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Abstract—Blind inversion of nonlinear systems is a complex
task that requires some sort of prior information about the
source e.g. whether it is composed of independent samples
or, particularly in this work, a dependence “signature” which
is assumed to be known via the autocorrentropy function.
Furthermore, it involves the solution of a nonlinear, multimodal
optimization problem to determine the parameters of the inverse
model. Thus, we propose a blind method for Wiener systems
inversion, which is composed of a correntropy-based criterion
in association to the well-known CLONALG immune-inspired
optimization metaheuristic. The empirical results validate the
methodology for continuous and discrete signals.

I. INTRODUCTION

Traditionally, nonlinear system identification methods as-
sume that a reference signal is available. However, in a real-
world situation, one may have no access to the system input,
hence, the blind inversion of nonlinear systems is a neces-
sary strategy to circumvent such restriction. Blind inversion
(closely related to blind identification and equalization) of
nonlinear systems has important developments, with many
theoretical results and applications, for instance, in telecom-
munications [1], [2].

The well-known Wiener and Hammerstein systems are non-
linear models that are employed within many domains, due to
their simplicity and physical meaning. The system steady-state
behavior is completely determined by static nonlinearities,
while the system dynamic behavior is determined by both
the nonlinearity and the linear model components. Formally
speaking, a Wiener system, depicted in Fig. 1, consists of a
linear time-invariant (LTI) filter subsystem h(n) followed by
a memoryless, invertible, nonlinear distortion f [·]:

x(n) = f [e(n)] = f [h(n) ∗ s(n)] , (1)

where s(n) is the system input signal and x(n) is its output. A
Hammerstein system is composed by a static nonlinear block
g[·] followed by an LTI subsystem w(n):

y(n) = w(n) ∗ u(n) = w(n) ∗ g [x(n)] , (2)

where x(n) is the input signal to the Hammerstein system and
y(n) its output.

Fig. 1. Diagram of Wiener and Hammerstein systems

In this work, we consider the inverse modeling of a Wiener
system by means of immune-inspired engineering. Despite the
system simplicity, it has been applied in many areas, such as
industry, sociology, psychology etc. [3], [4]. It is important
to highlight that, in the literature, there exists a very wide
variety of methods and studies in the context of blind inversion
where the input of the Wiener system is originally assumed to
be independent and identically distributed (i.i.d.), but in spite
of efforts like [5]–[11], the inversion task for sources with
statistical (temporal) dependence still demands further studies.
If the samples of s(n) are dependent — a quite realistic



assumption — the previously mentioned approaches are not
capable of obtaining the desired solution, since they consider
maximal independence-based criteria to estimate the Hammer-
stein system optimal parameters. It should be mentioned that
dependent sources are practically important in view of, for
example, the potential application of different types of codes
before signal transmission. Moreover, improvements on prob-
lem parametrization and on representation of the candidate
solutions are required to overcome stability and convergence
issues that may rise when adopting, as inverse filters, a model
with feedback loops.

In the last decade, Information Theoretic Learning (ITL)
has gained attention in the signal processing area [12]–[14]
and a new generalized correlation function, called correntropy,
has been introduced. Correntropy is a positive definite function
which yields a generalized similarity measure between random
variables (in this work, sets of random variables are used to
model signal samples through time, thus yielding stochastic
processes) capable of encompassing the higher-order statis-
tics (HOS) of the signals of interest. Recently, the authors
presented in [15] a first analysis of the autocorrentropy and
autocorrelation function for representing the time structure of
a given signal in the context of the unsupervised inversion
of Wiener systems by Hammerstein systems. The results
indicated that both functions provide effective means for
system inversion, being possible to visualize the effect of linear
feedback on the overall system performance.

This work is an extension of the previous one, with the aim
of (i) introducing a new antibody/cell representation, based
on the zeros and poles of the inverse filter, to avoid unstable
solutions; (ii) analyzing the correntropy-based criterion in
more scenarios and its sensitivity to the kernel size adjustment;
and (iii) confirming the adequacy of CLONALG immune-
inspired algorithm as optimization strategy for this task.

