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Abstract

Global Navigation Satellite Systems (GNSS), such as American GPS, European Galileo,
Russian GLONASS, and Chinese BeiDou, are crucial for applications ranging from tradi-
tional civilian aviation to missile guiding. Furthermore, the number of GNSS applications
have been increasing, for instance, fishing authorities can use GNSS to monitor fishing ships
and guarantee the sustainable management of its fishing areas. In addition, GNSS can be
utilized for automatic toll system and for autonomous vehicle. Finally, GNSS can be used
in precision farming for increasing precision of fertilization and allow the utilization of agri-
culture vehicles 24 hour a day. Such applications require a very accurate positioning even in
complex scenarios, where multipath components are present. Thus, in order to introduce a
better separation between transmitted signals, the third generation of GPS adds the L1 civil
(L1C) pilot code to operate alongside the standard Coarse Acquisition (C/A). Moreover, the
L1C pilot code includes a Time Multiplexed Binary Offset Carrier (TMBOC) in order to
have a better performance in multipath scenarios and provide a better spectral separation of

the signal which limits intra-system and inter-system interference.

In this thesis, we study the state-of-the-art Higher-Order Singular Value Decomposition
(HOSVD) based method to time-delay estimation, and the state-of-the-art Canonical Polya-
dic Decomposition by Generalized Eigenvalue Decomposition (CPD-GEVD) based time-
delay estimation approach. Furthermore, we show that both state-of-the-art approaches can
be successfully applied to the third generation GPS L1C pilot code. In addition, we propose a
Semi-algebraic Framework for Approximate Canonical Polyadic Decomposition via Simul-
taneous Matrix Diagonalization (SECSI) with HOSVD based time-delay estimation scheme
for second and third generation global positioning system. The SECSI based approach inhe-
rits all the advantages of the CPD-GEVD and can be also combined with the L1C signaling
and TMBOC modulation.
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Resumo!

Sistemas de satélites de navegacdo global, do inglés Global Navigation Satellite System
(GNSS), como o GPS Americano, Galileo, GNSS Europeu, GLONASS, GNSS Russo, e o
BeiDou, GNSS Chinés, sdo de extrema importancia para aplicagdes que vao desde a avia-
cao civil a misseis guiados. Ademais, o numero de de aplicacdes que utilizam GNSS tém
crescido consideravelmente, por exemplo, autoridades de pesca podem utilizar GNSS para
monitorar barcos pesqueiros e garantir um manejo sustentavel as dreas de pesca [1]. Além
disso, GNSS pode ser utilizado em sistemas de pedagios autométicos [2] e veiculos autd-
nomos [3]. Afinal, GNSS pode ser utilizado em agricultura de precisdo para aumentar a
precisdo na fertiliza¢do e permitir o uso de maquinas agricolas 24 horas por dia [4]. Estas
aplicacdes descritas requerem alta precisdo no posicionamento do usudrio, mesmo em ambi-
entes complexos onde componentes de multipercurso estao presentes. Por isso, para que se
tenha uma melhor separagdo entre sinais transmitidos, o GPS de terceira geracdo adicionard
o sinal LI civil (L1C) pilot code para ser transmitido ao lado do padrao Coarse Acquisition
(C/A). Adicionalmente, LIC pilot code incluird a Time Multiplexed Binary Offest Carrier
(TMBOC) para que se tenha um melhor desempenho em ambientes com componentes de
multipercurso e prover uma melhor separacdo espectral do sinal para diminuir interferéncias

inter-sistema e intra-sistema [5].

Nesta dissertacdo estudamos o estado-da-arte do método de estimacdo de atraso baseado
na decomposicao de valores singulares de alta ordem, do inglés Higher-Order Singular Value
Decomposition (HOSVD), o estado-da-arte do método direcao de chegada através da fatori-
zagdo Khatri-Rao, do inglés Direction of Arrival via Khatri-Rao Factorization(DoA/KRF),
e o estado-da-arte do método de estimacdo de atraso baseado na decomposi¢do poliddica
candnica por decomposi¢do de autovalores generalizados, do inglés Canonical Polyadic De-
composition by Generalized Eigenvalue Decomposition (CPD-GEVD). Além disso, mos-
tramos que ambos métodos do estado-da-arte podem ser combinados com o sinal LIC pi-
lot code do GPS de terceira geracdo. Adicionalmente, propomos a utilizacdo da Estrutura
Semi-Algébrica para Decomposicdo Canonical Polyadic Aproximadas Através de Diago-
nalizacdes Simultaneas para Estimacdo de Atraso, do inglés Semi-algebraic framework for

!Este resumo visa traduzir o resumo em inglés desta dissertacdo, bem como, apresentar uma versio tradu-
zida e resumida do conteddo deste documento. Neste capitulo, apresenta-se a traducéio resumida do modelo de
dados utilizado, da revisdo do estado-da-arte, do método proposto e dos resultados obtidos com a realiacdo das
simulagdes.
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approximate Canonical Polyadic Decompositions via Simultaneous Matrix Diagonalizations
(SECSI), com HOSVD para realizar a estimacgao de atraso para GPS de segunda e terceira
geracdo. O método SECSI herda todas as vantagens do CPD-GEVD e pode ser combinado
com o sinal L1C e a modulagao TMBOC.

Modelo de dados

Da mesma forma que [6], o modelo de dados considera um arranjo de antenas para GPS
de terceira geracao, onde supde-se que D satélites possuam linha de visada, do inglé€s line-
of-sight (LOS), com o receptor e que o nimero de componentes de multipercurso L € dado
por L = 25:1 L4. Cada satélite transmite N amostras do LIC pilot code modulado pela
TMBOC, onde nos referimos a cada janela de tempo como periodo. Assim, supomos que,

durante K periodos, as respectivas N amostras sdo aproximadamente constantes.

X:I37L><11~“T><2(~3T><3A—I—N, (1)
onde, I'" = [71,...,7z] € CK*L ¢ a matriz que contém as amplitudes complexas dos
sinais, C = [¢[r1],...,¢€[rz]] € RV*L concatena em suas linhas o cédigo pseudo-aleatério

do LIC pilot code modulado pela TMBOC e A = [a(¢y),...,a(¢r)] € CM*L concatena

em suas colunas o vetor de dire¢do dos L sinais.

Para que se possa separar o sinal de cada satélite, um banco de correlatores Q = Q,XVH
¢ gerado para cada satélite. Utilizando-se do banco de correlatores, [7] mostra que o tensor
recebido X € CE*N*M pode ser correlacionado com o subespaco a esquerda do banco de
correlatores Q,, = Q(XVH)~! [8] obtido ao aplicar a decomposi¢io de valores singulares
econdmica a Q. Dessa forma temos o seguinte modelo para calcular a correlagdo cruzada

utilizada para estimacdo de atraso

y:XXZQwT

2
:IS,L Xer X9 (CQM)T XgA—i-Nw. ( )

Estado-da-arte para Estimacao de atraso

As técnicas de estado-da-arte para decomposi¢do tensorial estudadas neste trabalho sdao
a decomposicdo de valores singulares de alta ordem, do inglés Higher-Order Singular Value
Decomposition (HOSVD) [7], que se utiliza de técnicas de pré-processamento; o segundo
método utilizado neste estudo € direcdo de chegada através da fatorizacao Khatri-Rao, do
inglés Direction of Arrival via Khatri-Rao Factorization(DoA/KRF); a terceira técnica uti-
lizada para estudo é a decomposi¢do poliddica candnica por decomposi¢do de autovalores

generalizados, do inglés Canonical Polyadic Decomposition by Generalized Eigenvalue De-



composition (CPD-GEVD) [9].

Estimacao de atraso utilizando HOSVD

A estimacdo de atraso utilizando a decomposic¢do de valores singulares de alta ordem,
do inglés Higher-Order Singular Value Decomposition (HOSVD), primeiramente aplica-se
a técnica de pré-processamento de média frente costas, do inglés Forward-Backward Avera-
ging (FBA) [10], [11]

Z= |V Iy [Y]; lgg| € CMx2KC 3)

apos isso, aplica-se a suavizagdo espacial expandida, do inglés Expanded Spatial Smoothing
(ESPS) [12] e [13], em que o arranjo € dividido em Lg sub-arranjos com Mg = M — Lg+1

elementos. Para isso, criasse uma matriz de selecao

Jo, = [OMszS—1 Insg OMSXLS—l] € RMsx M 4)

parals = 1,..., Lg. Com isso, ESPS ¢ aplicado a (4)

W= |1Z o Jp,Z] € CMeeheka )

em seguida (5) é dobrado como um tensor de quarta ordem Z pgpg € C2E*QxMsxLs - Apds
isso HOSVD € aplicado a Zgspg

Zpsps = R x1 Uy x3 Uy x3 Uz x4 Uy (6)

em que R € C2KxQ@xMsxLs g g tensor niicleo, U, € C2K*2K U, € CP*Q, Uy € CMs*xMs,
e Uy € Cls*Ls sdo as matrizes singulares que contém os vetores singulares contendo os
desdobramentos de (2).

Uma vez que supde-se que o componente LOS possui a maior poténcia, os vetores sin-
gulares dominantes sdo multiplicados por Zgsps. Apds, o vetor resultante ¢ multiplicado
por XV obtidos apés aplicar a decomposicdo de valores singulares econdmica a Q. Entdo,

resultando no vetor qgspg

drsps = |2 Esps X1 (uﬁl))H X3 (1153))]{ X4 (11§4))H PIAVES @)

onde qpsps contém os valores de correlagdo cruzada que foram multidimensionalmente
filtrados. Ao vetor resultante qpsps € entdo aplicada a interpolagdo de spline cubico para

maximizar a resolucio da estimacao de atraso.



Estimacao de atraso utilizando DoA/KRF

Em [14] é proposta uma abordagem de trés etapas baseada na estimagdo de dire¢do de
chegada, do inglés direction of arrival estimation (DoA), Fatorizagdo Khatri-Rao, do inglés
Khatri-Rao factorization (KRF) e a selecao do componente LOS estimado. O processamento
para estimacdo de DoA utiliza a técnica de estimacdo de parametros de sinais através de
invariancia rotacional, do inglés Estimation of Signal Parameter via Rotational Invariance
Technique (ESPRIT) [15], € aplicada a W para estimar A.

Ap0s, reescrever (2) para obter a seguinte equacao

T
Vs = A[I‘T o (CQW)T] € CM*KQ, (8)

Uma vez que A foi estimado pela técnica ESPRIT, sua pseudo-inversa pode ser aplicada

a (8) de tal forma que

At = A*A [PT o (CQW)T}T o
~ [rT o (CQW)T}T € CLaxKQ,

onde as matrizes de fatores I e (CQ,,) podem ser estimada por meio da Fatorizacdo Khatri-
Rao de minimos quadrado, do inglés Least Square Khatri-Rao factorization (LSKRF) [16,
17].

Logo que (I'To (CQ,)")T é dado em (9), e considerando que sua ¢4-ésima coluna pode

ser calculada como um produto Khatri-Rao da £4-ésima coluna de T'T e (CQ,)":
IMo(CQu)'| | =T (CQ) 0 (10)
td

onde cada coluna de (I'T o (CQ,)T).,, € CK¥. Assim, para obter as estimativas de T" e

CQ,,, remodela-se (10) em um matriz de tamanho ) x K

unvec { [FT o (CQW)T}

QxK

} =(CQ,)%,, (™", (11)

'7Zd

Uma vez que (11) € uma matriz de posto unitario, pode-se executar o SVD de

T T _
unvee { [1“ o (CQ.) ]%d} = U, %, Vo, (12)

Portando, as estimativas para (I'").,, e ((CQ,)"). ¢, 830 /Gy, 1V}, 1 € \/Tr,1Ue,,1, TeS-



pectivamente, onde oy, ; € o vetor singular dominante de 3, v; ; € o conjugado do vetor
singular dominante a direita de Vy, e uy,; o vetor singular dominante a esquerda de Uy,.

Isto é repetido para /4 = 1,..., Lg.

Estimacao de atraso utilizando CPD-GEVD

Outra técnica tensorial a ser utilizada € a decomposicao poliddica candnica por decom-
posicdo de autovalores generalizados, do inglés Canonical Polyadic Decomposition by Ge-
neralized Eigenvalue Decomposition (CPD-GEVD). CPD-GEVD primeiramente aplica o
HOSVD a Y a partir de (2)

yzSg XlU% XlUg XgU%, (13)

em que U§ € CK*La, U € CO*La, e U§ € CMxLa ¢ 82 ¢ CLaxlaxLa ¢ ¢ tensor niicleo

que pode ser expressado como uma decomposi¢io PARAFAC:

S8 =T x, TS xo T§ x3 TS, (14)
onde as primeiras duas fatias frontais de S® podem ser escritas como:
5
g g q; g 2\ T (3)
(8%).,.2 = T] diag{(T3) 2 }(T3) .

Assim, o GEVD € calculado a partir das matrizes (S¢%)..; e (8%)..o:

5y

(84! \E = (8%)! ,ED, (16)

onde D contém os autovalores em sua diagonal, e EE contém os autovetores. Nota-se que

(16) € equivalente a

(8% (8, = EDE" a7
= (T})™" diag{(T5).,} " diag{(T5)., } T}.

Dessa forma, a Equacdo (17) € um problema de diagonalizacdo em que E fornece uma
estimativa de (T3)~T. Assim, ao combinar (T3)~" de (17) e U? de (13) a matriz de fatores

-T .
I pode ser estimada como

T = (U$H)"(T§) " = (U})E. (18)



Em seguida, de acordo com (2), no caso sem ruido temos

VI = |(CQu) o AT, (19)

e como I'" é dado em (18), definimos (F2(?) como

FECH = (Y] (U)E = [(CQu)To A|TT
(20)
~ |(CQu)To A] € COE,

Técnica Proposta

Para a realizac@o da estimacao de fatores para a realizagdo da estimacdo de atraso pro-
pomos a utilizacdo da Estrutura Semi-Algébrica para Decomposicao Canonical Polyadic
Aproximadas Através de Diagonalizacdes Simultaneas para Estimacdo de Atraso, do inglés
Semi-algebraic framework for approximate Canonical Polyadic Decomposition via simul-
taneous matrix diagonalizations (SECSI) [18, 19, 20] em conjunto com a decomposi¢ao
de valores singulares de alta ordem, do inglés Higher Order Singular Value Decomposition
(HOSVD). Dessa forma o método SECSI aplica o HOSVD ao sinal recebido Y

y:SC X1 Ui XQU% X3U§, (21)

em que 8° € Claxkaxle s ¢ CE*xLa U € C*Le e U € CM*L4, Logo, 8¢ pode ser
representado como:

SC:IX1 Ti XQT% X3T§, (22)

onde T§ € Claxla T € Claxla e T§ € CLa*La, Logo

USTS =TT, (23)
UST; = (CQ.)", (24)
USTS = A" (25)

Uma vez que ao realizar a diagonalizagio simultdnea do tensor 8¢, criamos varios pro-
blemas de diagonalizagdo a serem resolvidos, um tensor de terceira ordem produz seis fatores
a serem estimados, ou seja, temos duas estimativas para cada dimensao do tensor S°. Sendo
assim, para realizar a diagonaliza¢do simultanea primeiramente deve-se calcular as fatias

de primeiro-, segundo-, e terceiro-modo da i-ésima fatia do S°. Assim, temos a fatia do



terceiro-modo do tensor 8¢ representada como:

S5, = [(8° x5 US) x5 ¢€]]

(26)
= T diag{A"(:,4) }(T5)",
a fatia do segundo-modo de &°¢
Soi = [(8° %y US) x,, €]
=l e i) xnel] 27)
=T dlag{(CQw) (37Z)}(T3) )
e, finalmente, temos a fatia do primeiro-modo
S¢. = [(8° x; US) x; eF
1,3 [( 1 l) 1 z] (28)
= T diag{T"(:,) }(T%)",
logo
S5, = T diag{A"(:, p) }(T5)", (29)
5, = TS5 diag{(CQu)"(:,p) }(TS)", (30)
S§, = T5 diag{T"(;,p) }(T5)", 31)

em que e; é um vetor de zeros exceto na i-ésima posi¢do, e p € um indice arbitrario entre um

e o total de fatias a serem diagonalizadas:

p = arg min cond{S, ;}, (32)

em que cond{-} calcula o nimero condicional da matriz. Quanto menor o nimero condici-
onal, maior a estabilidade da inversdao da matriz. Dessa forma, selecionamos a matriz com o

menor namero condicional.

Portanto, com as fatias de cada modo definidas, podemos calcular as matrizes a direita e a
esquerda correspondentes as fatias de cada modo. Observe que a diagonalizagc@o simultanea
da fatia do terceiro-modo € similar ao caso GPD-GEVD do estado-da-arte. Uma vez que p é

fixado, podemos variar todos os valores de 7, assim obtendo N — 1 equagdes, ja que 7 # p.

Assim sendo, primeiramente, define-se a matriz a direita para a fatia do terceiro-modo da



seguinte forma:

S§T = 85,(S5,) "
= TS diag{A"(:,) A"(:, p) }(T) " (33)
= TSAM(TS) ™,

em seguida, defini-se a matriz a esquerda para a fatia do terceiro-modo como:

SSI = ((S5,)7S5.,)T = (S5,)7(S5,) "
= TS diag{A"(:,4) A"(:, p) }(T5) " (34)
= T5AM(T) ™.

Dessa forma, transformamos a fatia de terceiro modo em dois problemas de diagonaliza-
cdo simultanea. Portanto, é possivel obter uma estimativa de A da diagonalizac¢ao simultanea
de S§™. Adicionalmente, obtém-se uma estimativa de A a partir da diagonalizacio simulta-

c,rhs

nea de S5'™. Além disso, as matrizes que diagonalizam S5 e S resultam em estimativas
para TS, e TS. Assim, podemos obter estimativas para U{TS = I'T, e USTS = (CQ,)".

De forma similar, para a fatia do segundo-modo, calcula-se a matriz a direita da seguinte

forma:

S5 = 85,(85,) "

— T diag{ (CQL)" (1) (CQL)"(:, p) }(TS) ! (35)
— T5(CQu)M(TS) ",

em seguida, define-se a matriz a esquerda da fatia do segundo modo como

S5 = ((S5,) 71857 = (S5,)7(S5,) "
— T ding{ (CQL)" (1) (CQL)" (:, p) }(T5) ™! (36)
— T5(CQu)H(TS) .

