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Resumo

Em 1963, e Lewis provaram que se a forma diagonal F (x) = a1x
d
1 + · · ·+ aNx

d
N com

coeficientes em Qp, o corpo dos números p-ádicos, satisfizer N > d2, então existe solução

não trivial para F (x) = 0. Muito estudo tem sido realizado a fim de generalizar esse

resultado para extensões finitas de Qp. Aqui, estudamos o caso F (x) ∈ K[x] com K

sendo a extensão quadrática não ramificada de Q2 e provamos dois resultados: Se d não

é potência de 2, então N > d2 garante a existência de solução não trivial para F (x) = 0.

Além disso, se d = 6, N = 29 garante existência de solução não trivial para F (x) = 0.

Palavras-chave: Formas diagonais ;Extensões não ramificadas; Conjectura de Artin;

Corpos locais; Corpos p-ádicos.



Abstract

In 1963, Davenport and Lewis proved that if the diagonal form F (x) = a1x
d
1 + · · ·+

aNx
d
N with coefficients in Qp, the field of p-adic numbers, satisfies N > d2, then there

exists non-trivial solution for F (x) = 0. Since then, there has been a lot of study in order

to generalize this result to finite extensions of Qp. Here, we study the case F (x) ∈ K[x]

where K is the quadratic unramified extension of Q2 and we prove two results: if d is not

a power of 2 , then N > d2 guarantees non-trivial solution for F (x) = 0. Furthermore, if

d = 6, N = 29 guarantees non-trivial solution for F (x) = 0.

Keywords: Diagonal forms; Unramified extensions; Artin’s conjecture; Local fields;

p-adic fields.
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Introduction

In 1951, in his doctoral thesis [8], Serge Lang defined the Ci property of fields: A

field F satisfies the Ci property if any homogeneous form f ∈ F [x1, · · · , xN ] of degree

d in N > di variables admits non-trivial zero. In 1952, Lang [9] showed that Fq((X)),

the field of meromorphic series over a finite field, satisfies the C2 property. The austrian

mathematician Emil Artin conjectured that if F is a local field, then it satisfies the C2

property. However, in 1966, Guy Terjanian presented a homogeneous form with coeffici-

ents in Q2, the field of 2-adic numbers, with degree 4 in 18 variables (> 42 + 1) having no

non-trivial zero in Q2 (see [14]). On the other side, one year before Terjanian’s result, Ax

and Kochen [2] proved that given a finite extension F/Qp of degree n, and d ∈ N, there

exists a natural number p(d, n) such that F satisfies the C2 property provided p > p(d, n).

Although Terjanian’s counterexample invalidates Artin’s conjecture, an interesting

fact occurs: until now the conjecture remains opened if we include the hypothesis that

the form is diagonal. In fact, great results have been achieved on this direction. In 1963,

Davenport and Lewis [6] proved:

Theorem. Let p be a prime number and let

f = a1x
d
1 + · · ·+ aNx

d
N

where ai ∈ Qp, i = 1, · · · , N . If N > d2, then f admits non-trivial zero. Moreover, for

d = p− 1, there exists forms in d2 variables with no non-trivial zero.

So, Davenport and Lewis proved Artin’s conjecture for diagonal forms over Qp. Since

then, a lot of research has been made in order to generalize this result to finite extensions
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of Qp.

Let K be a finite extension of Qp. Let Γ(K, d) denote the smallest positive integer

such that if a diagonal form of degree d and coefficients in K has N ≥ Γ(K, d) variables,

then it admits non-trivial zero. With this notation, the result of Davenport and Lewis

can be expressed as Γ(Qp, d) ≤ d2 + 1, and if d = p− 1 we have Γ(Qp, d) = d2 + 1.

In 1964, Birch [3] proved that if K is a finite extension of Qp with inertial degree f

and d = pτ ·m with (m, p) = 1, then

Γ(K, d) ≤ (2τ + 3)d(δ2d)

where δ = (d, pf − 1).

In 1987, Alemu [1] proved that if K is a finite extension of Qp of degree n and p ≥ 3,

we have

Γ(K, d) ≤ max {3nd2 − nd+ 1, 2d3 − d2}

and if p = 2

Γ(K, d) ≤ 4nd2 − nd+ 1.

In 2006, Skinner [12] proved that if K is a finite extension of Qp and d = pτ ·m with

(m, p) = 1, then

Γ(K, d) ≤ d(p3τm2)2τ+1 + 1.

This result has the advantage of not depending on the degree of the extension.

In 2008, Brink, Godinho and Rodrigues [4] proved that if K is a finite extension of Qp

with degree n and d = pτ ·m with (m, p) = 1, then

Γ(K, d) ≤ d2τ+5 + 1

and

Γ(K, d) ≤ 4nd2 + 1.

Here, the first estimate for Γ(K, d) does not depend on the degree n and is an improvement

on Skinner’s result. The second estimate is, to the best of the author’s knowledge, the

optimal result depending on the degree n of the extension.
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In 2017, Miranda Moore proved [10] that if K is a finite extension of Qp and d = pτ ·m

with (m, p) = 1, then for p ≥ 3 we have

Γ(K, d) ≤ d(md+ 1)τ+1

and for p = 2

Γ(K, d) ≤ d(md+ 1)τ+2.

This is an improvement on the result of Brink, Godinho and Rodrigues.

Also in 2017, Luis Sordo proved [13] that if K is a finite unramified extension of Qp

where p ≥ 3, then

Γ(K, d) ≤ d2 + 1.

This is another important step on the direction of Artin’s conjecture.

On this thesis, we study diagonal forms over the quadratic unramified extension of

Q2. We prove two results:

Theorem 1. Let K = Q2(
√

5) be the only unramified quadratic extension of Q2. Let

d ∈ N not power of 2. Then Γ(d,K) ≤ d2 + 1.

This is a first step on the case not treated by Sordo.

Theorem 2. Let K = Q2(
√

5) be the only unramified quadratic extension of Q2. Then

Γ(6, K) ≤ 29.

The problem treated in Theorem 2 was proposed by Knapp. In a recent work of his

[7], he proved:

Theorem. Let Q2(
√
±2), Q2(

√
±10), Q2(

√
−5) e Q2(

√
−1) be the ramified extensions of

Q2.

• for K = Q2(
√
±2),Q2(

√
±10) we have Γ(6, K) = 9.

• for the other cases Γ(6, K) ≤ 9.

So, only the case where K is the unramified quadratic extension of Q2 remained

untreated.
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In the first chapter of this thesis we give a brief approach on Local fields. We give

examples and properties of such fields. We define the concepts of ramified and unramified

extensions of local fields and we prove that given a local field F and a natural number n,

there is only one unramified extension of F having degree n.

In the sencond chapter we give some preliminary results that are the guidelines of our

strategies on the proofs of theorems 1 and 2.

Chapter 3 contains a series of combinatorial Lemmas that will be used on the proofs

of theorems 1 and 2.

Chapter 4 is entirely devoted to the proof of theorem 1. Finally, in chapter 5 we prove

theorem 2 and present a lower bound for Γ(Q2(
√

5), 6) that was obtained by Knapp.



Chapter 1
Local Fields

1.1 Definition and basics

Let K be a field and | · | a non-trivial non-archimedean absolute value on K. Let

OK = {a ∈ K ; |a| ≤ 1}. It is easy to see that OK is an integral domain. We call it the

ring of integers of K. Let O×K = {a ∈ K ; |a| = 1}. We show that O×K is the group of

units of OK . Indeed, If a ∈ OK is invertible, let b ∈ OK with |ab| = 1. If a 6∈ O×K then

|b| > 1, which is a contradiction. Remains to be shown that every element of O×K is a

unit. If a ∈ O×K and b ∈ K is such that |ab| = 1, then |b| = 1 and b ∈ OK proving that a

is a unit and we are done. Let pK = {a ∈ K ; |a| < 1}. pK is an ideal of OK . In fact,

it is the unique maximal ideal of OK . Indeed, every element a 6∈ pK is invertible. Let

k = OK/pK . This field is called the residue field of K.

Example 1.1. Take K = Q the set of rational numbers, and | · | = | · |p the p-adic absolute

value given by

|a/b|p = p−(νp(a)−νp(b))

where a/b ∈ Q with (a, b) = 1 and νp(a) is the p-adic valuation of the integer a, defined by

a = pνp(a) ·m, (m, p) = 1. Clearly, | · |p is a non-trivial non-archimedian absolute value on

Q. In this case the ring of integers is OQ = {a/b ∈ Q ; |a/b|p ≤ 1} = {a/b ∈ Q ; p - b}.

The maximal ideal is pQ = {a/b ∈ Q ; p|a} = pZ and it is easy to see that the residue

field kQ is isomorphic to Z/pZ = Fp the finite field with p elements.
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In the example above, we have the maximal ideal pQ being principal. We now characte-

rize the cases for which this happens. Let V(K) = {|a|; a ∈ K∗}. This is a multiplicative

subgroup of the positive real numbers. We call it the group of values of K.