The paper is divided into 5 sections. In the following,
Section 2 details the criterion to be employed through the
remainder of the work. Section 3 briefly presents the proposed
methodology. Section 4 presents the results of numerical
simulations. Finally, conclusions are drawn in Section 5.

II. AUTOCORRENTROPY FUNCTION

Correntropy or, more specifically, the autocorrentropy func-
tion was first introduced by Santamaria et al. [16], who
suggested its application in the blind deconvolution problem.
It is a measure that generalizes the autocorrelation function to
nonlinear spaces: if {X(n), n ∈ N} is a stochastic process
within an index set N , then the autocorrentropy function
V (i1, i2) is

V (i1, i2) = E [κσ (X(i1)−X(i2))] , (3)

where E[·] denotes the statistical expectation and kσ(·) is the
kernel function, usually assumed to be a Gaussian kernel,
given by

κσ(x− y) =
1√
2πσ

exp

(
− (x− y)2

2σ2

)
, (4)

where σ is a parameter known as the kernel size. This
parameter plays a crucial role, since it influences in the nature
of the performance surface, like the cost function smoothness,
the presence of local optima and convergence rate [17]. Using
a Taylor series expansion for the Gaussian kernel, it can be
shown that correntropy encompasses HOS information and,
consequently, can be a more robust dependence measure than
autocorrelation function [16].

If {X(i)} is stationary, Eq. (3) is simplified to

V (m) = E [κσ (X(i1 +m)−X(i1))] , (5)

where m = (i2− i1) is the time lag between the samples. It is
possible to estimate the autocorrentropy function through the
sample mean:

V̂ (m) =
1

N −m+ 1

N−m∑
n=0

κσ (x(n+m)− x(n)) . (6)

where N is the size of the data window used to estimate the
correntropy and x(n) is the data samples available {x(n), n =
0, 1, . . . N − 1}

One can find several applications of correntropy in different
domains e.g. nonlinear regression, equalization, blind source
separation, independence tests [18] etc. For blind deconvo-
lution of stationary signals, the authors of [16] propose a
correntropy-based criterion which minimizes the objective
function

Jcor(w) =

P∑
m=1

(Vs(m)− Vy(m))2, (7)

where w is the filter parameters vector and P is the number
of lags. Note that the lag m = 0 is not considered, since it
is always equal to k(0) = 1/(

√
2πσ). In other words, this

criterion tries to match the correntropy Vs(m) associated with
the source s(n) to the correntropy Vy(m) of the equalizer
output y(n).

III. PROPOSAL OF AN IMMUNE-INSPIRED,
CORRENTROPY-BASED FRAMEWORK

We consider the Hammerstein system, defined in Eq. (2), to
invert the Wiener system. It comprises an invertible nonlinear
function g[·], which is assumed to be an odd-power polynomial
of (2Np − 1)-th order with strictly positive coefficients

g(x) = c1x
1 + c2x

3 + ...+ cNpx
2Np−1, (8)

ck ≥ 0, k = 1, 2, ..., Np

followed by an LTI sub-system with infinite impulse response
(IIR) w(n). Although some authors adopt finite impulse re-
sponse (FIR) models for the linear sub-system [5], the choice
of the IIR model is justified by its greater flexibility and
efficiency in comparison with the FIR structure.

The transfer function of an IIR filter is

W (z) =

∑Na

i=0 aiz
−i∑Nb

k=0 bkz
−k
, (9)



where ak and bk are the adjustable coefficients of the model.
Such parametrization is widely adopted for IIR filter design
due to its simplicity and straightforwardness to calculate the
filter’s frequency response. However, there is a problem: for
any choice on values for ai and bk, it is necessary to check if
the filter is stable, i.e. the poles of W (z) are inside the unit-
circle. In the context of searching for optimal filter parame-
ters via a population-based metaheuristic, this representation
requires a validation (or penalty) routine step for every single
candidate-solution and involves an unnecessary search over
regions of the parameter space that may result, actually, in
non-stable and consequently useless filters.