Novamente, criamos dois problemas de diagonalizacdo simultinea para a fatia do
segundo-modo. Portanto, podemos adquirir duas estimativas de (CQ,,) a partir da diago-
nalizag¢do simultinea de Sg’fihs e S;};’S. Além disso, a diagonalizacdo simultinea produz as
estimativas para T{ e T5. Com isso, podemos estimar as matrizes de fatores U] T] = | AL
USTS = AT,

Finalmente, define-se a matriz a direita e a matriz a esquerda correspondentes a fatia do



primeiro-modo. Novamente, primeiro define-se a matriz a direita da seguinte forma

SiT = 81,(87,)
= T diag{T"(:,))T"(:, p) }(T$) (37)
= TS0 (T3)

em seguida define-se a matriz a esquerda

ST = ((85,) 785" = (S1.)7(S5,) 7

= T diag{T"(:,))TH(:, p) }(T5) ! (38)
= TsTH(TS) .

Portanto, temos dois problemas de diagonalizagdo simultanea SS™™ e S que para a
primeira fatia do primeiro modo resulta em duas estimativas para I'. Adicionalmente, a

diagonaliza¢do simultinea produz estimativas para TG e T5. Assim, pode-se estimar as
matrizes de fatores USTS = (CQ,,)", e USTS = AT,

Através da realizacdo de diversas simulacdes utilizando todas a fatias de todos os modos
descritos, descobriu-se que quando se tem um LOS e dois NLOS sinais iluminando o arranjo
de antenas a matriz a direita da fatia do terceiro-modo € a que produz o melhor resultado.
Portanto, propde-se utilizar somente a estimativa adquirida pela diagonalizacdo simultanea
de Sg’;“. Ap6s obter Sg’;‘“ podemos encontrar a matriz T¢ que diagonaliza simultaneamente
as N — 1 equagdes utilizando [21] e [22]. Entdo, utilizamos UY de (21) para estimar T

USTS =T, (39)
Ap6s isso, de acordo com (2), no caso sem ruido temos

VI = |(CQu) o AT, (40)

e uma vez que I'T é dado em (39), definimos F<>®) como

Fe23) — [y]’{l)fw—T _ [(CQW)TOA] Ff+T
(41)
~ |(CQu)To A € COMxb

As matrizes de fatores (CQw)T e A podem ser estimadas a partir de (41) utilizando a

Fatorizagdo Khatri-Rao de minimos quadrados, do inglés Least Squares Khatri-Rao Facto-



rization (LSKRF) [16, 17].

Estimacao de Atraso

Uma vez que as matrizes de fatores (CQw)T, A, e I foram estimadas estas sao normali-

zadas para seus /4-ésimo componente:

A T A T N T

(CQu).ey = (CQu) .ty /II(CQL).y |IF (42)
A=A /A LlF (43)
Lo =T /I 0l (44)

Em seguida, constréi-se um tensor G, correspondente a partir £;4-ésimo componente das

matrizes de fatores normalizadas em (44)

T

=

Gy, =T.4,0(CQu).q, oA, (45)

onde G,, € CK*@*M_Em seguida, armazena-se o tensor G, correspondente ao £4-ésimo

componente em uma matriz

G.y, = vec{Gy,}, (46)

onde G € CK@MxLa  Agsim, pode-se calcular as amplitudes através da multiplicagdo da

pseudo-inversa de G pelo tensor Y:

v = G" vec{Y} 47)

Em seguida, para encontrar a coluna de (CQ,,) que corresponde ao componente de linha

de visada, aplica-se arg max a « e escolhe-se a s g coluna com a maior amplitude.

SLos = argmax -y 48)

Depois, usa-se s;os para selecionar o componente LOS da matriz estimada (CQ,)" e
a multiplica por XV obtida através da aplicacdo da decomposi¢do em valores singulares

econdmica a Q

2~ T T
qa=[(CQ.). 50 TV . (49)



Finalmente, o vetor q € interpolado utilizando a interpolacdo de spline ctibica para alcan-

car maior precisdo na estimagdo de atraso.

Simulacao

Para a realizag@o da simulacdo € utilizado um arranjo linear uniforme, do inglés Uniform
Linear Array (ULA), centro-hermitiano com M = 8 elementos espacados por meio compri-
mento de onda. Sdo considerados a recepc¢do de dois sinais GNSS, o primeiro € um cédigo
pseudo-aleatério C/A do GPS enquanto o segundo € um cédigo pseudo-aleatério da L1C do
canal piloto do GPS, em que ambos possuem uma portadora de frequéncia f. = 1575.42
MHz. O cédigo L1C do GPS possui uma duragido total de transmissao t3,q = 10 ms, uma
largura de banda Bs,q = 12.276 MHz, a maior largura de banda é consequéncia da modula-
c¢do TMBOC. Com isso, para se ter uma comparagao justa, [6] propds o aumento da largura
de banda do cédigo C/A para Byng = Bsq. Ambos os cédigos sdo amostrado a cada K-
¢simo periodo durante K = 30 periodos com um periodo de duragdo de A7 = 10 ms. Dessa

forma, sdo coletadas N = 245520 amostras para ambos c6digos C/A e L1C.

Os componentes de LOS e NLOS sdo gerados com uma diferenca de azimute de
A¢ = 60°. Adicionalmente, o componente LOS possui um atraso 7y,og enquanto o com-
ponente NLOS possui um atraso mnpog tal que 7nios, = 7ros + A7 quando Ly = 2 sinais
sdo recebidos e quando temos L; = 3 sinais sendo recebidos se tem um segundo componente
NLOS com um atraso 7nLos, = Tnros, + A7. Para ESPS a ULA € dividida em Lg = 5 sub
arranjos com Mg = 4 elementos cada. A rela¢do portadora-ruido é C'/N, = 48 dB-Hz, re-
sultando numa razao sinal-ruido pés-correlagdo de SN Rpos, , &~ 25 dB para GPS de segunda

geragdo € uma razao sinal-ruido de SN Ry, , = 25 dB para GPS de terceira geragéo.

Para realizar as simulagdes foi utilizado o esquema Monte Carlo com 2000 iteragdes.
Dessa forma os resultados obtidos s@o expressados na forma do erro quadratico médio mul-
tiplicado pela velocidade da luz, em metros, para varios A7. Os resultados sdo comparados
com o caso ideal onde se tem o conhecimento do canal (A e f‘) e a correlagdo sem ruido do

sinal LOS com o banco correlator [23].

Estimacao de Atraso Utilizando GPS de segunda geracao

Os resultados das simulacdes incluem a comparacao da técnica CPD-GEVD do estado-
da-arte com o método HOSVD SECSI para GPS de segunda geracdo. Alternativamente,
para fins comparativos, durante as simulagdes foi adicionado a técnica HOOI SECSI que
substitui 0 método de HOSVD. Assim, os resultados das simula¢des recebendo L; = 2

sinais e utilizando o primeiro fator estimado podem ser verificados na Figura 1.
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Figure 1: Simulagdo utilizando o primeiro fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de segunda geracao utilizando
cada fator estimado com M = 8 elementos e L, = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Na Figura 2 ¢ utilizado o segundo fator estimado pelas técnicas CPD-GEVD, HOSVD
SECSI e HOOI SECSL
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Figure 2: Simulacao utilizando o segundo fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de segunda geragdo utilizando
cada fator estimado com M = 8 elementos e L, = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Figura 3 realiza a comparacdo do método CPD-GEVD do estado-da-arte com o método



HOSVD SECSI e HOOI SECSI utilizando o terceiro fator estimado.
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Figure 3: Simulacdo utilizando o terceiro fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de segunda geragdo utilizando
cada fator estimado com M = 8 elementos e L; = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Ja na Figura 4 € realizada a comparacao do método CPD-GEVD do estado-da-arte com
o método HOSVD SECSI e HOOI SECSI utilizando o quarto fator estimado.
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Figure 4: Simulagdo utilizando o quarto fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de segunda geracao utilizando
cada fator estimado com M = 8 elementos e L; = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.
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Figure 5: Simulacao utilizando o quinto fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de segunda geracao utilizando
cada fator estimado com M = 8 elementos e L; = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Figura 5 realiza a a comparac¢do do método CPD-GEVD do estado-da-arte com o método
HOSVD SECSI e HOOI SECSI utilizando o quinto fator estimado. Figura 6 exibe a com-
paracdo do método CPD-GEVD do estado-da-arte com o método HOSVD SECSI e HOOI
SECSI utilizando o sexto fator estimado.
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Figure 6: Simulacdo utilizando o sexto fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de segunda geragdo utilizando
cada fator estimado com M = 8 elementos e L, = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Como mostrado nas Figuras 1 a 6 o primeiro e terceiro estimador de fatores para CPD-
GEVD apresentam os melhores resultado, dessa forma decide-se manter o uso CPD-GEVD
do estado da arte. Da mesma forma, € possivel notar que o primeiro e terceiro estimador de
fatores para SECSI apresentam os melhores resultados, assim o primeiro estimador de fato-
res foi escolhido para realizar as demais comparacdes. Na Figura 7 € realizada a comparacdo
das técnicas do estado-da-arte com o método proposto para GPS de segunda geracdo quando
recebendo L, = 2 sinais. Note que os métodos DoA/KRF, CPD-GEVD e o HOSVD SECSI
consideravelmente superam a técnica HOSVD+FBA+ESPS. Onde HOSVD+FBA+ESPS
apresenta um erro maximo de aproximadamente 0.28 m enquanto as demais técnicas apre-

sentam um erro maximo de 0.079 m.
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Figure 7: Simulacio dos esquemas CPD-GEVD do estado-da-arte e do método SECSI pro-
posto para GPS de segunda geracdo com M = 8 elementos e L; = 2 sinais recebidos. Em
ambos os casos as amostras sdo coletadas por KX = 30 periodos que possuem N = 245520
amostras.

J4 na Figura 8 € feita a comparacdo do método HOSVD+FBA+ESPS, DoA/KREF, e
CPD-GEVD do estado-da-arte com o método SECSI proposto quando L; = 3. Ob-
serve que novamente as técnicas DoA/KRF, CPD-GEVD e o HOSVD SECSI superam o
HOSVD+FBA+ESPS que apresenta um erro maximo de 0.28 m. Ademais, note que o mé-
todo CPD-GEVD apresenta pior performance quando A7 < 0.27.. Esse erro ocorre pela
forte correlagdo entre as os sinais LOS e NLOS o que ocasiona um tensor de posto deficiente
e pode ser solucionado ao utilizar técnicas de estimagdo de posto [24, 25, 26]. Também,
note que a técnica SECSI apresenta um pico quando os sinais estiao fortemente correlatados,
porém SECSI mostra-se mais tolerante a defici€éncia do posto e consegue estimar o atraso

com Sucesso.
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Figure 8: Simulacio dos esquemas CPD-GEVD do estado-da-arte e do método SECSI pro-
posto para GPS de segunda geracdo com M = 8 elementos e L; = 2 sinais recebidos. Em
ambos os casos as amostras sdo coletadas por K = 30 periodos que possuem N = 245520
amostras.

Estimacao de Atraso Utilizando GPS Terceira Geracao

Os resultados das simulacdes incluem: a comparagio da técnica CPD-GEVD do estado-
da-arte com o método HOSVD SECSI para o GPS de terceira geracdo. Novamente, para fins
comparativos, durante as simulagdes foi adicionado a técnica HOOI SECSI que substitui o
método HOSVD. Assim, os resultados das simula¢des recebendo L; = 2 sinais e utilizando
o primeiro fator estimado na Figura 9.
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Figure 9: Simulacdo utilizando primeiro fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de terceira geragdo utilizando
cada fator estimado com M = 8 elementos e L, = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Na Figura 10 € utilizado o segundo fator estimado pelas técnicas CPD-GEVD, HOSVD
SECSI e HOOI SECSI.
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Figure 10: Simulac¢ao utilizando segundo fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de terceira geracdo utilizando
cada fator estimado com M = 8 elementos e L, = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Figura 11 exibe a comparacdo do método CPD-GEVD do estado-da-arte com o método



HOSVD SECSI e HOOI SECSI utilizando o terceiro fator estimado.
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Figure 11: Simulacdo utilizando terceiro fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de terceira geracdo utilizando
cada fator estimado com M = 8 elementos e L; = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Ja a comparacdo do método CPD-GEVD do estado-da-arte com o método HOSVD
SECSI e HOOI SECSTI utilizando o quarto fator estimado na Figura 12.
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Figure 12: Simulacdo utilizando quarto fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de terceira geracdo utilizando
cada fator estimado com M = 8 elementos e L, = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.



Ja na Figura 13 € feita a comparacdo do método CPD-GEVD do estado-da-arte com o
método HOSVD SECSI e HOOI SECSI utilizando o quinto fator estimado.
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Figure 13: Simulacdo utilizando quinto fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de terceira geragdo utilizando
cada fator estimado com M = 8 elementos e L; = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Figura 14 exibe a comparag@o do método CPD-GEVD do estado-da-arte com o método
HOSVD SECSI e HOOI SECSI utilizando o sexto fator estimado.
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Figure 14: Simulacdo utilizando sexto fator estimado da técnica do estado-da-arte CPD-
GEVD, método HOSVD SECSI e método SECSI para GPS de terceira geragdo utilizando
cada fator estimado com M = 8 elementos e L; = 2 sinais recebidos. Em ambos os casos
as amostras sdo coletadas por K = 30 periodos que possuem N = 245520 amostras.

Como mostrado nas Figuras 9 a 14 o primeiro e terceiro estimador de fatores para CPD-
GEVD apresentam os melhores resultado, dessa forma decide-se manter o uso CPD-GEVD
do estado da arte. Da mesma forma, € possivel notar que o primeiro e terceiro estimador de
fatores para SECSI apresentam os melhores resultados, assim o primeiro estimador de fatores
foi escolhido para realizar as demais comparacdes. Na Figura 15 € realizada a comparagdo
das técnicas do estado-da-arte com o método proposto para GPS de segunda geragdo quando
recebendo L, = 2 sinais. Note que os métodos DoA/KRF, CPD-GEVD e o HOSVD SECSI
consideravelmente superam a técnica HOSVD+FBA+ESPS. Onde HOSVD+FBA+ESPS
apresenta um erro maximo de aproximadamente 0.12 m enquanto as demais técnicas apre-

sentam um erro de aproximadamente de 0.075 m.
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Figure 15: Técnicas do estado-da-arte e método SECSI proposto para GPS de terceira ge-
racdo com L, = 2 sinais recebidos com N = 245520 amostras coletadas durante X = 30
utilizando M = 8 antenas.

Ja na Figura 16 é feita a comparacao do método HOSVD+FBA+ESPS, DoA/KRF, e
CPD-GEVD do estado-da-arte com o método SECSI proposto quando L; = 3. Ob-
serve que novamente as técnicas DoA/KRF, CPD-GEVD e o HOSVD SECSI superam o
HOSVD+FBA+ESPS que apresenta um erro mdximo de 0.13 m. Ademais, note que o mé-
todo CPD-GEVD apresenta pior performance quando A7 < 0.17,. Esse erro ocorre pela
forte correlacdo entre as os sinais LOS e NLOS o que ocasiona um tensor de posto deficiente.
Também, note que a técnica SECSI apresenta um pico quando os sinais estdo fortemente cor-
relatados, porém SECSI mostra-se mais tolerante a deficiéncia do posto e consegue estimar
o0 atraso com sucesso. Além disso, ainda € possivel notar que o método CPD-GEVD obtém
um melhor resultado quando combinado com o GPS de terceira geragao. O melhor resultado
obtido pelo GPS de terceira geracdo € atribuido ao uso da modulacdo TMBOC, uma vez que
esta modulagdo permite melhor performance em cendrio com multipercurso e aplica uma
melhor separacao espacial aos sinais.
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Figure 16: Técnicas do estado-da-arte e método SECSI proposto para GPS de terceira ge-
racdo com Ly = 3 sinais recebidos com N = 245520 amostras coletadas durante X = 30
utilizando M = 8 antenas.

Na Figure 17 o método SECSI proposta € comparado com a substituicdo do HOSVD pelo
HOOI quando L; = 2 sinais s@o recebidos. Percebe-se que tanto o uso de HOSVD como
HOOI resultam em um erro muito similar para ambos GPS de segunda e terceira geracao.
E possivel perceber que a segunda geracdo apresenta um erro maximo de 0.079 enquanto a
terceira geracao apresenta um erro maximo de 0.075. Ademais, SECSI com HOSVD supera
levemente o método SECSI com HOOI quando LOS e NLOS estéo correlatadas.
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Figure 17: Método SECSI proposto com L, = 2 sinais ambos da segunda e terceira geracao
com N = 245520 amostras coletadas durante K = 30 utilizando M = 8§ antenas.




Na Figure 18 o método SECSI proposta é comparado com a substituicdo da HOSVD
pelo HOOI quando L; = 3 sinais recebidos. Novamente, percebe-se que tanto o uso de
HOSVD como HOOQI resultam em um erro muito similar para ambos GPS de segunda e
terceira geracdo. E possivel perceber que a segunda geracdo apresenta um erro maximo
de 0.09 enquanto a terceira geragao apresenta um erro miximo de 0.08. Ademais, SECSI
com HOSVD supera levemente o método SECSI com HOOI quando LOS e NLOS estao
correlatadas.
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Figure 18: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-
posto com Ly = 3 sinais ambos da segunda e terceira geracdo com N = 245520 amostras
coletadas durante K = 30 utilizando M = 8 antenas
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Arranjo de Antenas com Erro

Nesta secdo apresentamos o resultado das simulagdes utilizando os métodos de estima-
cdo de atraso do estado-da-arte para GPS de segunda e terceira geracdo e o método proposto
HOSVD SECSI e HOOI SECSI. Supde-se um arranjo de antenas com erros de posiciona-
mento que recebem L, = 2 e L, = 3 sinais com um atraso relativo fixado em A7 = 0.57..
Como foi decidido somente utilizar o primeiro fator estimado para os métodos CPD-GEVD

e SECSI, neste cendrio somente utilizamos este caso.

