatly 
surpass	threshold	values	(Garcia,	Spaethe,	&	Dyer,	2017).	In	addition,	

correct	model	 parametrization	 is	 vital	 for	 RNL	models,	 which	 are	
very	sensitive	to	correct	photoreceptor	noise	values	(Lind	&	Kelber,	
2009; Olsson et al., 2017a) and the relative abundance of photore-
ceptors in the retina (Bitton et al., 2017).

2.4 | Real reflectance data: comparison 
between models

In this setup, my aim was to compare model results using real reflec-
tance data. I used 858 reflectance spectra from flower parts col-
lected worldwide and deposited in the Flower Reflectance Database 
(FReD;	 Arnold,	 Faruq,	 Savolainen,	 McOwan,	 &	 Chittka,	 2010).	 I	
used	only	spectrum	data	that	had	a	wavelength	range	from	300	to	
700 nm. Data were then interpolated to 1- nm intervals and negative 
values converted to zero. I used the same reflectance background 
from	 simulation	 03,	 and	 other	 model	 parameters	 identical	 to	 the	
basic model setup. I compared model results visually, and by test-
ing the pairwise correlation between the model’s ΔS values. I used 
the Spearman correlation coefficient because data did not fulfill as-
sumptions for a parametric test.

When real flower reflectance spectra are used, models also 
give different relative perception for the same reflectance spec-
trum.	The	results	of	the	CH	model	and	the	log-	RNL	model	are	sim-
ilar both qualitatively and quantitatively: color loci projected into 
the	color	space	(Supporting	Information	Figure	S3)	show	a	similar	
relative position of reflectance spectra, and there is a high cor-
relation score between ΔS values (ρ	=	0.884;	N = 858; p < 0.001). 
Even	though	many	EM	points	lie	outside	the	chromaticity	diagram	

F IGURE  3 Third setup of color vision model simulations—achromatic stimulus against chromatic background: (a) Chittka (1992) color 
hexagon	(CH),	(b)	Endler	and	Mielke	(2005)	color	triangle	(EM),	and	(c)	linear	and	(d)	log-	linear	Receptor	Noise	Limited	models	(Linear-	RNL	
and	Log-	RNL;	Vorobyev	&	Osorio,	1998;	Vorobyev	et	al.,	1998).	ΔS- values (top row) and photoreceptor outputs (bottom row) as a function 
of spectra with achromatic reflectance from 5% to 95%. Violet, blue, and green colors represent short, middle, and long λmax photoreceptor 
types, respectively
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(Supporting	Information	Figure	S3b),	results	suggest	a	high	concor-
dance	between	CH	and	EM	models	(ρ = 0.889; N = 858; p < 0.001). 
There was moderate concordance between the linear and log 
versions	of	the	RNL	model	(ρ	=	0.434;	N = 858; p < 0.001) and be-
tween	the	EM	and	log-	RNL	models	(ρ = 0.662; N = 858; p < 0.001). 
Finally,	there	was	poor	concordance	between	the	linear-	RNL	model	
and	 both	 EM	models	 (ρ	=	−0.264;	N = 858; p < 0.001), as well as 
the	linear-RNL	and	CH	models	(ρ	=	0.037;	N = 858; p = 0.278).

In addition to the limitations commented above, these models 
also do not incorporate higher order cognition abilities that may af-
fect how color is perceived (Dyer, 2012). In bees, for instance, pre-
vious experience, learning and experimental conditions may affect 
their behavioural discriminability thresholds (Chittka, Dyer, Bock, & 
Dornhaus,	2003;	Dyer,	2012;	Dyer	&	Chittka,	2004;	Dyer,	Paulk,	&	
Reser,	2011;	Giurfa,	2004),	and	in	humans,	the	ability	to	discriminate	
between colors is affected by the existence of linguistic differences 
for	colors	 (Winawer	et	al.,	2007).	Moreover,	models	presented	here	
are pairwise comparisons between color patches, which do not in-
corporate the complexity of an animal color pattern composed of a 
mosaic	of	 color	patches	of	variable	 sizes.	Endler	and	Mielke	 (2005)	
provide a methodological and statistical tool that can deal with a cloud 
of points representing an organism’s color patches. Use of hyperspec-
tral	cameras	or	adapted	DSLR	cameras	may	facilitate	the	analysis	of	
animal	coloration	as	a	whole	(Chiao,	Wickiser,	Allen,	Genter,	&	Hanlon,	
2011; Stevens, Párraga, Cuthill, Partridge, & Troscianko, 2007). Other 
aspects that may be important when detecting a target, such as size, 
movement,	light	polarization	(Cronin,	Johnsen,	Marshall,	&	Warrant,	
2014),	and	color	categorization	(Hempel	de	Ibarra	et	al.,	2014;	Kelber	
& Osorio, 2010), are also not incorporated into those models.