Hence, this work proposes an alternative model to represent
the IIR filter that is based on the zeros and poles of the
system [19], [20]:

W (z) = a0

∏2M
i=1(z − ri)∏2M
k=1(z − pk)

(10)

where Na = Nb = 2M is the order of the filter, r1, r2, ..., r2M
are the zeros, p1, p2, ..., p2M are the poles and a0 is the filter
gain, which is set to 1 due to the scale indeterminacy of
the problem [5]. Each zero and pole is represented by its
magnitude and angle, however, only a filter with real-valued
coefficients is feasible, which is valid when, for any complex-
valued zero / pole, its complex conjugate is also a zero /
pole. Then it is necessary to include in the encoding vector
just M zeros and M poles while their complex conjugates
are implicitly considered. A magnitude less than 1 for the
poles assures the stability condition, moreover, this restriction
is extended for the zeros because we assume that the filter
inverse (the linear part of the Wiener system) should be stable,
as well.

Fig. 2 summarizes the organization of the parameters that
each population individual encodes. Observe that the zeros and
poles are represented by the polar notation, where the angle is
limited to [0, π]1. The vector dimension is Np+4M elements.

To work with this parametric model, in view of the difficul-
ties of the gradient-based methods for nonlinear-multimodal
cost functions and, consequently, to escape from local optima,
Artificial Immune Systems (AIS) can be an effective search
procedure. Due to the successful results presented by CLON-
ALG in [11], [15], this work continues to use this technique as
the optimization method, but with the new zero/pole encoding
for the IIR filter sub-system, in association with the cost
function defined in Eq. (7): the matching of correntropies.

The clonal selection principle was initially based on works
carried in the 1970 by Burnett [21]. This work served as
inspiration for CLONALG [22], a popular AIS algorithm
involving an abstract version of the cloning and hypermuta-
tion process. All clonal selection-based algorithms essentially
gravitate around a repeated cycle of match, clone, mutate and
replace, and numerous parameters can be tuned, including the

1There is no need to search for negative angles, because of the implicit
complex conjugate zero/pole.

cloning rate, the initial number of antibodies, and the mutation
rate for the clones.

The CLONALG algorithm, described in Algorithm 1, is
first initialized with an Ab pool of antibodies with fixed size
Ninitial, in which every Abi representing an element from
the parameter space. It is proposed by [22] that the generation
of those antibodies occurs randomly in order to have a great
diversity of population. First, all Ab members are evaluated
by the fitness function fAg(Abi), in which Ag represents
the antigens, then, the amount of clones nC to be generated
for each individual is defined. Following, the new set of nC
clones performs an affinity maturation process towards the
local optima, where the intensity of modifications is inversely
proportional to their parent’s affinity. Next, a new set of R
individuals is formed. In this process, which represents the
implementation of the immune memory of the system, the
individuals with the highest affinities and diversity are kept.
Finally, the main loop is concluded with a random generation
of b new antibodies that will replace the lowest affinity Ab
in the current population. The process repeats itself until a
number of iterations maxiT is executed.

Algorithm 1 Pseudo-code of CLONALG algorithm for opti-
mization
Require: [Ab] = clonalg(β, ρ,Ninitial,nC,b, range)
Ensure: Ab = random(Ninitial, range)

1: while iteration ≥ maxIT do
2: Solve fit = affinity(Ab)
3: C = clone(Ab, nC, β)
4: C∗ = mutate(C, fit, ρ)
5: Fit′ = affinity(C∗)
6: R = select(C∗, F it′)
7: Ab = replace(R, random(b, range))
8: end while

In this paper, the CLONALG optimization algorithm is
responsible for searching the optimal parameters of g[·] and
w(n) that minimize the cost function Jcor, evaluated according
Eq. (7). The individuals of the population represent the param-
eters of the Hammerstein system, according to the parametric
models previously defined in Eqs. (8) and (10).

IV. NUMERICAL SIMULATIONS

To validate the proposed framework, this section presents a
performance evaluation in two sets of experiments, considering
continuous and discrete input signals. Moreover, the perfor-
mance obtained by CLONALG is compared with that of the
well-known Hill Climbing algorithm [23].