Na Figura 19 mostramos os resultados para a segunda geracdo quando o arranjo
de antenas com erros recebe L, = 2 sinais. Nota-se que os métodos do estado-da-arte
HOSVD+FBA+ESPS e DoA/KRF sao sensiveis as imperfei¢des adicionadas ao arranjo de
antenas. Entretanto, o método CPD-GEVD, o método HOSVD SECSI proposto e 0 HOOI
SECSI mostram performance similar ao caso ideal.
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Figure 20: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-
posto com L, = 2 sinais da terceira geracdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas
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Figure 19: Simulagdo dos esquemas tensoriais do estado-da-arte € do método SECSI pro-
posto com L,; = 2 sinais da segunda geracdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas

Na Figura 20 mostramos o resultado para GPS de terceira geracao quando o arranjo de
antenas com erros recebe L, = 2 sinais. Nesta figura, pode ser visto que mesmo utilizando
o GPS de terceira geracido os métodos do estado-da-arte HOSVD+FBA+ESPS e DoA/KRF
sdo sensiveis as imperfei¢cdes do arranjo de antena. Inclusive, € possivel notar que a terceira
geragdo ndo trds um ganho significativo quando comparada com o GPS de segunda geracao.
Entretanto, o0 método CPD-GEVD, o método HOSVD SECSI proposto e o HOOI SECSI

tem performance similar ao caso ideal.
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Figure 21: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-
posto com L,; = 3 sinais da segunda geragdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas.

Na Figura 21 temos o resultado para o GPS de segunda geracio ao receber L, = 3 sinais.
Nota-se que ao adicionar um componente NLOS se tem um aumento no erro da estimacao
do atraso quando utilizando métodos do estado-da-arte HOSVD+FBA+ESPS e DoA/KRF.
Adicionalmente, € possivel notar que o método CPD-GEVD, o método HOSVD SECSI

proposto e o HOOI SECSI tem performance similar ao caso ideal.

Na Figura 22 mostramos os resultados para o GPS de terceira geracdo quando o ar-
ranjo de antenas com erros recebe L; = 3 sinais. Novamente, podemos ver que ao adicionar
mais um componente NLOS se tem um aumento no erro da estimagdo do atraso quando
utilizando estado-da-arte HOSVD+FBA+ESPS e DoA/KRF. Entretanto, pode-se notar que a
adicdao do componente NLOS tem um baixo impacto na estimacdo do atraso uma vez que o
HOSVD+FBA+ESPS tem um aumento de 0.1 m e 0 DoA/KRF mantém quase que o mesmo
erro. Mais uma vez, o método CPD-GEVD, o método HOSVD SECSI proposto e o HOOI
SECSI tem performance similar ao caso ideal.

Sinais Recebidos com DoA Variavel

Nesta secdo apresentamos o resultado de simulagdes para os métodos do estado-da-arte
e para o método HOSVD SECSI proposto para ambos GPS de segunda e terceira geracao.
Novamente supde-se dois cendrios em que um arranjo de antenas pode receber L, =2 e
L, = 3 sinais com um atraso relativo fixado em A7 = 0.57.. Quando temos L, = 2 si-
nais recebidos, definimos que o primeiro componente NLOS com um angulo de chegada
dnLos; = Pros + A¢ e quando temos Ly = 3 componentes de sinais, definimos o angulo

de chegada para a segunda NLOS como ¢nios, = ¢nros; + A¢. Em ambos os cendrios
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Figure 22: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-
posto com L, = 3 sinais da terceira geracdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas

supde-se que utilizamos angulos randdomicos que variam entre —0.25 rad e 0.25 rad para o
componente LOS. Assim, cada simulacdo ira variar o angulo de chegada de cada NLOS ba-
seado no angulo de chegada do componente LOS. Dessa forma, pode-se identificar a menor
diferenca de angulo de chegada de LOS para NLOS.

Na Figura 23 temos os resultado para o GPS de segunda geracdo para o cendrio em que
recebemos L, = 2 sinais e utilizamos o angulo de chegada de LOS para calcular o angulo de
chegada de NLOS. Pode-se notar que os métodos do estado-da-arte HOSVD+FBA+ESP e o
DoA/KREF sao sensiveis a diferenca de angulo de chegada. Também, podemos notar que o
método estado-da-arte CPD-GEVD e o método proposto HOSVD SECSI tem um erro maior
do que o DoA/KRF quando temos A¢ = 0 x 0.25 rad. Entretanto, o método estado-da-
arte CPD-GEVD e o método proposto HOSVD SECSI tem melhor performance do que o
DoA/KRF quando A¢ = 0.0025 x 0.25 rad.
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Figure 23: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-
posto com L,; = 2 sinais da segunda gera¢do com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas

Na Figura 24 mostramos o resultado para GPS de segunda geracdo quando temos L; = 3
sinais. Mostramos que os métodos do estado-da-arte HOSVD+FBA+ESP e o DoA/KRF
sdo sensiveis a diferenca de angulo de chegada. Entretanto, podemos notar que o método
estado-da-arte CPD-GEVD e o método proposto HOSVD SECSI tem um erro maior do que
0 DoA/KRF quando temos A¢ = 0 x 0.25 rad. Também € possivel notar que método estado-
da-arte CPD-GEVD e o método proposto HOSVD SECSI tem melhor performance do que o
DoA/KRF quando A¢ = 0.0025 x 0.25 rad. Além disso, o método HOSVD SECSI proposto
apresenta melhor performance do que o método CPD-GEVD quando temos somente uma
diferenca de angulo de chegada A¢ = 0 x 0.25 rad.
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Figure 24: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-

posto com L,; = 3 sinais da segunda geragdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas

Na Figura 25 temos os resultado para o GPS de terceira geracdo quando consideramos
que o arranjo de antenas recebe L, = 2 sinais. Novamente mostramos que os métodos do
estado-da-arte HOSVD+FBA+ESP e o DoA/KRF sao sensiveis a diferenca de angulo de
chegada. Mais uma vez pode-se notar que o método estado-da-arte CPD-GEVD e o método
proposto HOSVD SECSI apresentam um maior erro do que o DoA/KRF quando A¢ =

0 x 0.25 rad. Adicionalmente, nota-se que o GPS de terceira geracio apresenta uma pequena
melhora na estimacao de atraso.
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Figure 25: Simulacdo dos esquemas tensoriais do estado-da-arte e do método SECSI pro-

posto com L, = 2 sinais da terceira geracdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas



Na Figura 26 mostramos os resultados da simulacdo quando recebendo L,; = 3 si-
nais do GPS de terceira geracdo. Novamente, nota-se que os métodos do estado-da-arte
HOSVD+FBA+ESP e o DoA/KRF sao sensiveis a diferenca de angulo de chegada. Mais
uma vez pode-se notar que o método estado-da-arte CPD-GEVD e o método proposto
HOSVD SECSI apresentam um maior erro do que o DoA/KRF quando A¢ = 0 x 0.25
rad. Adicionalmente, € possivel notar que o método HOSVD SECSI proposto e que o GPS

de terceira geragao apresentam um menor erro quando comparados com o GPS de segunda

geragdo.
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Figure 26: Simulagdo dos esquemas tensoriais do estado-da-arte € do método SECSI pro-
posto com L, = 3 sinais da terceira geracdo com N = 245520 amostras coletadas durante
K = 30 utilizando M = 8 antenas
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Chapter 1
Introduction

Global Navigation Satellite Systems (GNSS), such the American GPS, European Galileo,
Russian GLONASS, and Chinese BeiDou, have been present in several critical applications
such civilian aviation, autonomous driving [3], defense, and timing and synchronization of
critical networks. Furthermore, GNSS can be used for automatic toll systems [2], and in
precision farming for accurate application of fertilization and to enable constant usage of
machinery 24 hours a day [4].

Aiming to compute the receiver position on the earth’s surface, the GNSS receiver
make use of line-of-sight (LOS) components from at least four satellites. Yet, as a conse-
quence of the propagation environment, LOS reflections caused by, for instance, trees, poles,
lamps, and buildings can occur generating multipath components, known as non-light-of-
sight (NLOS) components. Thus, the NLOS components interferes on the LOS components.
Once LOS signals can be corrupted by NLOS components, the time-delay Estimation and
thus the receiver position can be severely deteriorated when using the state-of-the-art GNSS
receivers [27, 28, 29].

In order to provide safety-critical applications (SCA) or liability critical applications
(LCA), multi-antenna systems raised the focus of methods development for multipath mitiga-
tion for SCA and LCA applications [30, 31]. Currently there are few state-of-the-art tensor-
based multipath mitigation methods applied to time delay-estimation. Firstly, [7] introduced
a solution based on HOSVD low-rank approximation with Forward-Backward Averaging
(FBA) [10, 11], and Expanded Spatial Smoothing (ESPS) [12, 13]. Then, [14] proposed a
solution based on using Direction of Arrival (DoA) estimation and Khatri-Rao Factorization
(KRF). Finally, [23] uses the Canonical-Polyadic Decomposition by Generalized Eigenvalue
Decomposition (CPD-GEVD) for time-delay estimation.

In this thesis we propose to utilize the Semi-algebraic framework for approximate Canon-
ical Polyadic Decomposition via Simultaneous Matrix Diagonalization (SECSI) [18, 19, 20].
The SECSI starts by applying the Higher Order Singular Value Decomposition (HOSVD)
low-rank approximation [32] on the post-correlated received tensor signals. Then, several



joint matrix diagonalization [21, 22] on the second dimension of the core tensor obtained
from HOSVD in order to estimate complex amplitude related factor matrix. Next, the
remaining factor matrices are estimated by using Least Squares Khatri-Rao Factorization
(LSKREF) [16, 17]. Thus, given the estimated factor matrices corresponding to the post-
correlated tensor signal, time-delay estimation can be computed for each LOS and NLOS
components. In addition, we propose to use the SECSI based time-delay estimation with
the second generation GPS system and the next third generation GPS system. Additionally,
we explore the possibility to substitute the HOSVD low-rank approximation by the Higher
Order Orthogonal Iteration (HOOI) low-rank approximation.

This thesis is structured as follows: Chapter 2 presents the pre- and post-correlation data
model. Chapter 3 presents the tensor time-delay estimation approaches: in Section 3.1 both
state-of-the-art HOSVD, DoA/KRF, and CPD-GEVD approaches are described; in Section
3.2, we present the proposed time-delay estimation method based on the SECSI decomposi-
tion; and Section 3.4 presents the results of Monte Carlo (MC) simulations. Chapter 4 draws
the conclusions. Furthermore, in the Appendix section we introduce important concepts
needed to understand this thesis as well as parallel works developed during master program
course. Therefore, in Appendix A we introduce the notation used in this thesis, and review

the matrix and tensor calculus used in the thesis.



Chapter 2

Data Model

GNSS uses satellite constellations distributed in a known pattern, this pattern is main-
tained by a terrestrial segment that oversee each satellite’s position, as well as issues correc-
tions, and upload ephemeris data of each satellite needed to calculate the users’ position on

earth.

The GPS uses Code Division Multiple Access (CDMA) in order to give a unique identifi-
cation to each satellite. In addition, CDMA spreads the signal over a wider bandwidth. This
is known as spreading spectrum. Basically, the spreading occurs when the transmitted data
sequence is multiplied by a higher bandwidth periodic chip code. This periodic chip code,
known as pseudo-random sequence (PRS), increases the signal bandwidth while diminish its
spectral power density. Thus, once CDMA gives unique PRS to each satellite, the spreading
allows satellites to operate over the same frequency. This is possible because the spread-
ing step spreads the signal over a wider bandwidth, making it more robust to interference.

However, the spreading process decreases the signal to noise ratio (SNR).

Once the signal is spread over a spreading sequence, the recovery of each satellite’s signal
is performed by a de-spreading process. In order to de-spread the signal, we correlate the
received signal by each known PRS. This process yield a processing gain of around 30 dB,

thus each satellite signal can be recovered.

In this chapter we firstly introduce the scenario considered in this thesis in Section 2.1.
Then, in Section 2.2 we introduce the third generation GPS by presenting an overview of the
process of generating the necessary codes for creating the new L1C pilot channel. Firstly, we
describe how to generate the base sequence that is used to generate the unique codes of each
satellite. Then, we explain how to generate the overlay and L1C pilot code, and we show
how to generate the Time Multiplexed Binary Offset Carrier (TMBOC). Finally, in Sections
2.3 and 2.4 we describe how the signal tensor is constructed, and how the the post-correlation

data model is constructed using the L1C pilot channel created after TMBOC modulation.



2.1 Data model scenario

Similarly to [6], let us consider an antenna array based receiver with M elements for a
third generation GPS system. As shown in Figure 2.1, we assume that D satellites have line
of sight (LOS) with the GPS receiver and, for the d-th satellite, there are L, multipath com-
ponents. Therefore, the total amount of multipath components L is given by L = EdDzl Ly.
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Figure 2.1: Satellite constellations

As illustrated in Figure 2.2, we assume that Tl(d) is the time delay of the LOS compo-

nent of the d-satellite, while TQ(d), - ,TI(Z) are the time delays of the (L; — 1) non-LOS
(NLOS) components. Each satellite transmits /N symbols corresponding to the L1C pilot
code modulated with TMBOC. We refer to the time window containing /N symbols as an
epoch. Moreover, we assume that, during K epochs, their respective N symbols are approx-

imately constant.

Figure 2.2: Receiver receiving one LOS e L, NLOS signals



2.2 LI1C signal generation

According to the specification IS-GPS-800D [33], each Pseudo-Random Sequence (PRS)
of the L1C pilot code is composed of a unique spreading code and a unique overlay code
called L1Cy. Both L1C pilot and L1C are independent and time synchronized. The L1C
pilot code is generated with a chipping rate of 1.023 Mbps and has a 10 ms duration, while the
L1C) is generated with a 100 bps rate, contains 1800 bits, and has 18 s duration. This L1Cp
is utilized to improve the correlation properties of the L1C pilot code, decrease spectral lines,

and enables synchronization with the data message [34].

The L1C pilot code is generated by firstly creating a common 10223-bit Legendre Se-

quence Lg(t), fort =0, ...,10222, assim construida

Ls(0) =0
Ls(t) = 1,if there exists an integer = such that ¢ is congruent to 22 modulo 10223  (2.1)
Ls(t) = 0, if there exists no integer = such that ¢ is congruent to > modulo 10223.

Ls(t) is then used to generate a Weil-Code W;(t; w) by performing the exclusive-or (XOR)
of Lg(t) and a shift of Lg(¢). The shift of Lg(¢) is specified by the Weil index w ranging
from 1 to 5111, and is defined as:

Wi(t;w) = Ls(t) @ Ls((t + w) mod 10223), (2.2)

where ¢ is the PRN signal number, & denotes the XOR operation, mod is the modulo-2
operation, and ¢t = 0...10222. Then, the L1C pilot codes are constructed by inserting a 7-bit
fixed expansion sequence 0 1 1 0 1 0 0 into the Weil-code in the insertion point specified by
the insertion index p = 1,2,...,10223. This expansion sequence is inserted before the pth
value of the Weil-code, as illustrated in Figure 2.3.

Fixed Length-10223 Legendre Sequence
101010110011101...100101001

///:///
/// // //
Y41~ 77 Weil Index (w)
(&) ey yd
L
o Insertion Index (p)
vvy  Weil-Code

W(0) W(1) W)

,/ﬁxpangi‘cm
g(0) g(1) g(2) Sequence; 0101101

Figure 2.3: Generation of the L1C pilot code



Next, the L1C) is constructed using an 11-stage Linear Feedback Shift Register (LFSR),
as shown in Figure 2.4. The generated code, derived from a XOR of sequences S1 and S2,
is 2047 bit long and truncated to a 1800 bit long sequence. Note that for sequence S1 each
output of each tap is used to compute the feedback value while only taps 9 and 11 are used
to calculate the feedback value of S2. Furthermore, from PRN 1 to 63 only sequence S1 is
used whereas to all others PRN numbers the sequence S2 is introduced.

S1 Polynomial

Ly

Shift Direction .

GB—J—vOutput
S2 Polynomial |

Figure 2.4: L1Co LFSR Generator

Then, the L1C, code is modulated into the L1C pilot code. Since the L1C code and the
L1C pilot code have different duration, Figure 2.5 illustrates the time relationship between
both codes. Observe that the GPS 12 week has a total duration of 18 seconds which corre-
sponds to the time length of L1Cy code. Therefore, each bit of L1Cy is 10 milliseconds
long which is equivalent to the duration of one period of L1C pilot code.
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Figure 2.5: L1C pilot code and L1Cy code time relationship

Finally, the L1C pilot code is modulated by a TMBOC subcarrier. The TMBOC is a
mixture of BOC(1,1) subcarrier and BOC(6,1) subcarrier used to modulate the L.1C pilot
code into L1 carrier. BOC(1,1) has subcarrier frequency of 1.023 MHz and a chipping rate
of 1.023 Mbps while BOC(6,1) consists of 6 cycles of a 6 x 1.023 MHz squarewave, thus

each squarewave is defined as:

sgoc,(t) te P
spoc(e,1)(t) t € P,

STMBOC(6,1,4/33) (1) = (2.3)

where P, is the set of chips where we apply BOC(1,1) and P is the set of chips where
we apply BOC(6,1), 4/33 means 4 out of 33 chips of the spreading code are modulated by
BOC(6,1) subcarrier while the remaining 29 chips are modulated by BOC(1,1) subcarrier.
Finally, in (2.4) the L1C pilot code is modulated using TMBOC, thus resulting in the L1C

pilot channel.
¢(t) = g(t)stmBoc(s,1,4/33) (1), (2.4)
where g(t) is the L1C pilot code. Figure 2.6 illustrates the TMBOC modulation where each

chip of the L1C pilot code is multiplied by the resulting TMBOC squarewave thus resulting
in the modulated L.1C pilot channel.
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Figure 2.6: L1C pilot with TMBOC modulation

2.3 Pre-Correlation Data Model

Assuming a uniform linear antenna array (ULA) composed of M elements and assuming
D satellites with L impinging signals composed of 1 LOS and L — 1 NLOS components, the
received signal can be modeled in the following fashion

Sd0,(t) = a(Pae,)Ve,Calt — Tae,), (2.5)

where s, ¢,(t) holds the desired LOS signal for £, = 1 along with the NLOS components
for {4 = 2,..., L4 The signal replica in (2.5) has its steering vector a(¢dqe,), complex

amplitude 7;,, and PRS ¢4(t — 74,,) with delay 7,,,, and the time index ¢t = 1,..., N.