Therefore, accurate application of color vision models depends 
on the inspection of photoreceptor output values, knowledge of 
model assumptions, comprehension of the mathematical formula 
used for constructing each model, and familiarity with mechanisms 
of color vision of the animal being modeled. Comparison of model 
results with field and laboratory- based behavioural experiments are 
also crucial to complement and validate model results.

3  | A GENERIC METHOD FOR N- 
DIMENSIONAL MODEL S

Despite some differences between these models, they can all 
be	understood	using	the	same	general	formulae.	As	explained	in	
the section above, color vision is achieved by neural opponency 
mechanisms	(Kelber	et	al.,	2003;	Kemp	et	al.,	2015),	although	for	
most species the opponency channels have not been identified 
(Kelber	et	al.,	2003;	Kemp	et	al.,	2015).	In	practice,	the	solution	is	
to build a model so that all photoreceptor outputs are compared 
simultaneously. This is achieved by projecting photoreceptor out-
puts as vectors (vector lengths represent output values) into a 
space so that all vectors have the same pairwise angle (i.e. the 
resulting vector has length zero when all vector lengths are equal; 
Figure	4).	 Each	model	will	 present	 differently	 arranged	 vectors.	

However, they can all be reduced to the same general formula 
because vector position in relation to the axes has no biological 
significance as long as they preserve the same pairwise angle (see 
Vorobyev & Osorio, 1998).

By adding vectors, the length of the resultant vector represents 
the chromaticity distance of the stimulus against the background, 
and vector components represent the stimulus coordinates in 
the color space (color locus; Chittka, 1992). Vorobyev and Osorio 
(1998) assume that noise at photoreceptors limits chromatic dis-
crimination. In this case, each photoreceptor has a specific noise, 
and the chromaticity distance is given by the resultant photore-
ceptor	length	divided	by	its	noise	(see	calculation	below;	Figure	4).

For a generic n- dimensional method, let i be the number of 
photoreceptor	sensitivity	curves.	Assuming	an	opponency	mech-
anism, the animal chromaticity diagram will have n = i	−	1	dimen-
sions. In this space, there will be i vectors, each representing the 
output	 of	 one	 photoreceptor	 type	 (Figure	4a).	 Each	 vector	 will	
have i	−	1	 components	 (n = i	−	1),	 each	 representing	 one	 coordi-
nate	 in	 the	chromaticity	diagram	 (Figure	4a).	Photoreceptors	 are	
assumed to be weighted equally and give sum zero; therefore, 
their pairwise angle is given by: 

Then, the last component of a generic unit vector (v = [v1, v2, v3 … 
vn]) projected into a chromaticity diagram with n = i	−	1	dimensions	
can be found by the following equations: 

If the chromaticity diagram has only one dimension, (i = 2), 
then the generic vector has only one component (n = 1), given by 
Equation 2. For a chromaticity diagram with more than one dimen-
sion (i > 2), other vector components are found by the following 
equation: 

where n is the total number of vector components, and k	=	(1,	2,	3,	
…, n −	1).	Then	a	matrix	of	column	vectors	 (size:	 i × n; each column 
represents one vector) with unit vectors equidistant from each other 
can be found by the following equation:

where v	 is	 the	 generic	 unit	 vector,	 as	 found	 by	 Equations	1–3.	
Equations	1–4	were	found	empirically.
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Note that this is one of infinite possible solutions to project n 
vectors into a (n	−	1)	dimensional	space.	Although	it	will	not	have	a	
biological meaning, nor affect results, other orientations of matrix V 
can be achieved by vector rotation matrices.

With matrix V, one can find a vector, whose components rep-
resent coordinates in the color space (X1, X2, …, Xn), by multiplying 
matrix V by a column vector with photoreceptor output as its com-
ponents (p = (p1, p2, p3, … pi)):

One may also represent Equation 6 as formulae, as is usually per-
formed when presenting color vision models.

Matrix	V can be manipulated to accommodate different color vi-
sion models. Chittka (1992) assumes a maximum vector length of 
one	(Equation	S5,	Supporting	Information	Appendix	S1);	therefore,	
matrix V can be used directly. The tetrachromatic version of Endler 
and	Mielke	 (2005),	 however,	 assumes	 a	maximum	 length	 of	 0.75.	
Therefore, matrix V must be multiplied by a scalar with the desired 
length	(see	Supporting	Information	Appendix	S1	for	detail	on	model	
calculation using formulae above).