To reduce indeterminacies, at every fitness evaluation, the
output of the nonlinear stage u(n), n = 1, 2, . . . , N is centered
and normalized as well as the output of the linear stage y(n),
as stated in [11], [15].

For all scenarios, N = 2000 samples of s(n) are considered,
where the resulting signal x(n) is provided to the algorithm.
The number of lags used in the Jcor(·) cost function for



Fig. 2. Parameter vector of each CLONALG individual.

equalization is P = 10, the kernel size adjustment is discussed
in the following section.

CLONALG parameters were adjusted to 20 individuals and
10% of new individuals inserted per iteration. The percentage
of clones (denoted as β) and mutation rate (denoted as ρ) were
defined with the aid of a preliminary cross-validation routine,
which comprised 10 independent trials of the algorithm, with
the correntropy cost function, for each possible configuration:
the clone number parameter β ∈ {0.1, 0.2, 0.3} and the
mutation rate ρ ∈ {2, 3, 4, . . . , 8}. The parameters were fixed
at 0.1 and 4, respectively. The algorithm stops when it reaches
100 consecutive generations without improvement on the best
solution.

In order to evaluate the method performance, we com-
pute mean values, over a number of independent algorithm
executions for each experiment, of the signal to noise ratio
(SNR) between the output signal and the original signal for the
optimal equalization delay, i.e. σ2

s/σ
2
n = E[y2(n)]/E[(s(n)−

y(n))2], where σ2
n is the error power and σ2

s is the estimated
signal power.

A. Continuous Case

First, we consider the input signal to be either a Uniform or
Laplacian i.i.d. sequence, with zero mean and unit variance,
that is submitted to a linear precoder P (z) = 1 + 1z−1.
The linear precoder can be a type of line coding introducing
correlation. Thereby, an i.i.d. source is linearly precoded to
form a sequence of dependent samples s(n) [16]. The source
autocorrentropy is estimated from a reference set of 500
samples of s(n). The actually transmitted samples of s(n) do
not belong to this set. Then, we analyze the performance of
the algorithm in a series of scenarios varying the parameters
of the Wiener system (the linear H(z) and nonlinear distortion
f [·]) as well as the order of the Hammerstein linear sub-system
W (z).

Before starting the analysis, we empirically search for
an appropriate kernel size to be used in the autocorren-
tropy criterion. We consider 6 possible kernel size values,
0.125, 0.25, 0.5, 1, 2 and 4, and test the performance of
the proposed framework considering both source distributions.
Two different scenarios for the Wiener system are analyzed:

1) A minimum phase system with coefficients H(z) = 1+
0.5z−1 and nonlinear distortion f(v) = sign(v) 3

√
| v |.

The polynomial model is set to Np = 3 and the IIR
linear sub-system parameter is set to M = 1.

2) A higher order linear sub-system H(z) = 1 −
0.0919z−1 + 0.2282z−2 − 0.1274z−3 + 0.1408z−4 −
0.0189z−5+0.0173z−6−0.0072z−7+0.0038z−8 and a
harder nonlinear distortion, f(v) = (0.1∗v)+tanh(3v);
consequently we increment the flexibility of the Ham-

merstein system model by setting Np = 5 and M = 2
i.e. a 4 poles/zeros IIR filter.

The mean results over 10 independent algorithm executions
are presented in Fig. 3. Observe that the peak performance is
achieved with σ = 1 for the simpler scenario and uniform-
distributed signal. However, in order to define a consensual
σ value to use in the following experiments, we pick σ = 2
because it provides the best average SNR value — 12.6991
dB — among the four combinations of distribution and Wiener
system setup.

After adjusting the kernel size σ of the autocorrentropy cost
function, we proceed to the test of the CLONALG algorithm.
Besides the two scenarios that were previously introduced in
the kernel bandwidth experiment, two other possibilites are
considered:

3) H(z) = 1 − 0.0919z−1 + 0.2282z−2 − 0.1274z−3 +
0.1408z−4 − 0.0189z−5 + 0.0173z−6 − 0.0072z−7 +
0.0038z−8 and f(v) = sign(v) 3

√
| v |. The Hammer-

stein polynomial model is adjusted to Np = 3 for this
case.