Considering that each antenna element captures /V samples along K epochs the received

signal tensor can be expressed in the following fashion:
X=T3;, <, TTx, CT x5 A + W, (2.6)

where I'" = [4;,...,4z] € CK*L gathers the complex amplitudes of the LOS and NLOS
components in its columns, C = [¢[ry], ..., €[r.]] € RV*L gathers the L1C pilot channel’s
PRS, A = [a(¢y),...,a(¢r)] € CM*L collects the array responses, and N is a white

Gaussian noise tensor.

The tensor in (2.6) is composed of three dimensions, the first dimensions of size K is
related to each epoch, the second dimensions of size /N is associated to the collected samples
in each epoch, and the third dimension of size M corresponds to the spatial diversity of the
receive ULA.



2.4 Post-Correlation Data Model

In order to separate each satellite, there are D compressed correlator banks Q and each

of them correspond to one satellite. Therefore, we define the d-th correlator bank as

e RV*@, (2.7)

Qz[C[ﬁ] o cfrg]

Then, a Fisher information-preserving compression [8] is applied to the correlator bank

by using the economy-size Singular Value Decomposition (SVD):

Q=UxVvH (2.8)

with U € CV*Q, ¥ ¢ C¥*¥, and VI € C@*?. Thus, since U preserves the statistics
properties of the noise [35], we can define the compressed correlator bank as Q,, = U.

Thus, according to [7], a received signal tensor X € CE*N*M can be correlated with the
left subspace of the correlator bank Q,, = Q(XVH)~! [8], where Q is a collection of () taps
of the PRS, X and V! are, respectively, a diagonal matrix with the singular values and the
right singular vector of the thin SVD of Q. Thus, in order to compute the cross-correlation
to estimate the time-delay of the LOS component, we have:

y =X X9 QwT
=T5., %1 T x5 (CQ.)" x3 A+ N %2 Q, (2.9)
= I37L X1 FT X9 (CQw)T X3 A +N‘w

Thus, it results in the tensor Y € CE*@*M where I'T € CE*La, (CQ,)T € RY*La,
A € CM*La_and N, is a white Gaussian noise tensor.



Chapter 3

Tensor-Based Time-Delay Estimation

and Simulations

In this chapter we present three tensor-based time-delay solutions. Firstly
the state-of-the-art tensor-based time-delay estimation HOSVD, DoA/KRF, and CPD-
GEVD from [7] and [23] are overviewed in Section 3.1. Still, in Subsection 3.1.2.1 we
describe the time-delay estimation procedure by normalizing the estimated factors and esti-
mating the tensor amplitudes. Then, a novel approach for time-delay estimation is presented
in Section 3.2. This approach is based on [18, 19, 20] which uses a Semi-algebraic solution
for the Canonical Polyadic (CP) model by performing several joint matrix diagonalizations.
Thus, this solution simultaneously estimates the complex amplitude factor matrix. Then, we
use the Least Square Khatri-Rao Factorization (LSKRF) to estimate the steering and code
factor matrices. Section 3.3 presents the computational complexity of the state-of-the-art
and proposed methods. Finally, In Section 3.4 we present the result for the Monte Carlo

simulations performed using the state-of-the-art techniques and the proposed technique.

3.1 State-Of-The-Art Tensor-Based Time-Delay Estima-
tion For Third Generation GPS

In this section we overview the state-of-the-art tensor-based time-delay estimation ap-
proaches. Firstly, in Subsection 3.1.1 we introduce an HOSVD based eigenfilter with For-
ward Backward Averaging (FBA) and Expanded Spatial Smoothing (ESPS). Then, in Sub-
section 3.1.2 we describe the Direction of Arrival (DoA) estimation and Khatri-Rao factor-
ization approach. Finally, in Subsection 3.1.3 we present the Canonical Polyadic Decompo-

sition by Generalized Eigenvalue Decomposition (CPD-GEVD).
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3.1.1 HOSVD based Time-Delay Estimation

As shown in Figure 3.1, in order to perform the Higher-Order Eigenfilter decomposi-
tion [7], first the incoming signal Y is pre-processed to incorporate the Forward-Backward
Averaging (FBA) [10], [11] and Expanded Spatial Smoothing (ESPS) [12], [13].

Similarly to [10], the tensor-based FBA uses flipped identity matrices in order to dupli-
cate the number of samples. Thus, the left-hand identity matrix I1;;, € RM*M g of size M
flipped along its vertical axis. Moreover, the right-hand identity matrix I, € REQ*K@
is of size K@) flipped along its vertical axis. Then, the identity matrices are applied to the
third-mode unfolding of the received signal tensor:

7 = [ HM[y];;HKQ] € CM*2KQ, 3.1)

Then, similarly to [12], the tensor-based ESPS uses selection matrices that separate the
antenna array into Lg subarrays with Mg = M — Lg + 1 elements. Therefore, we define the

selection matrices as follows:

Jog = [0M5x25—1 Insg OMSXLS—l] € RMs» M (3.2)

where /g = 1, ..., Ls. Thus, we use the selection matrices to apply the spatial smoothing to
the FBA unfolding of the received signal tensor from (3.1)

W — [le JLSZ] € CMsx2LsKQ (3.3)

where W is folded back using the third-mode unfolding thus resulting in a forward-backward

averaged spatially-smoothed fourth-order tensor Z pgpg € C2E*@xMsxLs

Next, the resulting tensor Z pgpg is used to perform the HOSVD rank-one approximation
on the space and epoch dimensions.

Zpsps = R X1 Uy X9 Uy x3 U x4 Uy (3.4)

where R € C2Ex@xMsxLs jq the core tensor, U; € C?5*2K U, € C¥*Q U, € CMsxMs,
and U, € Cls*Ls are unitary matrices collecting singular vectors of each mode’s unfolding
[36] from (2.9).

Afterwards, once we assume the LOS component has the greatest power, the dominant
singular vectors are multiplied by Zggsps. Then, the resulting vector is multiplied by the
Y VH from the thin SVD of Q. Thus, resulting in the qzgpg vector.

desps = |2 Esps X1 (uﬁ”)H X3 (uf”)H X4 (1154))}1 DIAVA (3.5)
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where qpgps contains the multi-dimensionally filtered cross-correlation values at each tap
of the correlator bank. The resulting vector in the correlator dimension is then interpolated

using a cubic spline so that higher accuracy can be achieved.

VI3) | EBAandESPS | Zmsps € CHXOMsXEs | yogyn paced
Y "|  Preprocessing g eigenfilter
(1)\H
X1 ) (u;)
(3)\H
X3 ) (u;™)
(uf)"
SVH —— Xa ) -
AESPS
Time-delay .
estimation TLOS

Figure 3.1: HOSVD Time-Delay Estimation block diagram

3.1.2 DoA/KrF based Time-Delay Estimation

A three step approach based on direction of arrival (DoA) estimation, the Khatri-Rao
factorization (KRF), and the selection of the estimated LOS component was proposed by
[14]. In order to perform DoA estimation, firstly the received signal tensor pre-processed
using FBA and ESPS, thus we use the forward-backward averaged spatially smoothed sig-
nal matrix W from (3.3). As shown in Figure 3.2 the Estimation of Signal Parameter via
Rotational Invariance Technique (ESPRIT) [15] is applied to W in order to estimate A.

Firstly we rewrite (2.9) to obtain the following equation

V) = A[I‘T o (CQW)T]T € CMxKQ (3.6)

Once the matrix A was estimated by the ESPRIT technique, its pseudo-inverse can be
applied to (3.6) such that

At[Y); = A*A [FT o (CQM)T}T
. (3.7)
~ [I‘T o (CQw)T} € ClLaxKQ,

12



where the factor matrices I" and (CQ,,) can be estimated by Least Square Khatri-Rao fac-
torization (LSKRF) [16, 17].

Once (TT o (CQ,)")T is given in (3.7), and considering that it’s /4-th column can be
computed as the Khatri-Rao product of the £4-th column of I'T and (CQ,,)":

o (CQW)T] (:,0a) = (TT)(, £0) © (CQL)(:, o), (3.8)

where each column (I'T o (CQ,)")(:, ¢4) € CX?. Thus, in order to solve the estimates of T
and CQ_,, we reshape (3.8) into a matrix of size () X K

QXK

unvec { [PT o (CQW)T} 8 zd)} = (CQ,)T(:, L) (T, €4) (3.9)

Once (3.9) is a rank-one matrix, we can perform the SVD-based rank-one approximation

QXK

unvec { [I‘T o (CQW)T] ) zd)} — U, %, V., (3.10)

Therefore, the estimates for (I'")(:,£4) and ((CQ,)")(:,¢q) are /g, 1V}, , and
\/mllg .1, respectively, where oy, 1 1s the dominant singular value of 3, Vzh1 is the con-
jugate of the dominant right singular vector of V,, and uy, ; is the dominant left singular
vector of Uy,. This is repeated for {; = 1,..., L,.
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q
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Figure 3.2: DoA/KrF Time-delay estimation block

3.1.2.1 Time-Delay Estimation

In this Subsection we describe the method used to perform the time-delay estimation
after estimating the factor matrices. As shown in Figure 3.2, the resulting estimated factor
matrices (CQM)T, A, and T are normalized to unit norm for the {4-th component
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A T A T N T
(CQL).py =(CQL).py /I(CQL). 1y IF (3.11)
A=A /IIALlF (3.12)
T, =T0/IIT.0llF (3.13)

Next, we construct the tensor G,, for the /4-th normalized component of the estimated
factor matrices from 3.13:

T

20 (CQu)., 0 Ay, (3.14)

=

G, =

where G,, € CE*@*M _Then, we store the tensor G, corresponding to the £4-th component
in a matrix

G.,gd = VeC{ggd}, (315)

where G € CKQMxLa  Thus, we can compute the tensor amplitudes by multiplying the

pseudoinverse of G by the received signal tensor Y:

v = G vec{Y} (3.16)

Then, in order to find the column of (éQw) that corresponds to the line of sight com-
ponent, we apply the arg max operator to the -, and pick the s;ps column with greatest
amplitude.

SLos = arg max -y (3.17)

Afterwards, we use the siog to select the LOS component from the estimated (éQw)T
and multiply it by X'V from the thin SVD of Q

~ T T
q=[(CQ,). 50 ZVH| . (3.18)

Finally, the resulting vector q € C'*% is interpolated using a cubic spline in order to

achieve a higher accuracy for the estimation of the time delay.

3.1.3 CPD-GEVD based Time-Delay Estimation

A more accurate tensor-based scheme has been proposed for time delay estimation was
proposed in [9]. This method computes the Canonical Polyadic Decomposition, also known
as Candecomp and PARAFAC, by Generalized Eigenvalue Decomposition. In Figure 3.3 we
present a more accurate block diagram yet equivalent to the one presented in [23]. As illus-
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trated in Figure 3.3, the CPD-GEVD firstly computes the HOSVD low-rank approximation
of the incoming signal Y.

Y~ 88 x; U x; UE x; U, (3.19)

where Uj € CE*La, U§ € C@*Le, and U§ € CM*L4, and 8¢ € Craxlaxla ig the core
tensor and can be expressed as a PARAFAC decomposition:

Sg:I&L X1 T% X9 T% X3 T%, (320)
where the first two frontal slices of 8¢ can be expressed as:

(8%)..1 = T diag{(T5).. }(T3)"

(3.21)
(8%)..2 = Tf diag{(T$).2}(T5)".

As shown in (3.22), the CPD-GEVD uses the eigenvectors, E, from the GEVD of the
matrix pencil formed by (S%)..; and (S8%). . o:

(89! \E = (8%)! ,ED, (3.22)

where D the eigenvalues in its diagonal. Note that (3.22) is equivalent to

(8%).5(8%)" , =EDE™"

T 1 . . . . (3.23)
= (T7) " diag{(T%).2}  diag{(T5)..}T7.

Equation (3.23) is a diagonalization problem in which E provides an estimate of (T{)~".
Therefore, by combining (T%)~" from (3.23) and U* from (3.19) the factor matrix I'" can
be computed as

T — (U$)*(T$) " = (Ui)E. (3.24)

Next, since in the noiseless case, according to (2.9),

Vi = [(CQW) o A] rt, (3.25)
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(2,3)

and since I'" is given in (3.24), we define F&\*°) ag

FEC9) = (Y] (U3)'E = [(CQu)" o A|TT*
(3.26)
~ [(CQW)T o A] e oML,

Then by performing the Least Squares Khatri-Rao Factorization (LSKRF)[16, 17], we
can estimate the factor matrices (CQw)T and A. Furthermore, we use the estimated factor

matrices to perform the time-delay estimation technique described in Subsection ??
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Figure 3.3: CPD-GEVD Time-Delay Estimation block diagram
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3.2 Proposed Semi-algebraic Framework for Approximate
Canonical Polyadic Decomposition via Simultaneous
Matrix Diagonalization Based Framework for Time-
Delay Estimation

In this section, we propose to utilize the Semi-algebraic framework for approximate

Canonical Polyadic Decomposition via simultaneous matrix diagonalization (SECSI) from

[18, 19, 20] to transforming our factor estimation problem into several redundant simultane-

ous matrix diagonalization problems. Therefore, we propose a SECSI based framework for

time-delay estimation. Thus, firstly, as illustrated in Figure 3.4, the SECSI approach com-

putes the Higher Order Singular Value Decomposition (HOSVD) low-rank approximation,
which computes the thin-SVD of the incoming signal Y from Equation (2.9) is:

y =8¢ X1 Usl: X9 Ug X3 Ug, (327)

where 8¢ € ClexEaxLa jg the compressed core tensor, and US € CK*Ea, U € C¥*La,

U € CM*La gre the singular matrices. Thus, we can represent the tensor S as follows

S=T X1 Ti X9 T; X3 Tg, (328)

where TS € ClaxLa T € Claxla and T € CFa*Ld, Thus

UsTS =17, (3.29)
USTS = (CQ.)", (3.30)
USTS = AT, (3.31)

Once we perform joint matrix diagonalization on our tensor 8¢, we have several diago-
nalization problems to be solved. Because we have a third-order tensor, we can have six dif-
ferent estimates which means we have two estimates for each dimension of tensor S¢. Thus,
in order to compute the joint matrix diagonalization we firstly compute the first-, second-,
and third-mode slice of the i-th slice of tensor S¢. Thus, we have the third-mode slice of S°
represented as

S5, = [(8° x5 US) x3¢€]]

3.32
— TS ding {A"(: 1)} (TS)", (32
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second-mode slice of 8¢ as

S5, = [(8° %2 U3) x5 €]]

C : H . c\T (3.33)
= T7 diag{(CQu)"(:,)}(T35)",

and, finally, we have the first-mode slice

Siz = [(SC X1 Ui) X1 eZT] (3 34)
= T diag{T"(:,2) }(T5)", '
then

S5, = Ti diag{ A"z, p) }(T)", (3.35)
S5, = T diag{(CQ.)"(:, p) H(T3)", (3.36)
81, = T5 diag{T"'(:, p) H(T3)", (3.37)
where e] is vector with zeros in all positions except in the i-th position, and p is an arbitrary

index between one and the n-th mode slice to be diagonalized:

p = argmin cond{S, ;}, (3.38)

where cond{-} computes the condition number of a matrix. The smaller the condition num-
ber, the more stable is the matrix inversion. Therefore, we select the matrix with the smallest

condition number.

Therefore, with each mode slice defined, we can compute the right-hand and left-hand
matrices of each mode slice. Note that the right-hand matrix simultaneous diagonalization
for the third-mode slice is similar to the state-of-the-art CPD-GEVD described in Subsec-
tion 3.1.3. Since p is fixed, we can vary all possible values of ¢, thus obtaining N — 1

equations for each mode slice, since i # p.

Thus, firstly, we define the right-hand matrix for the third-mode slice in the following
fashion:

Sy = 85,(85,)""
= T¢ diag{ A"(:, ) AR (:, p) }(TS) ™ (3.39)
= T{A™(T{) ™,
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then, we define the left-hand matrix for the third-mode slice as follows:

S5 = ((85,)7'85.)" = (85.)"(S5,) "
— T diag{ AT(, )AT( )} (TS) (3.40)
_ TCAH(TC) 1

This way, we transformed the third-mode slice onto two joint matrix diagonalization
problems. Thus, we can obtain an estimate of A from the joint matrix diagonalization of
Sg’;-hs. Additionally, we can obtain an estimate of A from the joint diagonalization of Sg’}i‘“.
Furthermore, the matrices that diagonalize Sg’f;’s and Sg}{“ outputs estimates for T, and T.
Thus, we can obtain the estimates for UST¢ = I'T, and UTS = (CQ,,)".

Similarly, for the second-mode slice, we compute the right-hand matrix in the following
fashion:

Sy™ = 85,(S5,) "
— T ding{ (CQL)" (1) (CQL)" (:, p) }(TS) ! (3.41)
— T5(CQu)M(TS) ",

then we define left-hand matrix of the second-mode slice

Sy = ((85,)7"S5,)7 = (85,)7(S3,) "
— T5 diag{ (CQL)" () (CQL)"(: p) }(T5) ! (3.42)
— T5(0Qu)"(T) .

Again, we created two joint matrix diagonalization problems for the second-mode slice.
Therefore, we can acquire two estimates of (CQ,) from the joint diagonalization of s;;;"s
and S;’}i}“. Additionally, these joint diagonalization yield estimates for T and T'. Therefore,

we can estimate the factor matrices UST¢ = I'T, and USTS = AT

Finally, we have to define the right-hand and left-hand matrices for the first-mode slice.
Again, we firstly define the right-hand matrix in the following fashion:

S
— T diag {TM(:, ) [(:, p)}(T5) ! (3.43)
— T5r(Ty) !
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then we define the left-hand matrix

SP = ((85,) 71850 = (85,)7(S5,) "

= T§ diag{T"(:, )T (:, p) (T§)* (3.44)
= TSOH(TS) .

Thus, the joint diagonalization problems Si’fihs and S‘i’f‘s for the first-mode slice yield two
estimates for I'. Furthermore, the joint diagonalization results in estimates for T and T%.