Proposition 1.2. The maximal ideal pK is principal if, and only if, the group of values

V(K) is a discrete subgroup of (R∗+, ·), that is, if there exists δ > 0 such that 1− δ < |a| <

1 + δ ⇒ |a| = 1.

Proof. First we assume pK = (π). If a ∈ k is such that |a| < 1, then we have |a| ≤ |π| < 1.

On the other hand, if |a| > 1, we have |a−1| < 1 and |a|−1 ≤ |π| which gives us |a| >

|π|−1 > 1. So, if we take δ = min {1−|π|, |π|−1−1} we have 1−δ < |a| < 1+δ ⇒ |a| = 1.

Now we assume the absolute value being discrete. We want to find π ∈ pK satisfying

pK = (π). It is sufficient to find π ∈ pK for which |π| ≥ |a| for every a ∈ pK . Indeed, we

would have for any given a ∈ pK , |a/π| ≤ 1 and so a/π = b ∈ OK and then pK = (π) =

πOK .

Let A = {|a|; a ∈ pK}. The set A is a limited subset of R, so there exists its supremum

S. From the definition of S, for any natural number n, there exists |an| ∈ A satisfying

|an| ≥ S − 1/n. Take n0 ∈ N sufficiently large so we have δ > 1/(Sn0 − 1). So, for any

n,m ≥ n0 we have

|an|
|am|

− 1 ≤ S

S − 1/m
− 1 =

1

Sm− 1
≤ 1

Sn0 − 1
< δ =⇒ |an|

|am|
< 1 + δ

and
|an|
|am|

− 1 ≥ S − 1/n

S
− 1 = − 1

Sn
≥ − 1

Sn0 − 1
> −δ =⇒ |an|

|am|
> 1− δ

and we conclude that |an| = |am| (remember that we are assuming the absolute value

being discrete) for every n,m ≥ n0. So S ≥ |an0| = |an| ≥ S − 1/n for every n ≥ n0, we

conclude that |an0| = S. So, for π = an0 we have |π| ≥ |a| for every a ∈ pK and we are

done.

Definition 1.3 (Local field). A field K complete with respect to a non-trivial, non-

archimedian, discrete absolute value, with finite residue field is called a local field.

Let K ⊇ K be the completion of K, i.e. K has an absolute value which extends the

absolute value of K, K is complete with respect to this absolute value, and K is dense
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in K. It is known that every field K with a non-trivial absolute value admits a unique

completion, see [5] for more details. Let Ψ : OK −→ OK/pK given by a 7−→ a+pK . Since

OK = K
⋂
OK and pK = pK

⋂
K, it is easy to see that Ψ is injective. We assert that it

is also surjective. Let α ∈ OK . Take a ∈ K such that |α − a| < 1 (K is dense in K) so

a− α ∈ pK . We have

|a| ≤ max{|a− α|, |α|} ≤ 1

so a ∈ OK and we have Ψ(a) = α + pK . We have just proved

Proposition 1.4. If K is the completion of K, then kK = kK.

Example 1.5. (Local Field) Recall that Qp, the field of p-adic numbers, is obtained from

Q by means of Cauchy sequences. Moreover, if a ∈ Qp is the limit of the Cauchy sequence

(xn)n∈N of elements of Q, then |a|p = lim |xn|p. And since there exists N ∈ N such that

|xn|p = |xm|p for all n,m > N , we conclude that the group of values of Qp coincides with

the group of values of Q. Hence, it is discrete (the maximal ideal of OQ is principal). By

Proposition 1.4 we have the residue field kQp = Fp. This shows us that Qp is a local field.

1.2 Generator of a local field

Let K be a local field. Let π ∈ K be such that pK = (π), we call π a generator of

K. The term uniformizer is also commonly used to designate π.

Proposition 1.6. Let a ∈ K∗. There exists n ∈ Z and b ∈ O×K such that a = πn · b.

Proof. Let a ∈ K∗ and n ∈ Z such that

|π|n ≤ |a| < |π|n−1.

We have |a/πn| ∈ [1, |π|−1). By proposition 1.2 we have |a/πn| = 1. So, we have |a/πn| =

1, and there must exist an element b ∈ O×K such that a = πn · b.

�

Corollary 1.7. π is the only prime (up to associates) in OK.
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Proof. Proposition 1.6 implies that if a, b ∈ OK and π|ab, then either π|a of π|b. So π is

a prime in OK . The uniqueness follows from the fact that pK is the only maximal ideal

of OK .

�

The above corollary and Proposition 1.6 give us a fundamental theorem of arithmetic

for OK : every integer of K can be written as a product of primes of OK in a unique

manner, up to associates. But we can say more, we will show that every element of OK

can be written uniquely as a power series in π. We clear this up in the next proposition.

Proposition 1.8. Let K be a local field with generator π and let R be a set of represen-

tatives of the residue field kK = OK/(π). Every element a ∈ OK can be written uniquely

as ∑
n≥0

anπ
n

where ai ∈ R for every i ≥ 0. Moreover, every series
∑
anπ

n converges to an element of

OK.

Proof. Let a ∈ OK . There exists a unique a0 ∈ R such that a− a0 ∈ pK . Hence, there

exists b1 ∈ OK such that a = a0 +π · b1. Similarly, there exists a unique a1 ∈ R such that

b1 − a1 ∈ pK . So there is an element b2 ∈ OK such that b1 = a1 + π · b2. Consequently

a = a0 + a1π + b2π
2. Following this process we get for every N ∈ N

a = a0 + a1π + a2π
2 + · · ·+ aNπ

N + bN+1π
N+1

where ai ∈ F , i = 1, · · · , N and bN+1 ∈ OK . Since

|a− (a0 + a1π + a2π
2 + · · ·+ aNπ

N)| = |bN+1π
N+1| = |π|N+1

and |π|N+1 goes to zero as N tends to infinity, we conclude that the series converges to a.

Now we prove the second part of the proposition. Consider a series
∑
anπ

n where

ai ∈ F for every i ≥ 0. Since the general term of the series is anπ
n and |anπn| =

|π|n goes to zero as n tends to infinity, we conclude that the series converges to some

a ∈ K (remember that this is true only for non-archimedean absolute values). We will
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show that a ∈ OK . Observe that for every n ∈ N we have |a0 + a1π + · · · + anπ
n| ≤

max{|a0|, |a1π|, · · · , |anπn|} ≤ 1. Since the series converges to a, there exists N ∈ N such

that |a− (a0 + · · ·+ aNπ
N)| ≤ 1. Then

|a| ≤ max{|a− (a0 + · · ·+ aNπ
N)|, |a0 + · · ·+ aNπ

N |} ≤ 1

and we conclude that a ∈ OK .

�

Proposition 1.6 can be used to extend this result to all elements of K: Every element

a ∈ K can be written in a unique manner as a series
∑

n≥n0(a)

anπ
n, where ai ∈ R for all

i ≥ n0(a) and n0(a) ∈ Z.

1.3 Ramification

Let F be a local field with a non-archimedean absolute value | · |F and E a finite

extension of F of degree n. The following theorem ([5] chapter 7, theorem 1.1) shows us

that we can extend the absolute value of F to E in such a way that E is complete with

respect to this new absolute value.

Theorem. Let F be complete with respect to the absolute value |·|F and E be an extension

of F of degree [E : F ] = n. Then there is precisely one extension | · |E of | · |F to E. It is

given by

|a|E = n

√
|NE/F (a)|F , ∀a ∈ E

where NE/F : E −→ F is the norm from E to F . Further, E is complete with respect to

| · |E.

The Norm from E to F is a natural way to go down from elements of E to F . It can

be defined in several ways:

1 - E is a finite-dimensional F -vector space. Take α ∈ E and consider the F -linear

map ψ : E −→ E given by ψ(β) = αβ, ∀β ∈ E. NE/F (α) can be defined as the

determinant of the matrix of ψ.
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2 - Take α ∈ E and consider the sub-extension F (α). Set r = [E : F (α)] and let

f(x) = xn + an−1x
n−1 + · · ·+ a1x+ a0 ∈ F [x]

be the minimal polynomial of α over F . Then we can define NE/F (α) = (−1)nr · ar0.

3 - Suppose E/F is normal. Then we can define NE/F (α) to be the product of all σ(α),

where σ runs through all elements of the Galois group of the extension E/F .

From these definitions it is easy to see that if a ∈ F , then NE/F (a) = an. So it

becomes clear that |a|E = |a|F for all elements a ∈ F . Also, it is immediate that the

norm is multiplicative. It is also clear that the absolute value | · |E is discrete and non-

archimedean. This implies that E is a local field with the absolute value | · |E.