4) H(z) = 1 + 0.5z−1, and the harder nonlinear distor-
tion, f(v) = (0.1 ∗ e) + tanh(3v). The Hammerstein
polynomial model is adjusted to Np = 5 for this case.

The average results over 50 independent algorithm execu-
tions are presented in Table I. As can be seen, both CLONALG
and Hill Climbing frameworks are able to compensate the
distortions with reasonably performance in terms of the SNR
levels. For the source with uniformly distributed sequence,
the Hill Climbing metaheuristic outperforms CLONALG for
scenarios 1 and 4, which present short-length H(z) – the
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Fig. 3. Kernel performance for the continuous source case, inverting two
different scenarios of Wiener system.



difference is of about 1 dB and 0.5 dB in each case. However,
the CLONALG metaheuristic is able to achieve higher SNR
levels when M is required to be larger, i.e. when H(z) presents
a larger impulse response, as occurs in scenarios 2 and 3 –
now, the difference is of about 1.5 dB and 2.15 dB in each
case. For the Laplacian source, the results are similar, however,
in average, the performance is slightly reduced. Again, the
CLONALG outperforms the Hill Climbing metatheuristic for
scenarios 2 and 3, which are more complex. This strongly
suggests that the CLONALG framework is more adequate to
explore the search space in complex scenarios, while the Hill
Climbing method is preferred for the simple ones.

TABLE I
SNR PERFORMANCE RESULTS FOR THE CONTINUOUS SCENARIO. TOP

AND BOTTOM VALUES OF EACH CELL CORRESPOND TO THE CLONALG
AND HILL CLIMBING FRAMEWORK, RESPECTIVELY.

Uniform M

1 2 3 4

Case 1
12.8824 12.5903 12.7683 12.4268
13.8159 12.8625 12.1602 9.6512

Case 2
14.0067 14.1585 13.8982 13.7879
12.2639 12.3202 12.5708 11.3178

Case 3
13.1099 14.0176 13.9986 13.5933
11.3457 11.8466 11.3059 11.3594

Case 4
13.5644 13.2425 13.0783 13.1814
14.0935 13.8996 12.5805 11.4232

Laplace M

1 2 3 4

Case 1
13.8492 12.6269 12.6800 12.2896
14.3684 11.5424 10.0331 7.7197

Case 2
12.8849 12.9363 12.6426 12.5975
12.0423 11.8657 9.8045 9.4489

Case 3
13.4433 13.4973 13.1930 13.5461
12.8281 11.6275 10.0896 8.8354

Case 4
11.0794 10.4045 9.5882 9.4390
11.4265 9.7858 7.9453 7.5232

B. Discrete Case

For the discrete case, we consider that the input is (i) an
i.i.d. signal with samples drawn from the alphabet {−1,+1}
submitted to the same linear precoder P (z) or (ii) the Al-
ternate Mark Inversion (AMI) source [24], whose dependent
symbol sequence is drawn from the alphabet {−1, 0,+1}. The
autocorrentropy function of both signals are analytically given
by [16]. The number of lags used in the Jcor(·) cost function
for equalization is P = 10.

Similarly to the continuous scenarios, we repeat the vali-
dation routine with respect to the kernel size. Fig. 4 indicate
that the algorithm obtained the best average result with the
kernel size σ = 0.125 for the four scenarios — 28.5268 dB
—, hence this will be our choice for the following experiments
with discrete-valued signals. In comparison to the continuous-
valued signals, we can point out that the algorithm showed a
better performance with smaller kernel sizes, an explanation
for this behavior may lie on the fact that for those particular
signals, while the observed values are spread on a continuous

scale due to the infinite feedback of the IIR, the expected
values should cluster strongly in the vicinity of the original
alphabet values and, thus, the correntropy corresponds to the
coincidence count of those discrete values in lagged and paired
replicates of the signal, within a small neighboring coincidence
region as 0.1. This idea reinforces the interpretation of cor-
rentropy as a coincidence detection problem [25].
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Fig. 4. Kernel performance for the discrete source case, inverting two different
scenarios of Wiener system.