Thus, we can estimate the factor matrices USTS = (CQ,,)", and USTS = AT

Through performing various simulations using all mode slices previously described, we
discovered that the right-hand matrices and left-hand matrices of each mode slice yielded
similar time-delay estimation to the state-of-the-art CPD-GEVD method for a scenario with
one LOS and one NLOS. However, we too discovered that when we have one impinging LOS
and two NLOS the right-hand matrix of the third-mode slice have the best performance.
Thus, we propose to only use the estimate provided by the joint diagonalization of Sg*;hS.
Therefore, our goal is to find Tﬁ that simultaneously diagonalizes the N — 1 equations for
the right-hand matrix of the second-mode slice. We refer here to the techniques in [21] and
[22]. Then, we use U¢ from (3.27) to estimate I'T

USTS =17, (3.45)

Next, since the noiseless case, according to (2.9) the first-mode unfolding of Y can be

described as

Vil = [(CQW) <>A]1“, (3.46)

and once I'T is given in (3.45), we define F<(2?) as

FC(2,3) — [y]'(rl)fH*T — |:<CQw>T <>A:| Ff+T
(3.47)
~ |(CQu)To A € CoMxb,
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Figure 3.4: Proposed SECSI based time-delay estimation block diagram using the right-hand



The factor matrices (CQw)T and A can be estimated from (3.47) by applying the Least
Squares Khatri-Rao Factorization (LSKRF) [16, 17]. Furthermore, we use the estimated

factor matrices to perform the time-delay estimation technique described in Subsection ??

3.3 Computational Complexity

In this section, the state-of-the-art HOSVD+FBA+ESPS, DoA/KRF, and CPD-GEVD as
well as the proposed HOSVD SECSI method computational complexity is discussed.

The computational complexity is computed in term of FLoating point OPeration (flop)
counts. For instance, the computational complexity of a matrix multiplication between two
complex matrices, A € CM*N and B € CV*F is denoted as O(AB) = 2M N L [37]. Since
unfolding, inverse-unfolding are functions about data representation, we are not considering
this operations in the computational complexity. In Subsection 3.3.1 we show the com-
putational complexity of the state-of-the-art HOSVD+FBA+ESPS. Subsection 3.3.2 show
the computational complexity of the state-of-the-art DoA/KRF method. Subsection 3.3.3
show the computational complexity of the state-of-the-art CPD-GEVD method. In Subsec-
tion 3.3.4 we show the computational complexity of the proposed HOSVD SECSI.

3.3.1 Complexity of HOSVD+FBA+ESPS

Since we want to compute qgsps € C¥*1, firstly we compute the FBA of the received

tensor Y. The FBA pre-processing step results in the following complexity:

O(FBA) = 2M*KQ + 2(KQ)*M, (3.48)

then, after computing the FBA we compute the ESPS, which yields the following complexity:

O(ESPS) = [2M(2KQ)] L., (3.49)

afterwards we use the resulting tensor Zggps to perform the HOSVD rank-one operation.

Therefore, the HOSVD complexity is given by:

O(HOSVD) = [4}(3 4 Ig(8K2 + 10K)} ¥ [4@3 + Io(8Q + 10@)]
(3.50)
o [4L% + g (SLE + 10Lg) | + [4ME + Ly (8M3 + 10My) |,

where [ is the number of SVD power operations performed when using the first-mode
unfolding of tensor Zggsps, I is the number of SVD power operations performed when
using the second-mode unfolding, I/, is the number of SVD power operations performed

when using the third-mode unfolding, ;. is the number of SVD power operations performed
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when using the fourth-mode unfolding.

Then, in order to compute the vector qgsps, we have the following complexity:

O(qups) =4KQLsMs+4LsKQMg+ 4LsKQMg + 4LsKQMs. (3.51)

Moreover, we can define the total computational complexity of the state-of-the-art
HOSVD+FBA+ESPS methods as:

O(HOSVD+FBA+ESPS = O(FBA) + O(ESPS) + O(HOSVD) + O(qgsps).  (3.52)

3.3.2 Complexity of DoA/KRF

Additionally, we compute the computational complexity of the state-of-the-art
DoA/KREF. Therefore, once the first step performs the ESPRIT operation, we define the ES-

PRIT computational complexity as follows:

O(ESPRIT) = 2KQM?* + 2KQ*M + [(4KQ* + 5KQ + 4M?* + 5M)
J 5 . , (3.53)
+ 2[2(1\4 - 1)Ld} + (M —1) + L

where I is the number of SVD power operations. Afterwards, the Khatri-Rao Factorization

computational complexity can be described as:

O(KRF) = 2L KQ* + 2Ly K*Q + Lyl (4K? 4+ 5K + 4Q* + 5Q). (3.54)

Then, the DoA/KRF method normalizes the estimated factor matrices, and computes
the amplitudes. Therefore, the normalization and amplitude estimation has a computational

complexity:

O(NORM+AMP) = L4(KQ + KQM) + 2L3KQM + ng +2L3KQM.  (3.55)

Furthermore, we can define the total computational complexity by summing the com-
puted complexities with other minor operations used in the the DoA/KRF method:

O(DoA/KRF) = O(ESPRIT) + O(KRF) + O(NORM+AMP)

5 (3.56)
+2L2M + §L3 +202M + 2L4MQ +2Q + L.
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3.3.3 Complexity of CPD-GEVD

Similarly to the HOSVD+FBA+ESPS, the state-of-the-art CPD-GEVD show the same
computational complexity as (3.50) when performing the HOSVD step. Furthermore, we
compute the LSKRF computational complexity as follows:

O(LSKRF) = 2L,MQ? + 2LgM?Q + Ll (4M? + 5M + 4Q* + 5Q). (3.57)

Then, we can define the final computational complexity by summing the computed com-
plexities with the steps that compute the GEVD, factor matrix f‘, factor matrix F(3), and

least square as follows:

O(CPD-GEVD) = O(HOSVD) + O(LSKRF) + O(NORM+AMP)

(3.58)
+ L3+ 2KL2 +2Q0MK Ly + 2LyKQ + 4K MQ.

3.3.4 Complexity of HOSVD SECSI

Since we decided to use only the right-hand matrix of the third-mode unfolding to per-
form time-delay estimation, we only calculated the computational complexity of HOSVD
SECSI for the first factor estimate. Similarly to the state-of-the-art CPD-GEVD, the HOSVD
low-rank approximation step of proposed HOSVD SECSI shows the same computational
complexity as Equation (3.50). Moreover, after HOSVD low-rank approximation we com-

pute the computational complexity of constructing the third-mode slice as:

O(3-MODE) = M L. (3.59)

Then, we define the complexity of the conditional operation as:

O(COND) = 4L3 + I(8L2 + 10Ly), (3.60)

where [ is the number of SVD power operations. Then, we define the computational com-

plexity of computing the right-hand matrix as:

O(RIGHT-HAND) = N L3, (3.61)

where NV is the number of slices. Furthermore, we define the joint diagonalization computa-
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tion complexity as:

1
O(JOINTDIAG) = J(4L; + 16L3 + goLd), (3.62)

where J is the number of iterations. Moreover, the LSKRF has the same computational
complexity as (3.57). Finally, we compute the total computational complexity by combin-
ing the computed complexities with inverse, pseudo-inverse, and factor matrices estimation

computational complexities as follows:

O(SECSI) = O(HOSVD) + O(3-MODE) + O(LSKRF) + O(COND)
+ O(RIGHT-HAND) + O(JOINTDIAG) + O(NORM+AMP) (3 63)

10
+ ng + 6K Ly +2L,KQ

3.4 Results

In this section we present the time-delay estimation results obtained through several
simulations. In Subsection 3.4.1 we present simulations results using the state-of-the-art
scenario used by [23]. Subsection 3.4.2 presents our proposed scenario and describes the

simulations results for the proposed scenario.

3.4.1 State-of-the-art Scenario

The simulation scenario consists of a left centro-hermitian uniform linear array
with M = 8 elements and half-wavelength A = \/2 spacing, as proposed by [23].
The /A code is transmitted from the satellite with PRN = 17 with a carrier fre-
quency fs = 1575.42 MHz. the C/A code has a bandwidth B = 1.023 MHz with N = 2046
samples collected every K-th epoch during K = 30 epochs. Moreover, LOS and NLOS
components are generated with an azimuth angle difference A¢ = 60°. Furthermore, when
we have L, = 2 impinging signals we have a NLOS time-delay 7nios, = 7Los + A7 and
when we have L; = 3 impinging signals we have a second NLOS time-delay 7nios, =
TnLos, + A7. In order to perform the SPS/ESPS the antenna array is separated into Lg = 5
subarrays with Mg = 4 elements each. The carrier-to-noise ratio is C'/Ny = 48 dB-Hz, re-
sulting in a pre-correlation SNR = C'/Ny — 10log,,(2B) ~ —15 dB. Given the processing
gain G = 10log,,(Bt) ~ 30 dB, we have a post-correlation SNR = SNR + G ~ 15 dB.
Moreover, we have a signal to multipath ratio SMR = 5 dB for the scenario where we have
only one NLOS. Additionally, when we have two NLOS we have two different signal to
multipath ratio for each NLOS thus we have a SMR; = 5 dB for the first NLOS and a
SMR,; = 10 dB for the second NLOS.
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In this section, we performed 2000 Monte Carlo (MC) simulations to compare all ap-
proaches in terms of the Root Mean-Squared Error (RMSE) of the time-delay estimation of
the LOS components considering the state-of-the-art HOSVD, DoA/KRF and CPD-GEVD
based approaches, the proposed HOSVD SECSI approach, and the ideal case, filtering sup-
posing known I" and A.

In Figure 3.5 we show the results to the state-of-the-art scenario where we performed
2000 MC for the state-of-the-art tensor-based time-delay estimation methods and for the
proposed HOSVD SECSI. Observe that the HOSVD+FBA+ESPS shows the worst perfor-
mance by having a peak error of about 0.83 m at A7 = 0.57,. Note that the state-of-the-art
DoA/KRF and CPD-GEVD methods, and the proposed SECSI method have similar perfor-
mance. However, the SECSI method displays a worst performance than the state-of-the-art
CPD-GEVD when signals are strongly correlated
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Figure 3.5: Simulation with (L; = 2) signals for state-of-the-art 2nd Generation with N =
2046 samples. Code samples are collected during K = 30 epochs with M = 8 antenna.

In Figure 3.6 we show the results to the state-of-the-art scenario where we performed
2000 MC for the state-of-the-art tensor-based time-delay estimation methods and for the
proposed HOSVD SECSI. Observe that the CPD-GEVD shows the worst performance by
having a peak error of about 7 m at A7 = 0.17,. Note that the state-of-the-art DoA/KRF
and the proposed SECSI method have similar performance. However, the SECSI method
displays a worst performance than the state-of-the-art DoA/KRF when signals are strongly
correlated.

28



6 ==2nd Gen HOSVD+FBA+ESPS
A 2nd Gen DoA/KRF

-2nd Gen CPD-GEVD TDE

5r 2nd Gen SECSI

Known A and T

0 \ \ \ \ \
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AT /Te

Figure 3.6: Simulation with (L; = 3) signals for state-of-the-art 2nd Generation with N =
2046 samples. Code samples are collected during K = 30 epochs with M = 8 antenna.

3.4.2 Proposed scenario

Similarly to [6], the simulation scenario consists of a left centro-hermitian uniform linear
array with M = 8 elements and half-wavelength A = \/2 spacing. Both L1C pilot chan-
nel and C/A code are transmitted from the satellite with PRN = 17 with a carrier fre-
quency fs = 1575.42 MHz. The simulation considers using the modulated L.1C pilot channel
with a total period ¢3,4 = 10 ms with a bandwidth B3, = 12.276 MHz, the higher bandwidth
is due to TMBOC modulation [6]. In addition, to perform a fair comparison, [6] proposed
an increasing in the C/A code bandwidth to Bs,q = Bs,q. Both L1C pilot channel and C/A
code samples are collected every K -th epoch during K = 30 epochs with each epoch during
10 ms [6]. Thus, once C/A code has a total period of 5,4 = 1 ms, each epoch of C/A code
collects 10 ms of data. Therefore, N = 245520 samples were collected of both L1C pilot
and C/A code per epoch.

Furthermore, the LOS and NLOS components are generated with an azimuth angle dif-
ference A¢ = 60°. In similar fashion to the state-of-the-art scenario, when we have Ly = 2
signal components we define the first NLOS time-delay as 7w os, = TLos + A7 and when we
have L, = 3 signal components we define a second NLOS time-delay 7nio0s, = Tnros, +AT.
In the same fashion as [6], in order to perform the SPS/ESPS the antenna array is separated
into Lg = 5 subarrays with Mg = 4 elements each. The carrier-to-noise ratio is C'/Ny = 48
dB-Hz, resulting in a pre-correlation SN Ry, = C/Ny — 10log,(2B2na) ~ —25.10 dB
for the second generation GPS and a SN Ry, , = C/Ny — 10log,(2B3:4) ~ —25.10 dB
for third generation GPS. Given the processing gain G3q = 10log,,(Bsratsra) ~ 50.9 dB
for third generation GPS and, once the C/A code is collected during 10 ms, the second
generation GPS has a processing gain Ganpg = 1010g;,(Banatsa) ~ 50.9 dB, thus we have a
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post-correlation SN Ry, , = SN Ryre + Gong & 25 dB for the second generation GPS and
a post-correlation SN Ry, , = SN Rpyre + G3g =~ 25 dB for the third generation GPS. Fur-
thermore, we have a signal to multipath ratio SMR = 5 dB both GPS generations for the
scenario that we have only one NLOS. Additionally, when we have two NLOS we have two
different signal to multipath ratio for each NLOS thus we have a SMR; = 5 dB for the first
NLOS and a SMR, = 10 dB for the second NLOS.

Additionally, similarly to [23], besides the simulation using a perfect array we added er-
rors in the antenna array geometry in order to distort the array = and y positions by using a
normal distribution ~ N(0, o2). The standard deviation is computed in terms of the proba-
bility p = P(e > \/2) where the error exceeds a half wavelength. Furthermore, we fix the
relative delay A7 at 0.57, while varying the error probability p from 1076 to 1071,

Herein we performed 2000 Monte Carlo simulations to compare all approaches in terms
of the Root Mean-Squared Error (RMSE) of the time-delay estimation of the LOS com-
ponents considering the state-of-the-art HOSVD, DoA/KRF and CPD-GEVD based ap-
proaches, the proposed HOSVD SECSI approach, and the ideal case, filtering suppos-
ing known I and A. Additionally, we compare the HOSVD SECSI method with the
HOOI SECSI method. The HOOI SECSI method simply substitutes the HOSVD low-rank-
approximation step by a HOOI low-rank approximation. The results for the MC simula-
tion for the second generation GPS are presented in Subsection 3.4.2.1 while in Subsec-
tion 3.4.2.2 we present the results of the MC simulation for the third generation GPS. In
Subsection 3.4.2.3 we present the results for the MC simulations when position errors are
added to the antenna array. Subsection 3.4.2.4 presents the results for MC simulations when
varying the NLOS DoA.

3.4.2.1 Second Generation GPS Time-Delay Estimation

In this section we present simulation results for the state-of-the-art second generation
GPS and the proposed second generation GPS using the proposed HOSVD SECSI based
time-delay estimation method. Hereby we show the results of two scenarios. In the first
scenario both state-of-the-art techniques and SECSI methods suppose an antenna array with
L4 = 2 impinging signals while in the second scenario an antenna array with L; = 3 im-

pinging signals is considered.

Once, similarly to the SECSI decomposition, the CPD-GEVD can produce six different
factor estimates for different combinations of the GEVD step, we compare each estimate
generated by the CPD-GEVD method with the estimates generated by the SECSI method.
Furthermore, in addition to the proposed SECSI method, we performed simulations using
the HOOI low-rank approximation instead of the HOSVD low-rank approximation. Thus,
in Figure 3.7 we show the result for the state-of-the-art CPD-GEVD based time-delay esti-
mation, which displays an error of about 0.0793 m when A7 > 0.17.. Still, in Figure 3.7
we show that the first factor estimate from the SECSI methods match the state-of-the-art
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performance by having an error of about 0.793 m. Note that both both CPD-GEVD and
HOSVD SECSI fail to estimate the time-delay error when A7 < 0.27,. while the HOOI
SECSI outputs an error at of approximately 0.796 m A7 = 0.017, and matches the error of
CPD-GEVD and HOSVD SECSI when A7 = 0.27.. The error when having a small delay
difference occurs due to the high correlation between LOS and NLOS.
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Figure 3.7: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the first factor estimate with A/ = 8 antennas and L; = 2

impinging signal. In both cases code samples are collected during & = 30 epochs, and have
N = 245520 samples.

In Figure 3.8 we use the second factor estimate from both CPD-GEVD, HOSVD SECS]I,
and HOOI SECSI methods. Note that while the CPD-GEVD perform the time-delay esti-
mation with a peak error of about 0.15 m at A7 = 0.017, and and keeps the error below
0.13 m when A7 > 0.17, the HOSVD SECSI and HOOI SECSI methods present a error of
approximately 0.0793 m.
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Figure 3.8: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the second factor estimate with A/ = 8 antennas and
L4 = 2 impinging signal. In both cases code samples are collected during KX = 30 epochs,
and have N = 245520 samples.

In Figure 3.9 we use the third factor estimate from both CPD-GEVD, HOOI SECSI,
and HOSVD methods. Observe that the third factor estimate matches the first factor esti-
mate show in Figure 3.7 with both state-of-the-art CPD-GEVD, HOSVD SECSI, and HOOI
SECSI only successfully estimating the time-delay when A7 > 0.17..
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Figure 3.9: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the third factor estimate with M/ = 8 antennas and L, = 2
impinging signal. In both cases code samples are collected during X = 30 epochs, and have

N = 245520 samples.
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Figure 3.10 displays the simulation results when using the fourth factor estimate from
CPD-GEVD, HOOI SECSI, and HOSVD SECSI. Note that both HOSVD SECSI, HOOI
SECSI, and CPD-GEVD have a larger error when the LOS and NLOS are more correlated.
However, when using the forth factor estimate the HOOI SECSI presents a better result when
A7 < 0.17,. Furthermore, the HOOI SECSI presents a worst result when compared with
CPD-GEVD at A1 > 0.17..
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Figure 3.10: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the fourth factor estimate with A/ = 8 antennas and L; = 2

impinging signal. In both cases code samples are collected during & = 30 epochs, and have
N = 245520 samples.