Let OF and OE be the ring of integers of F and E, pF = (πF ) and pE = (πE) their

maximal ideals, and kF and kE their residue fields. Since the absolute value | · |E is an

extension of | · |F we have VF ≤ VE.

Definition 1.9 (Ramification index). We set [VE : VF ] = e(E/F ) and call it the ramifi-

cation index of the extension E/F .

Remember that VE = (|πE|) and VF = (|πF |). So, there exists m ∈ Z such that

|πF | = |πE|m. Since πmE generates VF we conclude that m = [VE : VF ] = e(E/F ).

Observe that OF = F
⋂
OE and pF = F

⋂
pE. The map Ψ : OF −→ OE/pE given by

Ψ(a) = a+ pE has kernel pF , so there is a natural inclusion kF ↪→ kE.

Definition 1.10 (Degree of the residue class). Set [kE : kF ] = f(E/F ). We call it the

degree of the residue class of E/F .

Whenever it is clear by the context which extension we are dealing with, we will simply

denote e = e(E/F ) and f = f(E/F ). The ramification index e and the degree of the

residue class f relate in an interesting way:

Theorem 1.11. Let E/F be a finite extension of degree n of the local field F . Then

n = ef .
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Proof. Let πE a generator of E and α1, · · · , αf ∈ OE such that modulo pE they constitute

a kF -basis for kE. We are going to show that the set

B = {αiπjE ; 1 ≤ i ≤ f, 0 ≤ j ≤ e− 1}

is an F -basis for E.

First we show that B is a linear independent set. Suppose not, that is, assume there

exist aij ∈ F , 1 ≤ i ≤ f , 0 ≤ j ≤ e − 1, with at least one of them not being trivial,

satisfying ∑
aijαiπ

j
E = 0 (1.1)

We divide both sides of this equation by the coefficient with larger absolute value. So we

can assume all aij ∈ OF and we can choose indices I, J such that |aIJ | = 1 and if j < J

then |aij| ≤ |πF | (equivalently |aij| < 1) for all 1 ≤ i ≤ f ; we just take the smallest j for

which there exists i with |aij| = 1.

Fix J and look at the summation
∑
i

aiJαi. Since modulo pE the α’s are independent,

this sum can not be zero modulo pE (|aIJ | = 1). Hence, we have
∑
i

aiJαi ∈ O×E , that is,

|
∑
i

aiJαi| = 1.

It follows that

• if j = J

|
∑
i

aiJαiπ
J
E| = |πE|J |

∑
i

aiJαi| = |πE|J

• if j < J

|
∑
i

aijαiπ
j
E| = |πE|j|

∑
i

aiJαi| ≤ max{|aij|, |αi|} ≤ max{|aij|} ≤ |πF | = |πE|e

• if j > J

|
∑
i

aijαiπ
j
E| = |πE|j|

∑
i

aiJαi| ≤ |πE|jmax{|aij|, |αi|} ≤ |πE|j ≤ |πE|J+1

Set bj =
∑
i

aijαiπ
j
E. Then, equation 1.1 give us

∑
j

bj = 0. Then,

|πE|J = |bJ | = |
∑
j 6=J

bj| ≤ max{|bj|, j 6= J} ≤ |πE|J+1

which is a contradiction. We conclude that the set B is linearly independent.
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Now we prove that B generates E. Take x ∈ E, we want to find cij ∈ F , i = 1, · · · , f

and j = 0, · · · , e−1, such that x =
∑
cijαiπ

j
E. Without loss of generality we may assume

x ∈ OE, if not, just multiply by an appropriate power or πF . We will use a bar to

indicate that we are working modulo pE. Since {α1, . . . , αf} is a kF -basis for kE, there

exist c0i, i = 1, · · · , f in kF , such that

x =
∑
i

c0iαi.

Then, there exist c0i ∈ OF , 1 ≤ i ≤ f and x1 ∈ OE such that

x−
∑
1≤i≤f

c0iαi = x1πE.

Repeating the same argument for x1 we obtain c1i ∈ OF , 1 ≤ i ≤ f and x2 ∈ OE such

that

x−
∑
1≤i≤f

c0iαi −
∑
1≤i≤f

c1iαiπE = x1π
2
E.

We apply this procedure e times and obtain

x−
∑
1≤i≤f

∑
0≤j≤e−1

c
(0)
ji αiπ

j
E = x(1)πeE = x(1)πF

where c
(0)
ji ∈ OF and x(1) ∈ OE.

We set C(0) =
∑

1≤i≤f

∑
0≤j≤e−1

c
(0)
ji αiπ

j
E. We repeat this procedure with x(1) instead of x,

and so on. Then, for each natural number N we get

x− C(0) − C(1)πF − · · · − C(N)πNF = x(N+1)πF

where each C(l) ∈ OE and x(N+1) ∈ OE. By Proposition 1.8 we conclude that

x =
∑
l≥0

C(l)πlF (1.2)

We are almost there. Now, for each 1 ≤ i ≤ f and 0 ≤ j ≤ e− 1, consider the sub-series∑
l≥0

c
(l)
ji αiπ

j
Eπ

l
F = αiπ

j
E ·
∑
l≥0

c
(l)
ji π

l
F . By Proposition 1.8, we now that

∑
l≥0

c
(l)
ji π

l
F represents an

element cij ∈ OF . But then equation 1.2 give us x =
∑

1≤i≤f

∑
0≤j≤e−1

cijαiπ
j
E and we are

done.
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�

Definition 1.12. We say that the extension E/F of degree n ≥ 2 is ramified if e > 1

(equivalently f < n). Otherwise we say it is unramified. When e = n we say that the

extension is totally ramified.

Note that an extension is ramified or unramified according to the ramification of the

prime πF of OF . In an unramified extension, the prime πF of OF continues being prime

in OE. The same does not happen in ramified extensions.

Given a local field F , for each n ∈ N there exists a unique unramified extension E/F

of degree n. Moreover, E is the decomposition field over F of the polynomial xq−x where

q = (#kF )n. In order to prove this statement we are going to need a series of lemmas.

Lemma 1.13 (Hensel I). Let F be a field complete with respect to a non-archimedean

absolute value and let f(x) ∈ OF [x]. If there exists a ∈ OF such that

|f(a)| < |f ′(a)|2

where f ′(x) is the formal derivative of f(x), then there exists α ∈ OF such that f(α) = 0.

Moreover, α is the unique solution to f(x) = 0 that satisfies

|a− α| < |f(a)|
|f ′(a)|

.

Proof. See [5], Lemma 3.1.

�

Lemma 1.14. Let F be a field complete with respect to a non-archimedean absolute value

| · |F and with residue field kF with q = pm elements, p = char(kF ). Then F contains all

(q − 1)th roots of unity.

Proof. Let a ∈ kF and choose a ∈ O×F such that a = a+pF . Set f(x) = xq−1−1 ∈ OF [x].

We have

f(a) = aq−1 − 1 ≡ (a)q−1 − 1 ≡ 0 mod pF
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and we conclude that |f(a)| < 1. If |f ′(a)| = 1 we are done. Indeed, in this case we can

apply Lemma 1.13 and obtain α ∈ OF such that f(α) = 0 with α ≡ a mod pF . And since

a is arbitrary we conclude that F contains all (q − 1)th roots of unity. But

|f ′(a)| = |(q − 1)||a|q−2 = |q − 1|.

Suppose |q − 1| < 1. Since char(kF ) = p we have |p| < 1. Then

1 = | − 1| = |(q − 1)− pm| ≤ max{|pm|, |(q − 1)|} < 1

which is a contradiction. Then, we have |f ′(a)| = 1 as we wanted.

�

Proposition 1.15. Let E/F be a finite extension of the local field F . Let α ∈ kE. There

exists α ∈ OE such that α ≡ α mod pE and [F (α) : F ] = [kF (α) : kF ]. Moreover, if

α0 ∈ OE, α0 ≡ α mod pE and [F (α0) : F ] = [kF (α) : kF ], then F (α0) = F (α).

Proof. Let φ(x) ∈ kF [x] be the minimal polynomial of α over kF . Since every finite field

is perfect, we conclude that φ(x) has no repeated roots. Set ψ(x) ∈ F [x] a lift of φ(x),

that is, φ(x) and ψ(x) have the same degree and ψ(x) ≡ φ(x) mod pE. Let α0 ∈ OE be

such that α = α0+pE. Since ψ(α0) ≡ φ(α0) ≡ 0 mod pE and ψ′(α0) ≡ φ′(α0) 6≡ 0 mod pE

we have |ψ(α0)| < 1 and |ψ′(α0)| = 1. Setting K = F (α0) and applying Lemma 1.13 we

conclude that there exists α ∈ K = F (α0) such that ψ(α) = 0 and |α − α0| < 1. Since

ψ(x) is irreducible (its roots are in distinct classes modulo pE), we have

[F (α) : F ] = degree of ψ = degree of φ = [kF (α) : kF ].