Now, the same scenarios employed in the continuous case
are considered to evaluate CLONALG algorithm. Recall that
σ = 0.125. The results are shown in Table II.

TABLE II
SNR PERFORMANCE RESULTS FOR THE DISCRETE SCENARIO. TOP AND
BOTTOM VALUES OF EACH CELL CORRESPOND TO THE CLONALG AND

HILL CLIMBING FRAMEWORK, RESPECTIVELY.

AMI M

1 2 3 4

Case 1
33.9124 36.2919 35.3603 31.8558
11.7922 9.8823 9.1711 6.0548

Case 2
23.1519 20.6934 18.7298 10.0731
5.0663 1.8992 1.4138 -0.7963

Case 3
24.4768 23.0702 15.9888 10.8499
5.6252 0.6495 -0.8191 -1.7857

Case 4
30.8552 32.3474 30.8517 26.5868
9.8691 9.4982 9.2538 6.0676

Binary M

1 2 3 4

Case 1
32.1971 33.8023 31.5411 22.7820
15.7949 10.1553 4.9099 3.0888

Case 2
22.4573 24.2831 24.4593 20.8216
19.2722 19.4053 11.8491 8.1095

Case 3
17.1621 18.4213 11.4710 3.3564
14.3148 8.6529 2.0810 0.1145

Case 4
32.0605 32.3550 29.5918 21.5619
13.4862 7.7855 1.9758 1.4910

It is possible to note that the achieved SNR level are
higher than that obtained in the continuous case. For the AMI



case, the Hill Climbing method has found certain difficulty
in exploring the search space, performing poorer in all four
scenarios considered in comparison with the CLONALG – the
higher SNR value for the Hill Climbing is 11.8 dB, while for
the CLONALG is 36.3 dB. The CLONALG metaheuristic, on
the other hand, was able to find good solutions with M = 1
even for the complex scenarios 2 and 3. For binary source,
the Hill Climbing metaheuristic improves its performance in
comparison with the previous source type, but still performs
poorer than the CLONALG framework. Indeed, the CLON-
ALG metaheuristic is able to find good quality solutions for
M ≥ 2, while the Hill Climbing solutions are better for
M = 1. These results corroborate the idea the CLONALG
metaheuristic is capable of exploring complex search spaces
with more efficiency than the Hill Climbing.

In a general perspective, the correntropy-based criterion
provided good results that validate the idea of using statistical
dependence as criterion to invert the original system. Also,
one can see that the CLONALG-based algorithm presented
better results than Hill Climbing: for all cases in the discrete
scenario and for most of the cases in the continuous scenario.
Furthermore, it is possible to see that the feedback loop in
the linear filter was pertinent to build up the inversion perfor-
mance, enhancing the flexibility on modeling the Hammerstein
system.

V. FINAL REMARKS

In this work, we proposed the use of a framework com-
posed of the immune-inspired metaheuristic CLONALG and
of the correntropy-based criterion for the unsupervised Wiener-
Hammerstein problem. Particularly, a new antibody/cell rep-
resentation based on the zeros and poles of the linear stage
of the Hammerstein system was considered, in order to
avoid solutions with stability issues. A series of simulations
were carried out in four different scenarios to analyze the
performance of the proposed framework in comparison with
the well-known Hill Climbing search method along with
the correntropy-based criterion, as well as the kernel size
sensitivity. The results indicated that a larger kernel size (with
σ = 2) is preferred for continuous sources, while a smaller
kernel size (σ = 0.125) is more suitable for discrete sources.
The proposed framework was able to outperform the Hill
Climbing method in several cases, mainly when the scenario
is more complex and requires a more efficient exploration of
larger search spaces. In addition, the CLONALG metaheuristic
also exhibited a considerably better performance for discrete
sources, confirming the adequacy of CLONALG immune-
inspired algorithm as optimization strategy for this task.
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