Figure 3.11 show the simulation results when using the fifth factor estimates from CPD-
GEVD, HOOI SECSI, and HOSVD SECSI. Observe that the CPD-GEVD completely fails
on performing time-delay estimation and displays an seemingly linear error. Note that both
HOSVD SECSI and HOOI SECSI have similar performance by achieving an overall error
of approximately 0.0793 m.
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Figure 3.11: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the fifth factor estimate with // = 8 antennas and L; = 2

impinging signal. In both cases code samples are collected during X = 30 epochs, and have
N = 245520 samples.

Finally, Figure 3.12 use the sixth factor estimates. Note that the CPD-GEVD completely
fails on performing time-delay estimation and displays a linear error. Furthermore, the HOOI
SECSI, and HOSVD SECSI methods, have similar performance by achieving an error of
about 0.0793 m.
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Figure 3.12: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the sixth factor estimate with M/ = 8 antennas and L; = 2
impinging signal. In both cases code samples are collected during X = 30 epochs, and have
N = 245520 samples.

Once we show from Figures 3.7 through 3.12 that the the CPD-GEVD presents the best
results when using the first and third factor estimates, we decide to keep the standard CPD-
GEVD decomposition by using the first factor estimate. Once we show that the all SECSI
estimate display the similar performance and the process is similar to the state-of-the-art
CPD-GEVD, we decided to pick the first factor estimate from the SECSI in order to perform
time-delay estimation. Therefore, in Figure 3.13 the state-of-the-art HOSVD+FBA+ESPS,
DoA/KRF, and CPD-GEVD are compared with the SECSI based solution using the first
factor estimate. Both state-of-the-art methods and the SECSI method are equipped with an
antenna array. Note that the state-of-the-art HOSVD+FBA+ESPS presents the worst result
with a peak error of about 0.28 m at A7 = 0.67,. Thus, we show that the state-of-the-art
DoA/KRF and CPD-GEVD and the SECSI method considerably outperform the state-of-
the-art HOSVD+FBA+ESPS by having an approximately constant error of around 0.079 m.

35



0.25 -
— 2nd Gen GPS (C/A code) with HOSVD-+FBA-+ESPS
S 0.9 ®-2nd Gen GPS (C/A code) with CPD-GEVD
~ 3¢ Proposed HOSVD 2nd Gen GPS (C/A code) with SECSI
€3 <9-2nd Gen GPS (C/A code) with DoA /KrF
Cé) 2nd Gen GPS (C/A code) with known A and T'
0.15
s
0.1+
y e L 2 had L 2 2 *e L% 2 L 2 L 2 Sl »e
rve ”h N~ e N~ < v ”h N~ e
0.05 | | | | | | | | | |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

AT/Te

Figure 3.13: State-of-the-art techniques and proposed SECSI method simulation with M = 8
antennas and L; = 2 impinging signal. In both cases code samples are collected during
K = 30 epochs, and have N = 245520 samples.

Once the state-of-the-art CPD-GEVD method and the SECSI method have previously
shown the best results and have similar processing steps, we, additionally, performed 2000
MC simulations considering one NLOS and two NLOS. Thus, in Figure 3.14 the state-of-the-
art techniques are compared with the proposed SECSI based solution when having L; = 3
impinging signals. Note that the HOSVD+FBA+ESPS shows an almost constant error of
approximately 0.28 m at A7 = 0.57,.. Additionally, observe that the the state-of-the-art,
DoA/KREF, and the proposed HOSVD SECSI solution achieve an overall error of approxi-
mately 0.082 m. However, when having two NLOS the proposed HOSVD SECSI shows a
larger error when A7 < 0.17, and the CPD-GEVD have a larger error when A7 < 0.27..
This larger error is due to the highly correlated NLOS signals when A7 < 0.27, which re-
sults in a rank deficient received tensor. This issue may be solved by properly estimating the
model order before performing the CPD-GEVD. Therefore, we refer to [24, 25, 26]. Still,
we note that the proposed HOSVD SECSI have a better performance when under highly
correlated LOS and NLOS than the state-of-the-art CPD-GEVD.
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Figure 3.14: State-of-the-art techniques and proposed SECSI method simulation with N =
245520 samples and L; = 3. In both cases code samples are collected during K = 30 epochs
with M = 8 antenna.

3.4.2.2 Third Generation GPS Time-Delay Estimation

In this section we present simulation results for the state-of-the-art second generation
GPS and the proposed third generation GPS using the proposed HOOI SECSI based time-
delay estimation method. In this scenario both state-of-the-art techniques and SECSI method
suppose an antenna array with L; = 2 impinging signals. Additionally, a scenario with
L4 = 3 impinging signals is considered. Once the SECSI method performs various matrix
diagonalization, this method generates six factor estimates for our 3-way model. Similarly to
the SECSI method, the CPD-GEVD can be modified to generate six factor estimates for our
model. Lastly, we show that when using the the third generation GPS both state-of-the-art
tensor based methods and the proposed SECSI method outperform the second generation
GPS.

Similarly to the SECSI decomposition, the CPD-GEVD can produce six different factor
estimates for different combinations of the GEVD step. Additionally to the proposed SECSI
method, we performed simulations using the HOOI low-rank approximation instead of the
HOSVD low-rank approximation. Therefore, Figure 3.15 shows the result for the state-of-
the-art CPD-GEVD based time-delay estimation, which displays an error of about 0.075
m. Still, in Figure 3.15 we show that the first factor estimate from the HOSVD SECSI
methods match the state-of-the-art CPD-GEVD performance by having an error of about
0.75 m. However, note that the HOOI SECSI displays a worst performance when the LOS
and NLOS signal are most correlated. Still, by comparing with Figure 3.7 we notice that
the third generation GPS outperforms the second generation GPS when A7 < 0.27. by
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matching the ideal case.
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Figure 3.15: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the first factor estimate with M/ = 8 antennas and Ly = 2
impinging signal. In both cases code samples are collected during X = 30 epochs, and have

N = 245520 samples.

In Figure 3.16 we use the second estimate from both CPD-GEVD, HOOI SECSI, and
HOSVD SECSI methods. Note that while the CPD-GEVD shows a large error when LOS
and NLOS are highly correlated the SECSI, and HOOI SECSI perform the time-delay esti-

mation with an overall error of about 0.075 m
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Figure 3.16: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the second factor estimate with M/ = 8 antennas and

L4 = 2 impinging signal. In both cases code samples are collected during K = 30 epochs,
and have N = 245520 samples.

In Figure 3.17 we use the third estimate from both CPD-GEVD, HOOI SECSI, and
HOSVD SECSI methods. Note that the third estimate displays the same result as the first
estimated by having and overall error of about 0.075 m for both state-of-the-art CPD-GEVD
and HOSVD SECSI and HOOI SECSI.
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Figure 3.17: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the third factor estimate with M/ = 8 antennas and L, = 2
impinging signal. In both cases code samples are collected during K = 30 epochs, and have
N = 245520 samples.
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Figure 3.18 displays the simulation results when using the fourth factor estimate from
CPD-GEVD, HOOI SECSI, and HOSVD SECSI. Note that both HOSVD SECSI and HOOI
SECSI have and unstable time-delay estimation while the CPD-GEVD an stable performance
and successfully estimates the time-delay by showing an error of about 0.075 m.
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Figure 3.18: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the fourth factor estimate with A/ = 8 antennas and L; = 2

impinging signal. In both cases code samples are collected during X = 30 epochs, and have
N = 245520 samples.

Figure 3.19 use the fifth factor estimate. Observe that similarly to the second generation
the CPD-GEVD completely fails to estimate the time-delay by displaying a linear error. Still,
the HOSVD SECSI successfully estimates the time-delay by having an approximate error of
about 0.075 m while the HOOI SECSI shows a peak error of about 0.1 m.
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Figure 3.19: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the fifth factor estimate with M/ = 8 antennas and L; = 2

impinging signal. In both cases code samples are collected during & = 30 epochs, and have
N = 245520 samples.

Lastly, Figure 3.20 use the sixth factor estimate. Observe that, again, the CPD-GEVD
shows a linear error and fails to estimate the time-delay. However, both HOOI SECSI, and

HOSVD SECSI methods present similar performance by having an approximate error of
about 0.075 m
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Figure 3.20: State-of-the-art CPD-GEVD, HOSVD SECSI, HOOI SECSI, and proposed
SECSI method simulations using the sixth factor estimate with M/ = 8 antennas and L, = 2
impinging signal. In both cases code samples are collected during X = 30 epochs, and have
N = 245520 samples.

Once we show from Figures 3.15 through 3.20 that the CPD-GEVD presents the best
results when using the first and third factor estimates, we decide to keep the state-of-the-art
CPD-GEVD decomposition by using the first factor estimate. Once we show that the first
and third estimates of the SECSI methods display the best performance and the process is
similar to the state-of-the-art CPD-GEVD, we decided to pick the first factor estimate from
the SECSI in order to perform time-delay estimation. Therefore, in Figure 3.21 the state-
of-the-art techniques are compared with the proposed SECSI based solution. Both state-of-
the-art methods and the proposed SECSI method are equipped with an antenna array and
receiving Ly = 2 signals. Note that the state-of-the-art HOSVD+FBA+ESPS presents the
worst result with a peak error of about 0.12 m at A7 = 0.37T. The state-of-the-art DoA/KRF
and CPD-GEVD techniques and the proposed SECSI technique considerably outperform
the state-of-the-art HOSVD+FBA+ESPS by showing the best results with an approximately

error of around 0.075 m.
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Figure 3.21: State-of-the-art techniques and proposed SECSI method simulation with N =
245520 samples and Ly = 2. In both cases code samples are collected during K = 30 epochs
with M = 8 antenna.

In Figure 3.22 we have an antenna array that now have L; = 3 impinging signals and
once the state-of-the-art CPD-GEVD method and the proposed SECSI method have similar
solutions, the LOS component is obtained using the state-of-the-art CPD-GEVD and the
first factor estimate obtained from the proposed HOSVD SECSI solution. Note that the
HOSVD+FBA+ESPS shows an almost constant error of approximately 0.13 m which is
similar to the error acquired when L; = 2. Note that the the state-of-the-art, DoA/KRF, and
the proposed HOSVD SECSI solution achieve an overall error of approximately 0.078 m
when A7 > 0.17,.. However, when having two NLOS the proposed HOSVD SECSI shows
a larger error when A7 < 0.17. and the CPD-GEVD have a larger error when A7 < 0.27..
This larger error is due to the highly correlated NLOS signals when A7 < 0.27,. which
results in a rank deficient received tensor. Still, we note that the proposed HOSVD SECSI
have, again, a better performance when under highly correlated LOS and NLOS than the
state-of-the-art CPD-GEVD. Furthermore, we observe that the third generation considerably
outperforms the second generation once it has a lower time-delay error and shows a better
performance under highly correlated noise when L; = 3. The better performance can be
seen when comparing Figure 3.14 and Figure 3.22 and notice that the state-of-the-art CPD-
GEVD peak error at A7 < 0.17, goes from approximately 0.2 m to about 0.08 m. The better
performance of the third generation GPS is a attributed to the TMBOC modulation once it
introduces better performance in multipath scenarios and provide a better spectral separation
of the signal.
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Figure 3.22: State-of-the-art techniques and proposed SECSI method simulation with N =
245520 samples and L; = 3. In both cases code samples are collected during K = 30 epochs
with M = 8 antenna.

Additionally, in Figure 3.23 and Figure 3.24 we compare both proposed second and
third generation GPS SECSI based time-delay estimation. Furthermore, we compare the
HOSVD SECSI based method against the HOOI SECSI based method when considering the
first scenario with L; = 2. The LOS component is obtained using the first factor estimate
obtained from the proposed SECSI solution for both HOSVD SECSI and HOOI SECSI based
methods. Note that the HOOI SECSI and HOSVD based solution achieves a maximum error
of about 0.079 m for the second generation GPS and a maximum error of about 0.75 m
for the third generation GPS. We can note that the HOSVD SECSI slightly outperforms the
HOOI SECSI when LOS and NLOS are strongly correlated.
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Figure 3.23: Proposed SECSI simulation with L; = 2 signals both 2nd and 3rd with N =
245520 samples. In both cases code samples are collected during KX = 30 epochs with
M = 8 antenna.

In Figure 3.24 we present the simulation results for the second scenario with L; = 3.
The LOS component is obtained using the first factor estimate obtained from the proposed
SECSI solution for both HOOI SECSI and HOSVD SECSI based methods. The proposed
second generation GPS based solution successfully perform the time-delay estimation by
achieving an error of approximately 0.082 m when A7 < 0.17.. The third generation GPS
with the proposed HOSVD SECSI and the HOOI SECSI method achieves a peak error of
about 0.09 m when A7 < 0.17, once the LOS and NLOS are highly correlated. Therefore,
we show that the proposed HOSVD SECSI and HOOI SECSI based time-delay estimation
have similar performance when using both second and third generation GPS.
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Figure 3.24: Proposed SECSI simulation with L; = 3 signals both 2nd and 3rd with N =
245520 samples. In both cases code samples are collected during X' = 30 epochs with
M = 8 antenna.

3.4.2.3 Antenna array with errors

In this section we present simulation results for the state-of-the-art second generation
GPS and the proposed third generation GPS using the proposed HOSVD SECSI and HOOI
SECSI based time-delay estimation method. In this scenario both state-of-the-art techniques
and SECSI method suppose an antenna array with error with L; = 2 and L; = 3 impinging
signals and a fixed relative delay A7 at 0.57,.. Once we decided to peak the first factor
estimate of CPD-GEVD and SECSI methods, in this section we only present the simulation
results to these case. Lastly, we show that when using the the third generation GPS both
state-of-the-art tensor based methods and the proposed SECSI method outperform the second
generation GPS.

In Figure 3.25 we show the results for the second generation when considering the an-
tenna array with errors and L; = 2 impinging signals. We show that the state-of-the-art
HOSVD+FBA+ESPS and DoA/KRF are sensitive to imperfections added to the antenna
array with an error of about 0.99 m at p = 107! and 3.7 m at p = 10~ respectively. How-
ever, the state-of-the-art CPD-GEVD and the proposed HOSVD SECSI as well as the HOOI
SECSI can maintain similar performance as when using a perfect array.

46



3.5 2nd Gen GPS with HOSVD+FBA+ESPS

®p2nd Gen GPS with CPD-GEVD

¢ Proposed HOSVD 2nd Gen GPS with SECSI
Proposed HOOI 2nd Gen GPS with SECSI

<-2nd Gen GPS with DoA/KrF

2.5 2nd Gen GPS with known A and T

'
i
‘
*
*
-
¢
3t
.
i
.
*
L

Figure 3.25: State-of-the-art techniques and Proposed SECSI simulation with L; = 2 signals
for 2nd generation with N = 245520 samples. In both cases code samples are collected
during K = 30 epochs with M = 8 antenna.

In Figure 3.26 we show the results for the third generation when considering the antenna
array with errors and L4 = 2 impinging signals. Again, even with the third generation the
state-of-the-art HOSVD+FBA+ESPS and DoA/KRF are sensitive to imperfections added.
Actually, the third generation GPS signal do not introduces a significant gain when compared
with the results obtained when using the second generation GPS once it shows an error of
about 0.92 m at p = 10! for HOSVD+FBA+ESPS and 3.69 m at p = 10~ for DoA/KRF.
Furthermore, the state-of-the-art CPD-GEVD and the proposed HOSVD SECSI and HOOI
SECSI are able to perform the time-delay estimation and show similar performance to the

scenario with a perfect array.

In Figure 3.27 we show the results for the second generation when considering the an-
tenna array with errors and L,; = 3 impinging signals. We show that by adding an extra
NLOS component we have an increase in the time-delay estimation when using the state-of-
the-art HOSVD+FBA+ESPS and DoA/KRFE. Moreover, the state-of-the-art CPD-GEVD and
the proposed HOSVD SECSI and HOOI SECSI are robust against array imperfections and
show similar results to the scenario with a perfect array.

In Figure 3.28 we show the results for the third generation when considering the antenna
array with errors and L; = 3 impinging signals. We show that by adding an extra NLOS
component we have an increase in the time-delay estimation when using the state-of-the-art
HOSVD+FBA+ESPS and DoA/KRF. However, we can notice that the addition of the extra
NLOS has a low impact in the time-delay estimation once the HOSVD+FBA+ESPS has an
increase of about 0.1 m and the DoA/KRF maintain the same error. In addition, observe
that the third generation GPS with L; = 3 displays a lower error than the second generation
GPS with L; = 2. Furthermore, the state-of-the-art CPD-GEVD and the proposed HOSVD

47



4 R R e e R
=+=3rd Gen GPS with HOSVD+FBA+ESPS : 'L

®p-3rd Gen GPS with CPD-GEVD

9¢Proposed HOSVD 3rd Gen GPS with SECSI

3 Proposed HOOI 3rd Gen GPS with SECSI 6 ]
— -9-3rd Gen GPS with DoA/KrF 3
S 251 3rd Gen GPS with known A and T' B
N—
M 2 i
=
1.5+ —
~
1 -
05 //
3 b 14 - 4« 2 14 b 414 - & 4 &
[ — S S v o -~ B S T " SSS—— S ———— 4
1076 107° 1074 103 1072 1071
p =P(e > \/2)

Figure 3.26: State-of-the-art techniques and Proposed SECSI simulation with L; = 2 signals
for 3rd Gen with N = 245520 samples. In both cases code samples are collected during
K = 30 epochs with M = 8 antenna.
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Figure 3.27: State-of-the-art techniques and Proposed SECSI simulation with L; = 3 signals
for 2nd Gen with N = 245520 samples. In both cases code samples are collected during
K = 30 epochs with M = 8 antenna.
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Figure 3.28: State-of-the-art techniques and Proposed SECSI simulation with L; = 3 signals
for 3rd with N = 245520 samples. In both cases code samples are collected during K = 30
epochs with A/ = 8 antenna.

SECSI and HOOI SECSI are robust against array imperfections and show similar results to

the scenario with a perfect array.