This concludes the first part of the theorem. Now, if α0 ∈ OE is such that α0 ≡ α mod pE

and [F (α0) : F ] = [kF (α) : kF ], then since Lemma 1.13 implies α ∈ F (α0) we must have

[F (α) : F ] ≤ [F (α0) : F ] = [kF (α) : kF ] = [F (α) : F ]

and F (α) = F (α0).

�
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The equality [F (α) : F ] = [kF (α) : kF ] in proposition 1.15 makes one think that the

extension F (α)/F is unramified. This would be the case if kF (α) = kF (α). Fortunately

this is actually true. Indeed, since α ∈ kF (α) we have kF (α) ⊆ kF (α), then

[kF (α) : kF ] ≤ [kF (α) : kF ] ≤ [F (α) : F ] = [kF (α) : kF ]

and we are done. We have just proved:

Corollary 1.16. There is a bijection between the fields F ⊆ K ⊆ E which are unramified

extensions of F and the fields kF ⊆ k ⊆ kE. The bijection is given by K −→ kK.

Finally we are able to prove:

Theorem 1.17. Let F be a local field. For each n ∈ N there exists a unique unrami-

fied extension E/F of degree n. Moreover, E is the decomposition field over F of the

polynomial xq − x where q = (#kF )n.

Proof. Let F be the algebraic closure of F and kF the algebraic closure of kF . We show

that kF = kF . Indeed, let φ(x) ∈ kF [x] irreducible and ψ(x) ∈ F [x] a lift of φ(x) to F [x].

Since F contains all roots of ψ(x), its residue class field contains all roots of φ(x) and we

are done. Now, take an extension of kF of degree n (which is unique up to isomorphism).

By Corollary 1.16 there exists a unique (up to isomorphism) unramified extension E/F

of degree n. Lemma 1.14 shows us that E is precisely the decomposition field over F of

the polynomial xq − x.

�

Example 1.18. Let F = Q2. We are going to show that F (
√

5) is the only quadratic

unramified extension of F .

First, we have to show that 5 is not a square in Z2. We assert more: β ∈ Z×2 is

a square if, and only if, β ≡ 1 mod 23. Suppose that β ∈ Z×2 satisfies β ≡ 1 mod 23.

Consider the polynomial f(x) = x2− β ∈ Z2[x]. We have f(1) = 1− β ≡ 0 mod 23 which

implies |f(1)| ≤ 2−3. Further, f ′(1) = 1 and so we have |f ′(1)| = 2−1. Hence, by Lemma

1.13 we conclude that there exists α ∈ Z2 such that α2 = β and β is a square. Conversely,

let α ∈ Z×2 such that α2 = β. We write α as a series in 2, and work modulo 23.

α = 1 + 2α1 + 22α2
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where α1, α2 ∈ {0, 1}. Then

β = α2 = (1 + 2α1 + 22α2)
2 ≡ 1 mod 23.

So, 5 is not a square in Z2 and Q2(
√

5) is indeed a quadratic extension.

One way to verify that it is unramified is to show that 2 is a generator of Q2(
√

5),

that is, the prime 2 does not ramify. Remember (Theorem 1.3) that the absolute value in

Q2(
√

5) is given by

|a| = n
√
|N(a)|2, ∀a ∈ Q2(

√
5)

where N : Q2(
√

5) −→ Q2 is the norm from Q2(
√

5) to Q2. One way to compute this

norm is by means of the automorphisms of the Galois group of the extension. In this case

there are only two of them, namely: σ1 : Q2(
√

5) −→ Q2(
√

5) the identity automorphism

and σ2 : Q2(
√

5) −→ Q2(
√

5) given by σ2(a+ b
√

5) = a− b
√

5, a, b ∈ Q2. Hence the norm

of an element a+ b
√

5 of Q2(
√

5) is given by

N(a+ b
√

5) = σ1(a+ b
√

5)σ2(a+ b
√

5) = a2 − 5b2.

Then, given a+ b
√

5 ∈ Q2(
√

5) we have

|a+ b
√

5| =
√
|a2 − 5b2|2

where | · |2 is the 2-adic absolute value.

If we verify that |a + b
√

5| is always a power of 2 with integer exponent, then we are

done. Indeed, This would give us VQ2(
√
5) = (|2|) and we would have e = [VQ2(

√
5) : Q2] = 1

and 2 as a generator of Q2(
√

5).

We analyse a2 − 5b2 mod 22. We know that a2, b2 ≡ 0, 1 mod 23.

• If both a2, b2 ≡ 1 mod 23, then a2−b25 ≡ −4 mod 8 which implies that ν2(a
2−5b2) =

2 and so

|a+ b
√

5| =
√
|a2 − 5b2|2 =

√
2−2 = 2−1.

• If both a2, b2 ≡ 0 mod 8, then a, b ≡ 0 mod 2 and ν2(a
2−5b2) = min{ν2(a2), ν2(b2)}.

Suppose without loss of generality that min{ν2(a2), ν2(b2)} = ν2(a
2) = 2ν2(a). Then

|a+ b
√

5| =
√
|a2 − 5b2|2 =

√
2−2ν2(a) = 2−ν2(a).
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• Finally, if only a2 ≡ 0 mod 8 (without loss of generality). Then ν2(a
2 − 5b2) = 0

and we have

|a+ b
√

5| = 20.

This concludes the proof that Q2(
√

5) is an unramified quadratic extension of Q2.

Theorem 1.17 guarantees it is the only one.

Let K = Q2(
√

5). We have just seen that K is the only unramified extension of Q2.

Hence 2 is a generator of K. It follows by Proposition 1.8 that every a ∈ OK can be

written uniquely as

a =
∑
i≥1

ai · 2i

where ai ∈ R a set of representatives of OK/(2) = kK . It is easy to see that the residue

field kK is isomorphic to F4. In the next example we explicit a set of representatives for

kK .

Example 1.19. R =
{

0, 1, 1+
√
5

2
, 3+

√
5

2

}
is a set of representatives for kK.

It is sufficient to show that 1 and 1+
√
5

2
are elements of O×K that represent distinct

classes modulo (2). Indeed, we would have 1 + 1+
√
5

2
= 3+

√
5

2
being the third non-trivial

representative of kK

That 1 ∈ O×K is immediate. To show that 1+
√
5

2
∈ O×K we evaluate

∣∣∣1+√52

∣∣∣. We have∣∣∣∣∣1 +
√

5

2

∣∣∣∣∣ =

√√√√∣∣∣∣∣N
(

1 +
√

5

2

)∣∣∣∣∣
2

and since N
(

1+
√
5

2

)
= 1

4
− 5 · 1

4
= −1 we have∣∣∣∣∣1 +
√

5

2

∣∣∣∣∣ =
√
| − 1|2 =

√
20 = 1

and we have 1+
√
5

2
∈ O×K.

Now we only have to verify that 1 and 1+
√
5

2
are in distinct classes modulo (2). But

1− 1+
√
5

2
= 1−

√
5

2
and∣∣∣∣∣1−

√
5

2

∣∣∣∣∣ =

√√√√∣∣∣∣∣N
(

1−
√

5

2

)∣∣∣∣∣
2

=

√∣∣∣∣14 − 5 · 1

4

∣∣∣∣
2

=
√
|N(−1)|2 =

√
20 = 1

and we have 1 6= 1+
√
5

2
modulo (2).



Chapter 2
Preliminary results

Our goals in this thesis are Theorems 1 and 2. Theorem 1 says that if we have a

diagonal form F (x) = a1x
d
1 + · · · + aNx

d
N ∈ Q2(

√
5)[x] with d not a power of 2, then

N > d2 guarantees the existence of non-trivial zero for F (x). In theorem 2 we set d = 6

and prove that N > 28 guarantees non-trivial zero for F (x). In this chapter we give the

main strategies that we will adopt in order to prove theorems 1 and 2. First we present

the process of normalization, introduced by Davenport and Lewis in [6]. This process

consists in defining an equivalence relation on the set of diagonal forms so we can restrict

our attention to class representatives. Moreover, it gives us some control on the variables

of some special representatives. Then we enunciate another form of Hensel’s lemma. This

lemma allows us to work modulo a specific power of the generator π = 2 of Q2(
√

5).

Finally, we present the concept of contraction of variables, which is a method to solve the

congruences in the hypothesis of Hensel’s lemma.

2.1 Normalization

Let F be a local field with generator π. Consider A the set of additive forms of degree

d in N variables and with coefficients in F . We say that two elements F (x),G (x) ∈ F

are equivalent, denoting it by F (x) v G (x), if we can turn F into a multiple of G by

means of substitutions xi = lix
′
i, where li ∈ OF .