In the original study, Vorobyev and Osorio (1998) provided a 
method to calculate chromaticity distances (ΔS) independently of 
the matrix V, and their method is already applicable to any number 

of photoreceptor types (see also Clark et al. 2017 to another 
model extension). However, within Vorobyev and Osorio (1998) 
formulation,	it	is	possible	to	find	a	space	representing	RNL	model	
color space in terms units of receptor noise (see for instance 
Renoult et al., 2017 and Pike, 2012a,b). For a 2- D color space, the 
noise standard deviation will be given by the line segment, from 
the centre to the edge of the standard deviation contours, in the 
same	direction	as	 the	vector	 representing	 the	signal	 (Figure	4b).	
Then a vector, (s⃗), whose components represent coordinates in 
the color space, is found by dividing vector components by the 
length	of	the	noise	line	segment	(Figure	4b).	This	calculation	can	
be performed by a simple change in Vorobyev and Osorio (1998, 
equation	A7).	In	this	new	equation,	the	covariance	matrix	of	recep-
tor	noise	in	coordinates	of	the	V	matrix	(equation	A6	in	Vorobyev	
& Osorio, 1998) are square-root transformed and multiplied by x 
so that vector length represents chromaticity distances instead of 
chromaticity	distances	to	the	square	as	in	equation	A7	(Vorobyev	
& Osorio, 1998):

where V	 is	 the	matrix	 in	Equation	4,	T represents the transpose, x⃗ 
is a column vector with color locus coordinates (as in Equation 6), 
and R is a covariance matrix of photoreceptor output values. Since 
photoreceptor outputs are not correlated, R is a diagonal matrix 
with photoreceptor output variance (receptor noise) in their diago-
nal elements (e2

i
; Vorobyev & Osorio, 1998). The main advantage of 

Equation	7	is	to	allow	visualization	of	RNL	data	into	a	space	where	
distance between points corresponds to chromaticity distance val-
ues as calculated by Vorobyev and Osorio (1998) original equations.
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F IGURE  4  (a) Example of photoreceptor outputs (p) from a trichromatic animal projected as vectors (red arrows) into a chromaticity 
diagram. The black arrow denotes a vector (s⃗) resulting from adding vectors p⃗1, p⃗2, and p⃗3. (Equation 6). Its components are the coordinates 
in the color space and its length, the ΔS	value	to	the	background	in	Chittka	(1992)	and	Endler	and	Mielke	(2005)	models.	Receptor	noise	
models	assume	that	discriminability	thresholds	are	defined	by	noise	at	the	photoreceptors.	Gray	points	denote	randomly	generated	vectors	
from normally distributed p values and their receptor noise (one standard deviation). Ellipse denotes the standard deviation. The ellipse is 
calculated from p⃗ vectors and their receptor noise. (b) Inset showing the ellipse and its eigenvectors, with the size adjusted to one standard 
deviation. The length of the line segment in blue represents vector s⃗ standard deviation. Receptor noise value against the background is 
simply the length of vector s⃗ divided by its standard deviation
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The boundaries of the color space will depend on the calculation 
of photoreceptor outputs. For instance, in Chittka (1992) color hexa-
gon model, a trichromatic color space is represented by a hexagon, 
whereas	in	the	Endler	and	Mielke	(2005)	model,	the	color	space	is	re-
duced to a triangle because summation of photoreceptor outputs is 
assumed	to	equal	1	(Equation	S9;	Supporting	Information	Appendix	
S1). In contrast, transformations used by receptor noise models 
(Vorobyev & Osorio, 1998; Vorobyev et al., 1998) impose no upper 
limit, and therefore, the color space has no defined boundary.

Furthermore, when extending models to accommodate different 
numbers of photoreceptors (e.g. from a tetrachromatic to a penta-
chromatic version), there is often a trade- off between preserving 
the edge size (distance between color space vertices) and preserving 
vector length. Pike (2012a), for instance, holds edge distance con-
stant when changing color space dimensions; however, this comes 
at the cost of increased vector length as the number of dimensions 
increases. In practice, preserving an edge length of 

√
2 means that 

for a trichromat, the maximum chromaticity distance from the center 
to the edge, is 0.816, but 0.866 for a tetrachromat. In contrast, chro-
maticity distances in receptor noise limited models are independent 
of the color space geometry (Vorobyev & Osorio, 1998). The generic 
matrix V allows for a user- defined adjustment of color space size.

Distances in chromaticity diagrams are assumed to represent 
chromaticity similarities between two colors. The assumption is that 
the longer the distance, the more dissimilar the two perceived col-
ors are (note, however, that this relationship is not necessarily linear; 
see	for	instance	Garcia	et	al.,	2017).	Chromaticity	distances	between	
a pair of reflectance spectra (a and b) are found by calculating the 
Euclidian distance between their color loci in the color space:

By definition, background reflectance lies at the centre of the 
background (X1b =0, X2b =0, … ,Xnb =0).