3.4.2.4 Received Signals with Varying DoA

In this section we present simulation results for the state-of-the-art second generation
GPS and the proposed third generation GPS using the proposed HOSVD SECSI based time-
delay estimation method. We again suppose two scenarios using the state-of-the-art tech-
niques and SECSI method. These two scenarios suppose an antenna array with L; = 2 and
L4 = 3 impinging signals and a fixed relative delay At at 0.57,.. When we have Ly = 2 im-
pinging signals we define the first NLOS as having an angle of arrival ¢nios, = ¢ros + A¢
and when we have L; = 3 signal components we define a second NLOS with an angle of
arrival ¢nLos, = OnLos, + A¢. Still, both scenarios suppose we draw a random angle from
—0.25 rad to 0.25 rad for LOS component and add eleven different angles of arrival to each
NLOS. Therefore, each simulation will vary the NLOS angle of arrival based on the LOS
angle of arrival. In this sense, we can evaluate the minimum DoA difference from LOS to
NLOS. We again use the first factor estimate of CPD-GEVD and SECSI methods, in this
section we only present the simulation results to these case.

In Figure 3.29 we show the results for the second generation when considering we receive
L4 = 2 impinging signals, where we use LOS DoA to compute the NLOS DoA. We show
that the state-of-the-art DoA/KREF is sensitive to the angle of arrival. However, it stabilizes
when we have A¢ = 0.005 x 0.25 rad. Moreover, the state-of-the-art CPD-GEVD and the
proposed HOSVD SECSI have a higher error than DoA/KRF when we have a A¢ = 0x0.25

rad, which in practice means we have only one signal being received. However, the state-of-
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the-art CPD-GEVD and the proposed SECSI outperforms the DoA/KRF method once these
methods stabilizes at A¢ = 0.0025 x 0.25 rad.
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Figure 3.29: State-of-the-art techniques and Proposed SECSI simulation with L; = 2 signals
for 2nd Gen with N = 245520 samples. In both cases code samples are collected during
K = 30 epochs with M = 8 antenna.

In Figure 3.30 we show results for second generation when considering we have L; = 3
impinging signals, where we use LOS DoA to compute the NLOS DoA. We show that the
state-of-the-art DoA/KRF is sensitive to the angle of arrival. However, it stabilizes when
we have A¢ = 0.015 x 0.25 rad. Moreover, the state-of-the-art CPD-GEVD and the pro-
posed HOSVD SECSI have a higher error than DoA/KRF when we have a A¢ = 0 x 0.25
rad, which in practice means we have only one signal being received. However, the state-
of-the-art CPD-GEVD and the proposed SECSI outperforms the DoA/KRF method once
these methods stabilizes at A¢ = 0.025 x 0.25 rad. Still, we see that the proposed SECSI
outperforms the CPD-GEVD technique when we have a DoA difference A¢p = 0 x 0.25 .
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Figure 3.30: State-of-the-art techniques and Proposed SECSI simulation with L; = 3 signals
for 2nd Gen with N = 245520 samples. In both cases code samples are collected during
K = 30 epochs with M = 8 antenna.

In Figure 3.31 we show results for third generation when considering we have L; = 2
impinging signals. Again we show that the state-of-the-art DoA/KREF is sensitive to the
angle of arrival. However, it stabilizes when we have A¢ = 0.005 x 0.25 rad. Moreover,
the state-of-the-art CPD-GEVD and the proposed HOSVD SECSI have a higher error than
DoA/KRF when we have a A¢ = 0 x 0.25 rad, which in practice means we have only one

signal being received. Furthermore, observe that the third generation GPS slightly improves
the time-delay estimation.

3rd Gen GPS (L1C code + TMBOC) with HOSVD+FBA+ESPS
41 p3rd Gen GPS (L1C code + TMBOC) with CPD-GEVD
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Figure 3.31: State-of-the-art techniques and Proposed SECSI simulation with L; = 2 signals
for 2nd Gen with N = 245520 samples. In both cases code samples are collected during
K = 30 epochs with M = 8 antenna.
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In Figure 3.32 we show results for third generation when considering we have L; = 3
impinging signals. Note that the state-of-the-art DoA/KRF is sensitive to the angle of arrival.
However, it stabilizes when we have A¢ = 0.015 x 0.25 rad. Moreover, the state-of-the-art
CPD-GEVD and the proposed HOSVD SECSI have a higher error than DoA/KRF when we
have a A¢ = 0 x 0.25 rad, which in practice means we have only one signal being received.
Therefore, observe that the proposed SECSI improves the time-delay estimation. Further-
more, note that the third generation GPS display a lower error than its second generation

GPS counterpart.
7
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Figure 3.32: State-of-the-art techniques and Proposed SECSI simulation with L; = 3 signals
for 2nd Gen with N = 245520 samples. In both cases code samples are collected during
K = 30 epochs with M = 8 antenna.
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Chapter 4
Conclusion

Hereby we studied both state-of-the-art Higher Order Singular Value Decomposition
(HOSVD), Canonical Polyadic Decomposition - Generalized Eigenvalue Decomposition
(CPD-GEVD), and proposed to use the Semi-algebraic framework for approximate Canoni-
cal Polyadic decomposition via simultaneous matrix diagonalization (SECSI), which outper-
forms the current state-of-the-art-techniques for multipath mitigation and time-delay estima-
tion. In addition, both state-of-the-art method and the proposed method showed compatibil-
ity with the C/A signals as well as with the L1C signaling combined with TMBOC.

Furthermore, we explored all possible factor estimates yielded by a SECSI Decompo-
sition with Higher Order Singular Value Decomposition (HOSVD) low-rank approximation
and Higher Order Orthogonal Iteration (HOOI) low-rank approximation by performing 2000
MC simulations using two different scenarios. The first scenario considered an antenna array
receiving L, = 2 signals and showed that in this case the first and third factor estimated by
the SECSI with HOSVD and HOOI can be used to perform time-delay estimation. Yet, we
denote that SECSI with HOSVD yielded similar result to the state-of-the-art CPD-GEVD
when combined with both second and third generation GPS. Still, we used the same sce-
nario however we substituted the HOSVD low-rank approximation by the HOOI low-rank
approximation technique combined with the SECSI decomposition. This time, we observed
that when using the HOOI method we still have a similar performance with the state-of-the-
art CPD-GEVD. Additionally, we showed that the SECSI with HOSVD or HOOI have a
better performance when the LOS and NLOS are strongly correlated.

Additionally to the first scenario, we performed 2000 MC with an antenna array receiving
L4 = 3 signals from both second and third generation GPS. Again, we used the HOOI and
HOSVD methods combined with the SECSI decomposition. In this scenario we showed that
the second generation GPS has a similar performance when combined with the SECSI with
HOSVD or HOOI method. Furthermore, we showed that the SECSI with HOSVD and HOOI
yield a smaller error when combined with the third generation GPS. Furthermore, we showed
that SECSI with HOSVD or HOOI have a better performance with with third generation GPS
under strongly correlated LOS and NLOS signals. Additionally, we showed state-of-the-art
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CPD-GEVD combined with the third generation GPS considerably outperforms the second
generation GPS when having strongly correlated signals.

Finally, we performed 2000 MC considering an antenna array with imperfections and re-
ceiving Ly = 2 and L, = 3 signals. Therefore, we show that the state-of-the-art CPD-GEVD
and the proposed HOSVD SECSI and HOOI SECSI are robust against antenna array imper-
fections and have similar performance when compared with the simulations using a perfect
array. Moreover, we show that the third generation GPS scheme with L; = 3 impinging

signals has a better performance than the second generation GPS scheme with L; = 2.

4.1 Future Works

We have shown in our simulations that the CPD-GEVD has a poor performance when
the signals are strongly correlate i.e. when A7 <= 0.17,.. However, [9] shows that in
order to CPD-GEVD works at least two factor matrices should be full-rank. Yet, in this
work we needed to guarantee that the three factor matrices I', (CQ,,), and A were full-rank.
Therefore, if we had a rank deficient A the CPD-GEVD would eventually fail. Thus, we
should further investigate the CPD-GEVD method in order to identify when and why this

decomposition fails even if we guarantee that at least two factor matrices are full-rank

Moreover, herein we overviewed the state-of-the-art tensor based time-delay estimation
methods and proposed a new tensor based method. Although, there are several tensor decom-
position methods that can be used and may bring further improvements in different scenarios.
Therefore, we should investigate new tensor based decomposition and compare it against the
methods shown in this thesis. Furthermore, we should create and perform various simula-

tions using different scenarios.
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Appendix A

Tensor Calculus

A.1 Notation

Scalar are represented by italic letters (a, b, A, B), vector by lowercase bold letters (a,
b), matrices by uppercase bold letters (A, B), and tensors by uppercase bold calligraphic
letters (A, B).

The superscripts T, *, 1, =1 and * denote the transpose, conjugate, conjugate transpose

(Hermitian), inverse of a matrix, and pseudo-inverse of a matrix, respectively.

(CMXN

For a matrix A € , the element in the m-th row and n-th column is denoted by

Qpn» its m-th row is denoted by (A),, ., and its n-th column is denoted by (A).,. The

2-norm of a matrix A is denoted by ||A||s.

For a matrix A € CM*Y with M < N, the diag{-} operator extracts the diagonal:

a2 2

diag{A} = | (A.1)

anr M

The n-th mode unfolding of tensor .A is denoted as [A](n). The n-mode product between
tensor .4 and a matrix B is represented as A x,, B. The N-th order identity tensor of size
L x ---x Lisdenoted by Zy .

For two N-th order tensor A and B, both of size I; x Iy x --- x Iy, composed of

individual scalar elementes a;, ;, . i, and b;, ;, . ., respectively, its inner product is denoted

.....
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by (A, B), and is defined as

I I

Iy
(A, B) = Z Z T Z iy i, in Diy iz eooing - (A.2)

i1=lis=1  in=1

The norm of a tensor A, denoted by ||.A||F, is the Frobenius norm described as

I AllF = V(A A) (A.3)

A.2 Matrix Calculus

A.2.1 Kronecker product

Given two matrices A € C*/ and B € CK*! their Kronecker product, denote by ®, is
denote as:

CLLlB CLLJB
ApB2| @ .. 1 | eCHE (A.4)

CLLlB e CLLJB

A.2.2 Khatri-Rao product

Given two matrices A € C!*® and B € CE*¥ their Khatri-Rao product, denote by ¢, is

denote as:

AoB2 [(A) 1 ®@B) - (A)r® (B).g| € C*E, (A.5)
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A.2.3 Outer product

The outer product is a special case of the Kronecker product where the outer product of
two vectors a € C! and b € C” results in a matrix C € C/*/

aj
aob=ab' = |: [bl bJ:|
ar
(A.6)
a1b1 tee (lle
= : - : —CeCix/
arby -+ arby

thus the elements of C satisfy ¢;; = a;b;,i € 1,...,1,5€1,...,J.

Once the outer product can be extended into other dimensions, an outer product of three
vectors a € C!, b € C’, and ¢ € CX results in a third-order tensor X € C/*/*K

aoboc=2X, (A.7)

andxijk:aibjck,ié1,...,],j€1,...,J,k:€1,...,K.

A.24 The vec{-} operator

The vec{-} operator reshapes a matrix into a vector in such a manner that its vectors are

stacked. For instance, for a matrix A € CM*xN

vec{A} =vec{[A; -+ Apn]}
A
- 31 c CMN, (A8
Ay

An importante property of vec{-} operator is that for X = ABC with A € C'*/, a
diagonal matrix B € C’/*/, and C € C/*¥

vec{X} = vec{ABC}

A9
= (CTo A) diag{B} € C'¥. (A2
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A.2.5 The unvec {-} operator

The unvec - operator reshapes a vector into a matrix of determined size. Thus, for a
vectora = [al,... ak] € CM¥V

ax
unvec {a} = unvec :
MxN MxN (Al())
aN]
[ e ay]

A.3 Tensor Calculus

A.3.1 Tensors

Vectors are generalizations of scalars, and matrices are generalizations of vectors, tensors
are generalizations of matrices. However, matrices are limited to two dimensions while
tensors can have any number of dimensions. Therefore, we apply the terms scalar, vector
and matrix to 0-, 1-, and 2-dimensional structures. Thus, we reserve the term tensor to
structures with 3 or more dimensions.

In (A.11) we examplify a scalar I € C, a vector i € C3, and an identity matrix I € C3*3

1 1 01
I1=1, 1= 101, I=(0 1 0f, (A.11)
1 1 01
while in (A.12) a third order tensor Z3 3 € C3*3%3
00O
000
0 01
0 0O
I3 = 01 0
000
1 00
0 0O
0 00
(A.12)

Once higher-order tensors can be created, visualization becomes difficult. A N-

dimensional tensor A € C/1*/2XXIN can be seen in "slices" by maintaining its first two
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indexes fixed while varying the remaining /N — 2 indexes. For instance, by changing the
third index of the third-order identity tensor from (A.12) while fixing the first and second
indexes we have

(Z33)..10 = (Zs3)..2= (Zs3)..3= (A.13)

O O =
o O O
o O O
o O O
O = O
o O O
o O O
o O O
_— O O

A.3.2 n-mode unfolding

Once tensor representation can be complex to understand, the n-mode unfolding provides
a way to represent a tensor as a matrix. This is done by fixing the n-th index while varying
the other indexes in reverse order, concatenating these vectors along the n 4 1-th dimension,
then permuting the order of the dimensions from the n-th to the n — 1-th dimensions. For
instance, for a third-order tensor A € C?*2X*2 we can write

[1 2]
3 4
(A.14)

1 5 2 6]
Al = , A.15
Al 3 7 4 8] (A.15)
1 3 5 7]
— A.16
[Al2) 2 4 6 8_’ (A.16)
[1 2 3 4]
Al s = . A17
[Al(3) 5 6 7 5| ( )

For a N-dimensional tensor, A € C'**I¥ jts n-mode unfolding, [A](,), will be of
size I, X 1,4, 1,.
A.3.3 n-mode product

The n-mode product permits the calculation of the product of a matrix and a ten-
sor by utilizing the n-mode unfolding. For instance, for an N-dimensional tensor A €

Clo¢xInxxIN and a matrix B € CM*!», the n-mode product is then denoted as A x,, B.
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Therefore, we have the matrix product B - [A](,) folded back into a tensor of size
i <o xMx - xIy.

A.3.4 PARAFAC model

The PARAFAC model assumes that a given N-dimensional tensor X € Cl>xInxxIn
can be decomposed into a summation of a minimum number of rank-one tensors X’ @ =
1,...,L.

x0 —
1 (=1

agl) 0---0 aéN) (A.18)

?

L
X =
/=

Mh

where L is the model order of the noiseless tensor.

Through defining factor matrices A = [agi), cee agi)], the Equation (A.18) can be de-
noted in terms of the n-mode product of an N-dimensional identity tensor Zy ; € RZ*xE

and loading matrices A ()

X=Tynpx1 AV A@ oy AW, (A.19)

Moreover, a useful property for a third-order tensor A = Ly 35 X AW x, AP X3 AB) ¢
Chxl2xls with AW € Chxd A ¢ C2%4 and A®) € C*9, its unfolding are:

(Al = AD(AD o ABHT ¢ clixlels, (A.20)
[Alg) = AD(A® 6 AT ¢ Cl2xtsln, (A.21)
(Al = AB AW o APHT ¢ claxhlz, (A.22)

A.3.5 Higher-Order SVD

The Singular Value Decomposition (SVD) decomposes a given matrix X € C+*!2 into

the following fashion:

X =UxVH (A.23)

where U € C/**11 is a unitary matrix holding the left-hand singular vectors and its columns
are related to the column space of X, ¥ € C**%2 is a matrix containing the singular values
01,05, - -, Omin (I I) i0 its diagonal, and V € C2*'2 is a unitary matrix holding the right-

hand singular vectors and its rows are related to the row space of X.

In order to generalize the SVD to an /N-th order tensor the n-mode product previously
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described can be applied

X = UxVH
=¥ x, Ux; V* (A.24)
=3 x; UY x, U,

where UV = U, and U® = V*. Also, 3 have the properties of pseudodiogonality, only
its diagonal is non-zero, and ordering, where oy > 03 > -+ > Owin(1,,1,) = 0. Therefore,
we can generalize the SVD to an N-th order tensor X € Iy X [x X --- X Iy in terms of an

n-mode product

X =R x; UL x, UD ... xy UM, (A.25)

where the tensor R € CH*22x-xIN ig the core tensor and has the property of all-
orthogonality, which mean that for two subtensors R.;, -, and R;, —g constructed by keeping

the index 1i,, fixed, their inner product (R, —., R;,—3) = 0 for a # (3, and ordering.

Finally, the calculation of the HOSVD can be achieved by finding each unitary left singu-

lar vector matrix U™ from its respective n-mode unfolding by applying the SVD to [X J(n)-
Then, the core tensor R can be computed by applying (A.25)

R=Xx,UD x, UP ... x,y UM (A.26)

A.3.6 Dual-symmetric tensors

A 2N-th order tensor X € Iy x --- X Iy X Iyyy X ... Iy is dual-symmetric if and only
if there can be a permutation of indexes P, resulting in a tensor X p which follows the
particular PARAFAC Decomposition [16]

Xp=Tong x1 Aoy AT (AMY sy (A, (A.27)

The dual-symmetric decomposition is useful in signal processing once every correlation
tensor follows this decomposition [38]. In order to harness the relation in (A.27), a particular
unfolding known as Hermitian-symmetric unfolding [11] applied to a dual-simmetric tensor.

The Hermitian-simmetric unfolding of X € C/t**/2v Xy is defined as:

Xy = unvec {vec{X}} € C**¥ (A.28)
KxK

with K = [,...,Iy. Therefore, the unfolding can be represented in terms of its factor
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matrices as:

Xg=(AMo...0 A AWM o... 0 ANNHH (A.29)
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ATTACHMENT

In the following attachments we describe previous works that the author had done be-
fore working with GNSS time-delay estimation. Firstly, the Attachment A briefly describes
the Double-Arc positioner and the software created to operate the device. Finally, Attach-
ment B presents our endeavor on mice’s brain signal processing. Additionally to the work
presented in the Attachment section, we also proposed a MIMO architecture for smartbands
communication for postoperative patient care in [REF1].
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ATTACHMENT A

The Double-Arc Positioner

Once the number of unmanned aerial vehicles (UAV), commonly known as drone, has
been increasing there is a need to study and develop technologies capable of identifying these
devices. Such technologies can be used by public organisms and can be crucial on decision

making.