Proposition 2.1. The relation F v G is an equivalence relation on the set A.
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Proof. That it is reflexive is immediate. Suppose F v G . Then, there exists α ∈ F and

l1, · · · , lN ∈ OF such that

α(b1x
d
1 + · · · bNxdN) = αG (x1, · · · , xN) = F (l1x1, · · · , lNxN) = a1l

d
1x

d
1 + · · ·+ aN l

d
Nx

d
N

which implies

G (x1, · · · , xN) =
1

α
· (a1ld1xd1 + · · ·+ aN l

d
Nx

d
N).

Consequently,

G (l−11 x1, · · · , l−1N xN) =
1

α
· (a1ld1l−d1 xd1 + · · ·+ aN l

d
N l
−d
N xdN) =

1

α
F (x1, · · · , xN)

and we have G v F which implies that the relation is commutative.

Now, let F ,G ,H ∈ A such that F v G and g v h. There exists α1, α2 ∈ F and

l1, · · · , lN , l′1, · · · , l′N ∈ OF such that

α1G (x1, · · · , xN) = F (l1x1, · · · , lNxN)

and

α2H (x1, · · · , xN) = g(l′1x1, · · · , l′NxN).

Hence,

α1α2h(x1, · · · , xN) = F (l1l
′
1x1, · · · , lN l′NxN)

and we have F vH which implies that the relation is transitive.

�

It is immediate to see that to find non-trivial zero for a polynomial F ∈ A is equivalent

to find non-trivial zero for any G ∈ A with F v G . Hence, we can choose in each

equivalence class, any representative we want and restrict our attention to it. The next

lemma will help us on the task of choosing a “good representative”. This is Lemma 2 of

[6].

Lemma 2.2. Let m1,m2, · · · ,md−1 be real numbers and put mj+d = mj for all j. Let

m0 + · · ·+md−1 = s.
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Then, there exists r such that

mr +mr+1 + · · ·+mr+t−1 ≥
ts

d

for t = 1, · · · , d.

Proof. We can assume s = 0. If not, just set m′i = mi − s
d
.

Assume there is not such r, that is, assume that for every given a ∈ N there exists an

integer b ≥ a such that ma +ma+1 + · · ·+mb < 0. Let a1, b1 be two such integers. Take

a2 = b1 + 1 and find the corresponding b2. Continuing this way, we’ll get a1 ≡ an mod d

for some n ∈ N(pigeonhole principle). Then,

an−1∑
a1

mi < 0

but this is a contradiction since

an−1∑
a1

mi =
an − a1

k
s = 0

and this concludes the proof.

�

Theorem 2.3. Let F be a local field with generator π. Let A be the set additive forms

of degree d in N variables and coefficients in F . Let G ∈ A. Then, there exists F v G

such that

F = F (0) + πF (1) + π2F (2) + · · ·+ πd−1F (d−1)

where F (i) is an additive form of degree d in mi variables (the variables in distinct forms

F (i) being distinct) with all coefficients being 6≡ 0( mod π) and where m0, · · · ,md−1 satisfy

m0 + · · ·+mj−1 ≥
jN

d
, j = 0, · · · , d. (2.1)

We say that F is a normalized form.

Proof. Let α ∈ F be the coefficient of the variable xi of the form G . By Proposition

1.6, we know that α = πn · β for some integer n and some unit β. Write n = q · d + r

with q ∈ Z and 0 ≤ r < d. Then α = β(πr)(πq)d. Set x′i = (πq)xi and we get that the
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coefficient of the new variable is βπr. Proceeding this way with the other variables we

find an equivalent form H for which the power of π of any given coefficient is πi with

0 ≤ i ≤ d− 1. Then we can write

H = H (0) + πH (1) + π2H (2) + · · ·+ πd−1H (d−1)

where H (i) is an additive form of degree d in m
(H )
i variables (the variables in distinct

forms H (i) being distinct) with all coefficients being 6≡ 0( mod π). We have
d−1∑
i=0

m
(H )
i = N .

Then, Lemma 2.2 says that we can choose l ∈ {0, 1, · · · , d− 1} such that

m
(H )
l +m

(H )
l+1 + · · ·+m

(H )
l+j−1 ≥

jN

d
, j = 0, · · · , d.

If we set x′i = πxi for the variables of H (0) and then divide H by π we effect a cyclic per-

mutation of H (0),H (1), · · · ,H (d−1). Repeat this process l times and the new equivalent

form F will satisfy (2.1).

�

2.2 Hensel’s Lemma and contraction of variables

Definition 2.4. Let F be a local field with generator π. Let F (x) = a1x
d
1 + · · ·+aNx

d
N ∈

F [x] an additive form. We say that a solution x to F = 0 is non-singular if there exists

i ∈ {1, · · · , N} such that aixi 6≡ 0 mod π. Similarly, if x is a solution to F ≡ 0(modπj)

such that there exists i ∈ {1, · · · , N} with aixi 6≡ 0 mod π, then we say that x is a non-

singular solution modulo πj.

Next we give another version of Hensel’s lemma. It is Lemma 1 of [4]. In fact, in [4]

the authors work with systems of diagonal forms and present a version of Hensel’s lemma

that can be applied to these systems. Here we enunciate a simplified version.

Lemma 2.5 (Hensel’s Lemma II). Let F be an extension of Qp of degree n. Let e be its

ramification index. Set d = pτ ·m with (m, p) = 1 and define

γ =


1 for τ = 0,

e(τ + 1) for p > 2, τ > 0,

e(τ + 2) for p = 2, τ > 0.
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Let F (x) = a1x
d
1 + · · ·+ aNx

d
N ∈ F [x]. If F ≡ 0 mod πγ admits a non-singular solution

modulo πγ, then f admits non-trivial zero in F .

Let F be an extension of Qp with generator π. When we have

F = F (0) + πF (1) + π2F (2) + · · ·+ πd−1F (d−1) ∈ F [x] (2.2)

with F (i) an additive form of degree d in mi variables with all coefficients being 6≡ 0( mod

π), we are going to say that a variable of F (i) is at level i. That is, the variable xj of

F (x) is at level i if πi divides the coefficient of xj but πi+1 does not. When α ∈ F is the

coefficient of a variable at level i, we say the α is at level i.

Consider a form as in (2.2). Let x1, · · · , xt be variables of this form at levels less than

j. If we can find b1, · · · , bt ∈ OF such that

a1b
d
1 + · · ·+ atb

d
t = πl · c

with c 6≡ 0 mod π, then, setting xi = biT we obtain a new variable T of level l ≥ j and

coefficient πl · c. This process is called a contraction of variables to a new variable at level

l.

So, if we can use a variable at level zero in a series of contractions and get a new

variable T at level γ, Lemma 2.5 says that there exists a non-trivial solution for F = 0.

Indeed, we just have to assign the value 1 to variables that were used on the series of

contractions and 0 to the ones that were not used. The solution will be non-singular for

we have used a variable at level 0.

Variables at level zero, or variables at higher levels that were obtained by contractions

containing variables at level zero, will be called primary. More precisely, (i)-primary if it

is primary and is at level i. The other variables will be called (i)-secondary. We denote by

pi the number of primary variables at level i and by si the number o secondary variables

at level i. That being said, using the aforementioned version of Hensel’s lemma, it is

sufficient to construct a (γ)-primary variable in order to guarantee non-trivial zero for F .
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Combinatorial lemmas

In this section we state a number of preliminary lemmata that will be used in the

proofs of theorems 1 and 2. Here we will set K = Q2(
√

5) the only unramified extension

of Q2 (see example 1.18). We have 2 being the generator of K. Remember (Proposition

1.8 ) that every a ∈ OK can be written as

a =
∑
i≥0

ai2
i (3.1)

where ai ∈ R, and R is a set of representatives for kK = OK/(2). In Example 1.19 we

saw that R =
{

0, 1, 1+
√
5

2
, 3+

√
5

2

}
is a set of representatives for kK . But we know that kK

is isomorphic to F4 and sometimes we will simply write R = {0, 1, α, 1 + α} and use the

additive structure of F4. Observe that the integer a written as in (3.1) is at level l if, and

only if, l is the first index satisfying al 6= 0. When a is at level l we can write

a = 2l(a0 + a1 · 2 + · · ·+ an · 2n + · · · ) (3.2)

where ai ∈ R for all i and a0 6= 0. Then we will call a0 the zeroterm of a. Similarly we

will call a1 and a2 the oneterm and the twoterm of a.