4  | COLOURVISION: R PACK AGE FOR 
COLOR VISION MODEL S AND REL ATED 
FUNC TIONS

Colourvision is a package for color vision modeling and presentation of 
model results (Figure 5). The package implements the general method 
for n- dimensional models presented above and therefore are able to 
generate user- defined color vision models using a simple R function (a 
model not implemented in colourvision, or a new user- defined model), 
which complements other packages and software already available 
(e.g.	pavo,	Maia,	Eliason,	Bitton,	Doucet,	&	Shawkey,	2013).	The	main	
advantages of colourvision are (a) the flexibility to build a user- defined 
color vision models; (b) extension of all color vision models to any 
number of photoreceptors; and (c) user- defined adjustments of color 
space when changing number of photoreceptors.

Within this unified framework, researchers may easily test 
variations from current models that may better represent real-
ity. For instance, it is possible to use a tetrachromatic version of 
Chittka, 1992 color hexagon with same vertex length as in the 
trichromatic version (in fact with any desired length), instead of 
a fixed vector length as in Thery and Casas (2002). By extend-
ing models to any number of photoreceptor types, colourvision 
makes it possible, for instance, to model the vision of tenta-
tively pentachromatic organisms (e.g. Drosophila melanogaster; 
Schnaitmann,	 Garbers,	 Wachtler,	 &	 Tanimoto,	 2013),	 and	 test	
model predictions against behavioural data using all models. 
Furthermore, with the general function to produce user- defined 
models, it is possible, for example, to generate a receptor noise 
limited model that transforms photon catch data by x/(x + 1) in-
stead of ln (note, however, that these new models have not been 
validated by behavioural data).

Furthermore, model outputs in colourvision can be projected into 
their chromaticity diagrams using plot functions (Figure 5). For instance, 

(8)ΔS=

√(
X1a

−X1b

)2
+
(
X2a

−X2b

)2
+…+

(
Xna

−Xnb

)2
.

F IGURE  5 Diagram showing the main 
functions in colourvision (v2.0) R package. 
Users provide input data that may be 
changed by data handling functions. Input 
data are arguments used by color vision 
model functions. There are functions to 
the most commonly used color vision 
models, and a general function able 
to generate user- defined color vision 
models	(GENmodel).	These	models	have	
been extended to accept any number of 
photoreceptor types. Some functions 
are used internally (internal inset) in 
models but may be of interest for more 
advanced	users.	Model	functions	generate	
a comprehensive output, which may be 
visualized into model- specific color spaces 
using plotting functions
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data from a Chittka (1992) model are easily plotted into a hexagonal 
trapezohedron, which represents the color space boundaries of a tet-
rachromat in this model. The package also provides additional plotting 
functions for visualization of photoreceptor inputs and outputs into a 
radar plot, as well as functions to handle input data (Figure 5).

To provide a quick illustration on the potential application of 
colourvision	 I	 used	 the	 same	 setup	 as	 in	 simulation	 3	 (section	2).	
However, I randomly sampled 50 flowers to serve as reflectance 
stimuli, and, instead of the honeybee, I simulated dichromatic, 
trichromatic, tetracromatic, and pentachromatic animals. I generated 
all	combination	of	spectral	sensitivities	curves	from	330	to	630	nm,	
with	30-	nm	intervals,	and	calculated	log-	RNL	(assuming	0.1	receptor	
noise to all photoreptors) and CH model outputs. In addition, to test 
the dependency of ΔS- value to the color space dimensions, I further 
calculated a CH model, but holding a fixed vertex distance of 

√
3, 

instead of a fixed vector length of 1. I used the maximum mean ΔS- 
value as a selection rule for the best set of photoreceptors (alterna-
tively one could have applied the number of flowers above a certain 
threshold; see for instance Chiao, Vorobyev, Cronin, & Osorio, 2000).

All	three	models	found	the	same	best	set	of	photoreceptors	for	
di-	,	tri-	,	tetra-	,	and	pentachromatic	animals:	330	and	420	nm	(dichro-
mat),	330,	420,	and	570	nm	(trichromat),	330,	390,	420,	and	570	nm	
(tetrachromat),	and	330,	360,	420,	450,	and	570	nm	(pentachromat).	
In addition, distribution of ΔS- values showed an increase in ΔS- 
values and a reduction in variability as the number of photoreceptor 
increases (Figure 6). Interestingly, however, the best trichromatic 
model is as good as most pentachromatic models. Comparison be-
tween CH model with fixed vector length and CH with fixed vertex 
distance shows a similar pattern, but there is a decrease in ΔS- value 
for	<3	photoreceptors	and	an	increase	in	ΔS-	value	for	>3	photore-
ceptors (Figure 6).

All	calculations	and	color	space	figures	in	this	study	were	per-
formed using the colourvision R package (R scripts are available 
in	 the	 Supporting	 Information	Data	 S1–S4),	which	 also	 illustrate	
potential package applications. For more detail on how to use co-
lourvision, refer to the user guide vignette (https://cran.r-project.
org/web/packages/colourvision/vignettes/colourvision-vignette.
html).
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