Therefore, the Double-Arc positioner created by the Ilmenau University of Technology
(TU Ilmenau) was idealized to analyze radar cross section signals. Thus this device would
be used to measure how a given material or object reflect radar signals. The Double-Arc
positioner herein mentioned has 4 nodes as shown in Figure A.1. Each node is equipped
with a signal transmitter and a servomotor to move the nodes 1, 2, and 3 in a semicircle.
Furthermore, the fourth node is placed in the center of the device and is used to move the
object on its on axis. Thus, both object and signal transmitters can be moved at same time
while the receivers collect the reflected signals. Thus, this device can collect real data of real
objects in order to study reflection behavior. Therefore, the Double-Arc may aid researchers
on developing more robust and accurate radar cross section processing techniques. Such
techniques may be used by a variety of institutions such as military, for monitoring airspace,
and airports and power stations, for allowing automation of system capable of taken UAV
down. In the case of airports it is crucial to have accurate techniques for identifying UAV
once these devices may put aircraft security at risk.
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Figure A.1: Double-Arc positioner illustration

Figure A.2 shows the Double-Arc positioner in its final stage with the servomotors at-
tached to it however without the transmitters and the limit switches. These limit switches
were used to guarantee that the servomotors do not roam out of bounds. The transmitters
would impinge radar signals over the device positioned in node 4.

Figure A.2: Double-Arc positioner final stage
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A.1 Software optimization

Even though the Double-Arc positioner structure was basically done, it was still nec-
essary to develop a software that could control the servomotors. In order to move the ser-
vomotors, a C++ code previously developed to a different project was need to be adapted.

Additionally, a user interface to send commands to the servomotor was required.

The C++ code was developed to a different project and needed to be embedded to a
BeagleBone Black, and adapted to use the CANOpenSocket. The CANOpenSocket is a
library that implements the CAN protocol and allows communication through CAN networks
in Linux devices. As shown in Figure A.3 various computers should be able to connect to
the BeagleBone. Thus, the C++ code generate a SOAP server which allows communication
between the software embedded in the BeagleBone Black via TCP/IP and any other device.
Then, the BeagleBone receive the messages received through the SOAP server and forward
then through the CAN network to the servomotor controller. Finally, the servomotor operates
the servomotors by applying the necessary rotation to move the servomotors.

Figure A.3: Double-Arc controller scheme

Once a user interface was required to control the servomotor and all communication were
given over the local network, it was firstly developed a PHP code to allow communication
between the SOAP server and the user interface. This way, we would allow access to the
BeagleBone from anywhere inside the TU Ilmenau network. In order to create the web
user interface in in Figure A.4, we used common technologies such HTML, JavaScript and
CSS. This interface allowed communication to the BeagleBone by sending commands to
the SOAP server. The web user interface implemented simple commands such turn on and
shutdown of servomotors. Furthermore, the interface is allowed to send commands to operate
the servomotors by sending the position and speed of the servomotor. Therefore, the web user
interface simplified command sending procedure by discarding command line interfaces.
Besides of sending commands, the interface also displayed the servomotors’ actual position
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and the messages sent through the CAN network.

ARC2 Turn on Shut down Status @

Node 1 Node Position

Send 1

Send

Node 2 3
(&) ¢
Messages
Node 3
Node 4
=

Send to all Nodes

Figure A.4: Double-Arc web user interface
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ATTACHMENT B

Intracranial Signals

B.1 Introduction

By experimenting with animals, scientists can study neural mechanisms and circuits as-
sociated with processing and storage of information in the brain. The resulting knowledge
arising from such experiments can greatly assist in the treatment of human brain diseases
and further be used to understand how brain processes information. Thus, Local Field Po-
tentials (LFP) recordings were introduced in the 1940s [REF2, REF3, REF4]. The LFP
are electric potentials recorded from the extracellular space of brain tissue. After its intro-
duction in 1952 [REF5], the Current Source Density (CSD) became a popular method to
analyze LFPs [REF6]. Seldomly, Blind Source Separation (BSS) schemes are applied to
decompose LFPs or the derived CSDs into their original informative sources. The literature
has shown the application of the techniques: Principle Component Analysis (PCA) [REF7],
Independent Component Analysis (ICA) [REF8], Spatiotemporal Independent Component
Analysis (stICA) [REF9], and more recently the use of a real-valued Parallel Factor Analysis
(PARAFAC) approximation [REF10].

With the advent of multilinear electrodes to record intracranial activity, voltage record-
ings of contacts across cortex laminae can be used to verify which cortex layers are activated
by different stimuli. In addition, BSS schemes can support the identification of specific
activation groups for given stimuli. Thus, BSS techniques can assist the analysis of such
signals. In order to verify the possibility to use multi-way techniques [REF10] proposed an
approximation of the real-valued PARAFAC for complex-valued data. In this sense, we pro-
pose an improvement in the model created by [REF10] by using Time-Scale Transformation
(Wavelets) to study one dimensional cortical recordings. As discussed in [REF11], wavelets
have advantages over traditional linear Time-Frequency Analysis (TFA), shuch Short-Time
Fourir Transform (STFT), because of its flexibility which allows us to model each wavelet
according to signal propoerties. Moreover, neuroeletric signals are highly non-stationary,
which makes STFT unsuitable to decompose intracranial signal. This way, we propose

to use Continuous Wavelet Transform (CWT) to perform TFA over recorded intracranial
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recordings. Thus, we create an artifial dimension by decomposing the time domain into time
and scale, which allows us to perform multi-way analysis once we can stack each time and

scale matrix of each electrode.

This paper is organized as follows. In Section B.2, we present biological concepts neces-
sary to understand the origin of the signals recorded by electrodes in the extracellular space
of brain tissue. In Section B.3, we show how the data under consideration can be mod-
eled as in the standard BSS problem. In Section B.4, describes Time-Scale Representation
(Wavelets) concepts. In Section B.5, we describe the proposed approximation of the real-
valued PARAFAC for complex-valued data. In Section B.6, we present the results obtained
obtained using the stICA and our PARAFAC, and in Section B.7, the conclusions are drawn.

B.2 Biological Concepts

Generally in cortical Local Field Potential (LFP) recordings, linearly spaced electrodes
are inserted perpendicularly to the cortical surface. Figure B.1 shows the brain area of a

mouse studied in this work, the somatosensory cortex.

Somatosensory Cortex

i
4 whiie
/ d W maticr

Figure B.1: To the left, perspective view of the brain of a mouse, with the shaded area
corresponding to the somatosensory cortex. In the middle, cross section of this same brain.
To the right, part of the somatosensory cortex is zoomed, showing a probe with several
electrodes inserted for LFP recordings.

The right part of B.1 shows that the neocortex of the mammalian is constituted of six
layers, each with specific neuronal population cell bodies. The cells that most contribute to
the signal recorded are pyramidal cells [REF12], which receive this name due to their trian-
gular shaped bodies. These cells have elongated projections that receive information from
other neurons called apical dendrites, as opposed to other projections with the same function
that are not elongated, the basal dendrites. In this sense, the recorded signals represent a su-
perposition of signals originated from individual populations of neurons. Such populations

belongs to a similar location and extension.

The Excitatory Postsynaptic Potentials (EPSP) and the Inhibitory Postsynaptic Potentials
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(IPSP) occur along the neurons [REF12, REF13], and the connection between two neurons
is the synapse. In the EPSP, positive ions enter the cell through cell membrane in the loca-
tion of the excitatory synapse, while in IPSP negative ions enter, or positive ions leave, the
cell through cell membrane in the location of the inhibitory synapse [REF13]. Therefore, a
current sink is created in the location of an excitatory synapse, which is compensated by a
distributed current source along the soma dendritic membrane, and a current source is cre-
ated at the location of an inhibitory synapse, which is compensated by a distributed current
sink along the soma dendritic membrane. Since the conventional current flows out the ex-
tracellular space in the location of the current sink, which can be thought as positive charge
leaving the extracellular space, the extracellular potential at this location becomes more neg-
ative. Since the conventional current flows in the extracellular space in the location of the
current source, which can be thought as positive charge entering the extracellular space, the
extracellular potential at this location becomes more positive. The superposition of similarly
distributed currents in different neurons of the same population at the same time results in a
higher power signal [REF14].

In the experiment under consideration, our goal is to analyze the evoked potentials (EPs).
Since the EPs signals have a very small signal to noise ratio (SNR), several realizations of the
same event with stimulus should be repeated and the EPs signals are averaged. For instance,
suppose an experimental setting in which a rat received the same sensory stimulus every 7
seconds in a single recording section. Although some criticism can be made, to isolate the
evoked potential in one electrode, the continuously recorded data from an electrode has to be
subdivided into 7, epochs. Then, all these windows of the signals are averaged as illustrated
in Figure B.2.
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Figure B.2: Experimental setting in which a mouse receives sensory stimulus every few
seconds. To isolate the evoked potential in one electrode, one must average over several
realizations of the stimulus. This procedure drastically increases the signal to noise ratio
compared to a single realization.

In order to estimate the net volume density of current entering or leaving the extracel-
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lular space at different locations, Current Source Density (CSD) analysis is used [REF15].
Consider an arbitrarily small volume of the brain, located at point (x, y, z), where z, y and
z are the cartesian coordinates. The net transmembrane current contributed by all cellular
elements in this volume, or the Current Source Density (CSD), is related to the extracellu-
lar field potential ¢(z, y, 2) by the Poisson equation i(z, y, 2) = —oV?¢(z,y, 2), where the
conductivity o is considered constant and the same in all directions and V2 is the laplacian
operator [REF16] [REF12]. It is generally assumed that most variation of neural activity is
in the vertical direction, due to the laminar structure of the cortex [REF17] [REF12]. There-
fore, the CSD can be estimated by LFP recordings from linearly spaced electrodes inserted
perpendicularly to the cortical surface as
b(z +€) — 20(2) + 6= — ©)

i(2) = —0 5 : (B.1)
€

where € is the spacing between vertical electrodes.

B.3 Data Model

For the sake of simplification, current sources and sinks are referred as current sources,
with a sink being a source with negative value. As [REF18] described, we neglect inductive
effects and, for a fixed time interval, the potential at sensor p at instant n is due to () groups

of synchronized point current sources, called aggregates,

Q
zp(n) = Z hpgSq(n) + vp(n), (B.2)
q=1

where s,(n) is the time course common to the point current sources of the gth aggregate, h,,
is a weight that depends on the magnitudes of the point current sources belonging to the gth
aggregate and their location with respect to the pth sensor, and v,(n) is the noise at sensor p

at instant n.

We highlight that the synchronous point current sources of the gth aggregate do not need
to be from the same population. According to [REF7], they can be from spatially distinct
neuron populations of separate cortical laminae if their transmembrane currents substantially

covary over time.

With a change in notation, Equation (B.2) can be rewritten as

Q
Ton = PpgSan + Uy, (B.3)

g=1
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withp=1,..., Pand n =1, ..., N, which allows for the representation

Q
X=> hs,+V, (B.4)
=1
where X is a P x N matrix with elements z,,, h, is a P x 1 column vector with elements
hpgs sq1s a1l x N row vector with elements s,,, and V is a P x N matrix with elements v,,.
This is equivalent to [REF19]

X =HS+V, (B.5)

where x,, are the rows of the P x N matrix X, h, are the columns of the P x () matrix H
and s, are the rows of the () x N matrix S. Our objective is to estimate vectors h, and s, so
that we can plot the CSD figure for each aggregate ¢ separately. In this work, whenever CSD
analysis is performed before BSS, it will be considered as a preprocessing step, i.e. high pass
filtering of the columns of X.

B.4 Time-Scale Representation
B.4.1 Continuous Wavelet Transform

B.5 Proposed technique

As previously cited, Wavelets can be chosen and modeled according to the signal of
interest. Then, hereby, we propose to use the Meyer Wavelet. The Meyer Wavelet is the
mother wavelet that better matches EEG signals [REF11]. The Meyer scale function and
Meyer wavelet are defined in the frequency domain as shown in Equation v [?]

0 if <0
vz)=<z if 0<zx<1 (B.6)
1 if z>1

Meyer scale function:

L if wg%ﬂ

Var
O(w) = \/%cos(gv(g—l;’ —-1) if F<w<T (B.7)

0 otherwise
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The wavelet’s spectrum is given as follows

1 (7, 3wl 2m . o 4
—sin(Zv(=2= —1))exp2 1 T || <E

V(w) = q Vo ¢ (32’; ) b ,f 2o ol < ’ (B.8)
Tz cos(zu(Sr —1))exp= if F<|w| <5

Where W is a Meyer wavelet in the frequency domain. In order to trasform Equation
(B.8) to time domain, Inverse Fourier Transform should be performed. Thus we have the

wavelet in the following fashion.

8w

Kl
W(t) = 2/ @(%)@(w —91) cos(w(t — 0.5))dw (B.9)
27
3
In order to model the Meyer wavelet it was defined a scale of size s = 256 with an
effective support approximately between [-28, 28]. The effective support was defined as
follows:

es — max(% SO IFLSm)}), (B.10)

where N is the number of signals, F is the Fourier Transform, and S is the signal matrix,

and es is the calculated effective support.

Then, after using the modeled Meyer Wavelet to perform the CWT we can rewrite the

Equation B.2 in the following tensor fashion

Q
Ypik = Z hpqdiqgkq + Apik, (Bl 1)

g=1
where y,;1, 1s the tensor gotten after performing CWT on the signal X at tensor p evalu-
ated at time ¢ and frequency £, g, is the gth component frequency domain representation,
whose amplitude is temporally modulated by the coefficients d;;, and whose resulting time-
frequency representation is scaled by ﬁpq for sensor p. In addition, ay;; is the time-scale

representation of the noise at sensor p evaluated at time ¢ and frequency k.

Finally, each rank one tensor is then converted back to the time domain by applying the
Inverse Continuous Wavelet Transform (ICWT).

B.6 Results

In the experiment a mouse received the same sensory stimulus every 7 = 7 seconds
while Local Field Potentials were recorded from its somatosensory cortex with 32 electrodes
spaced ¢ = 50 micrometers from each other perpendicularly to the cortical surface. The sig-
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nals were acquired using a sampling rate of 40 kHz and a referential montage. The proposed
approach applied either stICA and PARAFAC after performing CSD analysis as a prepro-
cessing. However, the approach previously proposed in [REF10] considered the voltage

time courses from -0.005s to 0.095s.

In the previsou work [REF10], the Figure B.3, four CSD analyses are depicted. The first
one corresponds to the original signals, i.e. without applying any blind source separation
approach. The second and third CSD analyses correspond to the first and second compo-
nents with greatest power obtained via the stICA based on [REF9]. Finally, the fourth CSD
analysis corresponds to the sum of the two components obtained via stICA. Yet from the pre-
vious work, STFT was applied to obtain a three way complex-valued data composed of the
electrodes by time by frequency dimensions. Figure B.4 depicts the original signal, the two
components with greatest power and the recovered signal by adding the two components.
Note that the results obtained in Figure B.4 are consistent with the ones obtained in Figure
B.3 using stICA.

Original 1st 2nd Recovered
comp. comp.
0.06
- - 0.04
i . o
o e .
_— _ — 10.02
i!p
10
| 1-0.02
\ - |
} -0.04
| - o e

0 4080 0 4080 0 4080 0 40 80
time (ms) time (ms) time (ms) time (ms)

Figure B.3: Four CSD analyses: first CSD analysis of the original measurements, second
CSD analysis of the first component with greatest power obtained with stICA, third CSD
analysis of the second component with greatest power obtained with stICA, and fourth CSD
analysis with the sum of the two components obtained with stICA

Therefore, the herein proposed approach was performed by blindly separating two and
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Figure B.4: Four CSD analyses: first CSD analysis of the original measurements, second
CSD analysis of the first component with greatest power, third CSD analysis of the second
component with greatest power, and fourth CSD analysis with the sum of the two compo-
nents obtained with real-valued PARAFAC approximation

four components, respectively. Firstly, in Figure B.5 we show four CSD anasyses. The first
one depicts the original signal, the second and third CSD analyses correspond to the first and
second components with greatest power obtained via the proposed technique. Note that by
comparing with Figure B.3 our proposed approach fails to separate the current sources and
sinks and also shows a worst performance than the method proposed in [REF10]. Similarly,
in Figure B.6, we performed blind separation of four components. The first CSD analyses
depicts the original signal, the second, third, fourth and fifth CSD correspond to first, second,
third, fourth, and fifth components obtained via the proposed technique. Again, observe that
by comparing with Figure B.3 our proposed blind separation method using CWT fails to
separate the current sources and sinks.
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Figure B.5: Four CSD analyses using the proposed approach: first CSD analysis of the
original measurements, second CSD analysis of the first component with greatest power,
second CSD analysis of the second component with greatest power, and third CSD analysis
with the sum of the two components obtained from the real-valued PARAFAC approximation
with CWT
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Figure B.6: Six CSD analyses using the proposed approach: first CSD analysis of the origi-
nal measurements, second CSD analysis of the first component with greatest power, second
CSD analysis of the second component with greatest power, third CSD analysis of the sec-
ond component with greatest power, fourth CSD analysis of the second component with
greatest power, fifth CSD analysis of the second component with greatest power, and sixth
CSD analysis with the sum of the two components obtained from the real-valued PARAFAC
approximation with CWT
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B.7 Conclusion

In this work, we propose the analysis of the somatosensory cortex signals of a mouse by
applying BSS schemes. We also propose the use of multi-way analysis techniques to study
recordings from a one dimensional grid of electrodes. For that, besides electrodes and time,
another dimension is necessary. This can be achieved by means of Time-Scale Represen-
tation techniques. Thus, we proposed to use the Continuous Wavelet Transform (CWT) in
order to create a virtual dimension. The CWT was performed in order to allow the use of
the PARAFAC decomposition into the measured data. However, through performing blind
separation with different numbers of extracted components, we show that the CWT approach
herein proposed is not compotible with the used PARAFAC decomposition approach.
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