Lemma 3.1. a) Suppose we have four variables at level l. Then we can contract two of

them to a variable T at level at least l + 1.

b) If we have three variables at level l, then we can contract three (maybe two) of them to

a variable T at level at least l + 1.

c) If we have three variables at level l with the same zeroterm, then we can contract exactly

two variables to a new variable at level exactly l + 1.
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Proof. The first two statements follow directly from [11]. We prove the last statement.

Without loss of generality, we suppose l = 0 and that the zeroterm is a0 = 1. Since we

are interested in contract variables to level 1, we can work modulo 22. Consider three

coefficients (modulo 22)

a1 = 1 + 2b1, a2 = 1 + 2b2, a3 = 1 + 2b3

where b1, b2 and b3 are elements of R.

If a1 + a2 ≡ 0 mod 22, we have (1 + b1 + b2) ≡ 0 mod 2. It is easy to see (remember that

(OK ,+) ∼= (C2 × C2,+)) that this occurs just in the four following cases.

• If b1 = 1, b2 = 0 (b1 = 0, b2 = 1). In this case, we look for b3. If b3 = 0, then a2 + a3

has level exactly 1. If b3 = 1, then a1 + a3 has level exactly 1. And if b3 6∈ {0, 1} we

have b1 + b3 and b2 + b3 both with level exactly 1.

• If b1 = a 6∈ {0, 1}, β2 = a + 1 (b2 = a 6∈ {0, 1}, b1 = a + 1). If b3 = a, then b1 + b3

has level exactly 1. If b3 = a+ 1, then b2 + b3 has level exactly 1. And if b3 ∈ {0, 1}

, b1 + b3 and b2 + b3 both have level exactly 1.

�

Observation. If we have two (l)-primary variables and one (l)-secondary, part (b) of

Lemma 3.1 says that we can contract some of these variables to obtain a (j)-primary with

j ≥ l + 1. Indeed, at least one of the (l)-primary must be used in this contraction.

If the reader is interested only on Theorem 1, he can skip the remaining of this chapter.

In theorem 2 we work with diagonal forms of degree 6. So we have a lot more tools at

hand. Indeed, we can use the structure of the sixth powers of OK . The next lemma

characterizes these sixth powers modulo 23. But why modulo 23? If we want to find

non-trivial zero for a diagonal f of degree 6, then it is sufficient (Hensel’s Lemma II) to

create a (γ)-primary, and in this case γ = 3. Hence, we can restrict our attention to

modulo 23, which we will do from now on; for example, if a ∈ OK , we will simply write

a = a0 + a1 · 2 + a2 · 4

with a0, a1, a2 ∈ R.
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Lemma 3.2. The only non-zero 6th power in OK/(2
2) is 1. However, there are two

non-zero 6th powers in OK/(2
3). These are 1 and 1 + 1 · 4.

Proof. This can be proven by direct calculation. First we deal with the sixth powers of

the nonzero representatives. Clearly 16 ≡ 1 mod 8. For
(

1+
√
5

2

)
we have

(
1 +
√

5

2

)2

=

(
3 +
√

5

2

)

=⇒

(
1 +
√

5

2

)4

=

(
1 +
√

5

5

)
+ 2 ·

(
3 +
√

5

2

)

=⇒

(
1 +
√

5

2

)6

≡ 1 + 22 mod 8

(3.3)

and proceeding in the same way we conclude that
(

3+
√
5

2

)6
≡ 1 mod 8. Now consider a

general x ∈ OK . Write x = a + 2 · b + 22 · c(mod8) with a, b, c, d ∈ R and a 6= 0. Then

x6 ≡ a6 + 4a4b(a + b)(mod8). If either b or (a + b) ≡ 0 mod 2 we get x6 ≡ a6 and we

are done. If not, a simple calculation shows us that 4a4b(a + b) ≡ 1(mod2) and we have

x6 ≡ a6 + 4(mod8) and the result follows immediately.

�

From now on, ζ will denote an element of OK for which ζ6 ≡ 1 + 1 · 4(mod8). Let x

be a variable with coefficient a+ 2b+ 4c. If we set T = ζx, then we get a new variable T

with coefficient a+2b+4(c+a). If we simply set T = x, the coefficient of the new variable

would still be a+2b+4c. For each a ∈ R−{0} we define δa to be a number which can be

either 0 or a. In these terms, if we have a variable x with coefficient a + 2b + 4c, we can

make a change of variables and get a new variable T with coefficient a+2b+4(c+δa). The

point of this is that we can talk about all the possible ways to contract all at once without

needing to make special cases for whether we set T = x or T = ζx in the contraction.

The benefits of this approach will become clear in the lemmas that follow.

Lemma 3.3. Suppose we have 3 variables at level 0 which all have different zeroterms.

If we contract these variables to a new variable T at level 2, then we can also contract
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them to a variable at level 3. If we contract them to a variable T at level 1, then we can

contract in such a way that the oneterm of T has any value that we choose.

Proof. Suppose that the variables in question are x1, x2, x3 and that they appear in our

form as

(1 + 2b1 + 4c1)x
6
1 + (α + 2b2 + 4c2)x

6
2 + (1 + α + 2b3 + 4c3)x

6
3.

Contracting the three variables we get a new variable T with coefficient 2(1 + α + b1 +

b2 + b3) + 4(c1 + c2 + c3 + δ1 + δα + δ1+α). If 1 +α+ b1 + b2 + b3 ≡ 0(mod2) (that is, if we

can contract the three variables to a new variable at level 2), then the coefficient of our

new variable would be

4(d+ c1 + c2 + c3 + δ1 + δα + δ1+α)

for some d ∈ R. But we can choose the δ′is in such a way that δ1+δ2+δ3 equals whichever

element of R. In particular, we can choose them to satisfy

d+ c1 + c2 + c3 + δ1 + δα + δ1+α = 0

and we can get T at level at least 3. If, on the other hand, we have 1 +α+ b1 + b2 + b3 6≡

0(mod2), our variable T would be at level exactly 1, but, proceeding as above, we would

be able to choose its oneterm freely.

�

Observation. Remember that Hensel’s Lemma II says that to find nontrivial zero for

our form, it is sufficient to use a variable of level l in contractions in order to produce

a new variable of level at least l + 3. So, whenever we contract three variables at level

l having distinct zeroterms, we’ll assume that the new variable has level exactly l + 1,

moreover, we’ll be able to choose its zeroterm.

Corollary 3.4. Suppose that our form has two disjoint sets of 3 variables at level 0 such

that each set has all 3 possible zeroterms represented. If both of these sets can be contracted

to level 1, and there is one additional variable at level 1 (which can be either primary or

secondary), then we can construct a primary variable at level at least 3.
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Proof. Contract both 3-variable sets obtaining two primary variables T1 and T2. If none

of these variables are at a level higher than 1, then Lemma 3.3 guarantees that we can

choose their oneterms γ1 and γ2 freely. Let x be the additional variable at level 1. Suppose

first that two of the three variables have same zeroterm. Without loss of generality we

assume one of these variables being T1. Then we can write the coefficient of T1 as 2b+4γ1.

Suppose that the other variable has coefficient 2b+ 4c. If we now set both variables equal

to a new variable U , then its coefficient would be 4(b+γ1 + c). Since we can choose freely

the value of γ1 we can set γ1 = −(b + c) and then obtain a primary variable at level at

least 3.

Suppose on the other hand that the three variables at level zero have distinct zeroterms.

We may assume that they appear in our form as

(2b1 + 4γ1)T
6
1 + (2b2 + 4γ2)T

6
2 + (2b3 + 4c)x6

where {b1, b2, b3} = {1, α, 1+α} and we can choose γ1, γ2 to have any values we wish. Then

setting x = T1 = T2 = U produces a new variable U with coefficient 4(1 +α+ c+γ1 +γ2).

Again, since we can choose freely the values of γ1 and γ2, we can make−(1+α+c+γ1) = γ2

and obtain a primary variable at level at least 3.

�

Corollary 3.5. Suppose our form has one set of 3 variables at level 0 such that all 3

possible zeroterms are represented. If we have two variables at level 1 (wich can be either

primary or secondary) with distinct zeroterms, then we can construct a primary variable

at level at least 3.

Proof. If these three variables can not be contracted to a primary variable at level at

least 3, then Lemma 3.3 says that we can contract them to a (1)-primary having whichever

oneterm γ we desire. We have two possibilities:

Possibility I. One of the (1)-secondary variables has the same zeroterm as the (1)-

primary. Let (2β + 22γ1)x
6 be the (1)-primary and (2β + 22γ2)y

6 the (2)-secondary. We

make x = y = T and get a new variable T having coefficient 22(β+γ+β2). And since we

are free to choose any γ we want, we can do it so the new variable T has level at least 3.
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Possibility II. If Possibility I does not happen, then the three variables will have distinct

zeroterms and they can be contracted to a new variable of higher level. It is easy to see

that here we can also choose γ so this new variable is at level at least 3.

�

Lemma 3.6. Suppose that we have 4 variables at level 0 with the same zeroterm a. Then

the following are true.

a) If all four variables have the same oneterm, then they can be contracted to a variable

T at level at least 2. Moreover, if T is at level exactly 2, then we can choose the zeroterm

of T to be either possibility which is different from a.

b) If all four possible oneterms exist among the four variables, then we can contract some

of these variables to a primary variable at level at least 3.

c) If exactly three different oneterms appear in the variables, then we can contract two of

these variables to a variable at level at least 2, while the other two variables contract to

a variable at level 1. Moreover, if the new variable at level at least 2 is in fact at level

exactly 2, then we can choose its zeroterm to be anything other than a.

d) If exactly two different oneterms appear in the variables, with one of the oneterms

appearing three times, then we can use these variables to create one primary variable at

level exactly 1 and one primary variable which is at level at least 1. However, we cannot

control the level of this second variable. If both variables are at level 1, then they have

different zeroterms. Finally, for each variable, we can choose between two options for the

coefficient of 4 in the variable’s coefficient. However, we cannot control what options are

possible.

e)If exactly two different oneterms appear in the variables, and each appears twice, then

we can contract these four variables to a primary variable at level at least 2. If this new

variable is forced to be at level exactly 2, then we can choose the zeroterm of this variable

to be either possibility other than a.

Proof. To prove part (a), suppose that the variables are x1, x2, x3, x4 and that they

appear in the form as

(a+ 2b+ 4c1)x
6
1 + (a+ 2b+ 4c2)x

6
2 + (a+ 2b+ 4c3)x

6
3 + (a+ 2b+ 4c4)x

6
4.
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We can contract these four variables to a new variable T with coefficient 4(a+ c1 + c2 +

c3 + c4 + δa). If we can choose δa so the coefficient is 0 (mod2), then we get a variable at

level at least 3. If not, We have two possible oneterms ((a+c1 +c2 +c3 +c4 +δa). If either

of these oneterms is divisible by two, we have actually constructed a primary variable at

level at least 3. If not, we note that the terms in parenthesis are different mod2 and if

one is congruent to a mod2, then the other must be zero mod2. So we can choose the

coefficient of T to have either zeroterm which is not a.

To prove part (b), suppose that the variables appear in the form as

(a+ 2a+ 4c1)x
6
1 + (a+ 4c2)x

6
2 + (a+ 2b3 + 4c3)x

6
3 + (a+ 2b4 + 4c4)x

6
4

Where b3 and b4 are the two possible oneterms which are different from a and 0. We can

contract these two variables to a new variable T with coefficient 4(c1 + c2 + δa). If we can

choose δa so the term in parenthesis is divisible by 2, then we are done. Otherwise, note

that we can choose the zeroterm to be either possibility other than a (similar to what we

have done in part (a)).

Next, if we contract x3 and x4 we obtain a variable U with coefficient 2(a+ b3 + b4) +

4(c3 + c4 + δa). However, we have a+ b3 + b4 = 1 +α+ (1 +α) ≡ 0(mod2), and so we can

rewrite this coefficient as 4(β + c3 + c4 + δa). Again, if we can choose δa so the term in

parenthesis is zero (mod2), then we get a primary variable at level at least 3. Otherwise,

we can choose the zeroterm to be any possibility other than a. In particular, if we can

not make either T or U a primary variable at level at least 3, then we can choose it’s

zeroterms being equal, and then contract these two variables setting T = U = X we get

a primary variable X at level at least 3.

To prove part (c), suppose that the variables appear in the form as

(a+ 2b+ 4c1)x
6
1 + (a+ 2b+ 4c2)x

6
2 + (a+ 2b3 + 4c3)x

6
3 + (a+ 2b4 + 4c4)x

6
4

where b3 6= b4 and b3, b4 6= b. If we contract some pairs of variables xi, xj setting xi =

xj = T , then we get the following possibilities for the coefficient of T :



30

Variables contracted Coefficient of T

x1, x2 2a+ 4(b+ c1 + c2)

x1, x3 2(a+ b+ b3) + 4(c1 + c3)

x1, x4 2(a+ b+ b4) + 4(c1 + c4)

x3, x4 2(a+ b3 + b4) + 4(c3 + c4)

The conditions on b, b3 and b4 imply that the numbers b + b3, b + b4 and b3 + b4 are

all different and nonzero (mod2). Then, exactly one of these ways to contract will yield

a variable at level at least 2. Since x1 and x2 have the same oneterm, it is not possible to

make two contractions which both go to level at least 2. Hence one of these contractions

will end up at level exactly 1. For the contraction to level at least 2, the same reasoning

shows that either we can contract the variables to level at least 3, or we can choose the

zeroterm of the new variable to be either possibility other than a.

To prove part (d), suppose that the variables appear in the form as

(a+ 2b1 + 4c1)x
6
1 + (a+ 2b2 + 4c2)x

6
2 + (a+ 2b2 + 4c3)x

6
3 + (a+ 2b2 + 4c4)x

6
4.

If we set x1 = x2 = T , then the coefficient of T will be 2(a+b1 +b2)+4(c1 +c2). Similarly,

if we set x3 = x4 = U , the coefficient of U will be 2a+ 4(b2 + c2 + c3). The variable U is

at level exactly 1, while T will be at level 2 if b1 + b2 ≡ a(mod2) and at level exactly one

otherwise. If T is at level exactly 1, then since b1 6= b2, we know that a+b1+b2 6≡ a mod 2,

and so the variables T and U have different zeroterms. That we have two options for the

coefficient of 4 in these coefficients is proved as in previous parts of the lemma.

To prove part (e), suppose that the variables appear in the form as

(a+ 2b1 + 4c1)x
6
1 + (a+ 2b1 + 4c2)x

6
2 + (a+ 2b3 + 4c3)x

6
3 + (a+ 2b3 + 4c4)x

6
4.

We contract the four variables to a new variable T with coefficient 4(a + b1 + b3 + c1 +

c2 + c3 + c4 + δa). We have two possibilities for the coefficient of T . If either of these

possibilities is a, then the other will be a primary variable at level at least 3. Hence,

if both of these contractions leads to variables at level exactly 2, then the two possible

zeroterms must be the two possibilities other than a.

�
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Corollary 3.7. If we have five variables at level zero having the same zeroterm a, then

we can contract four of them (or maybe two) to a primary variable at level at least 2. If it

is at level exactly two, then we can choose its zeroterm to be either possibility other than

a.

Proof. We just have to analyse the possible distributions of the oneterms of these five

variables. If all four possible oneterms are represented we are done by Part (b) of Lemma

3.6. So we can assume only three types of oneterms appearing. Let them be a, b, and c.

The next table gives us all possible distributions (up to permutations) of the oneterms.

a b c

5 0 0

4 1 0

3 1 1

3 2 0

2 2 1

In the first two cases Part (a) of Lemma 3.6 gives us what we want. In the third case we

use part (c) of Lemma 3.6. Finally, if the last two cases occur, then we use part (e) of

Lemma 3.6.

�

Lemma 3.8. Suppose that we have three variables at level 0 with the same zeroterm a.

Then the following are true.

a) If these variables have three different oneterms, then we can contract two of them to

a variable T at level exactly 1 and we have a choice of two zeroterms for T. If it is not

possible to contract to a variable at level at least 2, then we may arrange for T to have

any zeroterm we like. If it is possible to contract to level 2, then either we can contract to

level at least 3, or else we can arrange for T to have either possible zeroterm other than

a.

b) If these variables have exactly two different oneterms, then we can contract two of them

to a variable T at level at least 1. If it is not possible to contract to a variable at level at

least 2, then we have a choice of two zeroterms for T , one of which is a.
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c) If these variables all have the same oneterm, then we can contract two of them to a

variable T at level 1 with zeroterm a. In this case, it is not possible to contract either to

a variable at level 2 or to a variable at level 1 with any other zeroterm.

Proof. We denote our three variables by x1, x2, x3. To prove part (a) we suppose the

variables appear in the form as

(a+ 2b1 + 2c1)x
6
1 + (a+ 2b2 + 2c2)x

6
2 + (a+ 2b3 + 2c3)x

6
3

with the b′is pairwise distinct. We analyse the following possibilities of contractions:

Variables contracted Coefficient of T

x1, x2 2(a+ b1 + b2) + 4(c1 + c2 + δa)

x1, x3 2(a+ b1 + b3) + 4(c1 + c3 + δa)

x1, x4 2(a+ b2 + b3) + 4(c2 + c3 + δa)

Note that at most one of the contractions above gives us a variable at level at least 2. The

other two possibilities yields variables at level exactly 1 and by the assumptions on the

bi′s it is easy to see that we can choose either zeroterm other than a. In the case where

none of these contractions give us a variable at level at least 2, we can choose whichever

zeroterm we want. Now, suppose one of these contractions results in a variable at level at

least 2. Without loss of generality assume this contraction involving x1 and x2. Then we

have a+ b1 + b2 ≡ 0(mod2) and the coefficient of T is 4(β+ c1 + c2 + δa) for some β ∈ R.

So we can either obtain a variable at level at least 3, or a variable at level exactly 2 for

which we can choose the zeroterm to be either possibility other than a.

To prove part (b) we suppose the variables appear in the form as

(a+ 2b1 + 2c1)x
6
1 + (a+ 2b1 + 2c2)x

6
2 + (a+ 2b3 + 2c3)x

6
3

with the b1 6= b3. We analyse the following possibilities of contractions:

Variables contracted Coefficient of T

x1 = x2 = T 2a+ 4(b1 + c1 + c2)

x1 = x3 = T 2(a+ b1 + b3) + 4(c1 + c3)
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In the first contraction, the variable T has level exactly 1 and zeroterm a. If the second

contraction also gives a variable at level 1, then, since b1 6= b2 we must have (without

loss of generality) b1 = a. Indeed, if a, b1, b3 are pairwise distinct, their sum must be

≡ 0 mod 2. So, the zeroterm of T would be b3 6= a and we have two options, one of them

being a.

Finally we analyse part (c). We suppose the variables appear in the form as

(a+ 2b1 + 2c1)x
6
1 + (a+ 2b1 + 2c2)x

6
2 + (a+ 2b1 + 2c3)x

6
3

and all possible ways of contracting two of these variables give us a variable T with

coefficient 2a+ 4(b1 + c) for some c. This variable is at level 1 and have zeroterm a.

�

Corollary 3.9. Suppose we have three variables at level 0 with the same zeroterm a. If

at least two of the oneterms of these variables are equal, then we can contract two of them

to a variable T at level exactly 1 and having zeroterm a. If not, then we can contract two

of them to a variable T at level exactly 1 and we have a choice of two zeroterms for T but

we can not assume that one of them is a. But if we can not create one with zeroterm a,

then we can obtain a new variable at level at least 2.

Proof. If at least two of the variables have the same oneterm, then by parts (b) and (c)

of Lemma 3.8 we can create a new variable at level exactly 1 and having zeroterm a. If

all oneterms are distinct, then by part (a) of Lemma 3.8, either we can create a variable

at level at least 2, or we can obtain a variable at level 1 having zeroterm a.

�

Corollary 3.9 says that if we have three variables at level j all with the same zeroterm

a, so if we are not able to contract two of them to a variable at level exactly j + 1 having

zero term a, then we can contract two of them to a variable at level at least j + 2.



Chapter 4
Additive forms of degree d

In this chapter we prove theorem 1. We restate it here.

Theorem 1. Let K = Q2(
√

5) be the only unramified quadratic extension of Q2. Let

d ∈ N not power of 2. Then Γ(d,K) ≤ d2 + 1.

Proof. Let F be a diagonal form of degree d in N variables and with coefficients in K.

We want to prove that F admits non-trivial zero whenever N > d2. We saw in Chapter 2

that we can choose freely in the class of F with respect to the equivalence relation “ v ”

any representative we want. Here we will choose a representative that is normalized. So

we assume that F satisfies all the properties presented in Theorem 2.3. In particular, if

we set d = 2l ·m, m ≥ 3 odd, and assume N ≥ d2 + 1, we can write

F = F (0) + 2F (1) + 22F (2) + · · ·+ 2d−1F (d−1)

where F (i) is an additive form of degree d in mi variables (the variables in distinct forms

F (i) being distinct) with all coefficients being 6≡ 0(mod2), and we have

m0 + · · ·+mj ≥ (j + 1) · d+ 1 = (j + 1) · 2l ·m+ 1 ≥ (j + 1) · 2l · 3 + 1 (4.1)

for j = 1, · · · , d− 1. In particular, m0 ≥ 2l · 3 + 1.

We will assume first that l ≥ 5 and prove the theorem in this case. Later we will solve

the rest of the cases. We have seen that it is sufficient to construct an (l + 2)-primary

variable. We divide the proof in cases according to the value of m0.
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• Case m0 ≥ 2l · 8− 1.

Remember that by Lemma 3.1 (parts (a) and (b)) we have that, given four variables

at level j, we can contract two of them to a new variable at a level higher than

j. And given three variables at level j, we can contract three of them (or maybe

two) to a new variable at a level higher than j. We will assume that when we make

these contractions the new variable will be at level exactly j + 1. If we can produce

a primary variable at level l + 2 proceeding this way, then it would be easier to

produce a primary variable at level l+ 2 if the jumps on the levels were higher. So,

we have

p1 ≥
2l · 8− 1− 3

2
+ 1 = 2l−1 · 8− 1

and applying reasoning recursively we get pl+1 = 2l−(l+1) · 8 − 1 = 3. So we can

contract these three variables to an (l + 2)-primary and we are done.

Observation From now on, unless stated otherwise, we will always assume that,

when contracting primary variables at level j, the new variable will be at level

exactly j + 1. Furthermore, whenever we want to make reference to parts (a) and

(b) of Lemma 3.1 we will simple cite Lemma 3.1. If we want to reference part (c)

we will make it clear.

• Case 2l · 6− 1 ≤ m0 ≤ 2l · 8− 2.

By Lemma 3.1 we have p1 ≥ 2l·6−4
2

+ 1 = 2l−1 · 6− 1. Recursively we obtain pl ≥ 5

which implies pl+1 ≥ 2. If ml+1 ≥ 1 we are done (just apply Lemma 3.1). If not, we

must have

m0 + · · ·+ml+1 ≥ (l + 2)d+ 1

m0 + · · ·+ml ≥ (l + 2)d+ 1

m1 + · · ·+ml ≥ (l + 2)d+ 1−m0

≥ (l + 2)d+ 1− 2l · 8 + 2

≥ 2l · 7 + 3 , since l ≥ 3.
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We want to produce an (l+ 1)-secondary and then proceed as in case ml+1 ≥ 1. We

assume the worst case: all secondary variables are at level 1. So we have

s1 ≥ 2l · 7 + 3 ≥ 2l · 7− 5.

By part (c) of Lemma 3.1 we have

s2 ≥
s1 − 5

2
= 2l−1 · 7− 5.

Continuing this way we obtain sl+1 ≥ 2 and we are done.

Observation Usually when contracting secondary variables, we need to have abso-

lute certainty of the levels of the new variables. For this reason, when contracting

secondary variables we will always use Part (c) of Lemma 3.1.

• Case 2l · 5− 1 ≤ m0 ≤ 2l · 6− 2.

Proceeding as before, we use Lemma 3.1 and obtain pl ≥ 4. If ml ≥ 1 we can use

the four (l)-primary variables and one (l)-secondary to obtain pl+1 ≥ 2 and then

proceed as we did in the last case. If not, we must have

m0 + · · ·+ml ≥ (l + 1)d+ 1

m0 + · · ·+ml−1 ≥ (l + 1)d+ 1

m1 + · · ·+ml−1 ≥ (l + 1)d+ 1−m0

≥ (l + 1)d+ 1− 2l · 6 + 2

≥ 2l · 6 + 3 , since l ≥ 3.

We want to produce a (l)-secondary variable so we can use the same idea used in

case ml ≥ 1. We assume the worst case: all secondary variables are at level 1. So

we have

s1 ≥ 2l · 6 + 3 ≥ 2l · 6− 5.

By Lemma 3.1 we have

s2 ≥
s1 − 5

2
= 2l−1 · 6− 5.

Continuing this way we obtain sl ≥ 7 and we are done.
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• Case 2l · (9
2
)− 1 ≤ m0 ≤ 2l · 5− 2.

Applying Lemma 3.1 recursively we get pl−1 ≥ 8. If ml−1 ≥ 19 we are done. Indeed,

in this case we can use Lemma 3.1 and obtain sl−1, sl, sl+1 ≥ 1 and eight (l − 1)-

primary and one (l − 1)-secondary give us pl ≥ 4. Proceeding this way we get

pl+2 ≥ 1. Now, if ml−1 ≤ 18 then m1 + · · · + ml−2 ≥ 2l · 7 + 21 and then we can

contract these variables to get sl−1 ≥ 19.

• Case 2l · 4 + 1 ≤ m0 ≤ 2l · (9
2
)− 2

In this case we have m1 ≥ 2l−1 · 3 + 3. We’ll use this secondary variables to help

create more primary variables. Observe that s1 ≥ 2l−1 · 3 − 5 and this implies

sl−1 ≥ 1. Moreover, in the process of obtaining the (l − 1)-secondary at least one

(j)-secondary was left without being contracted for each j ∈ {1, 2, · · · , l − 2}.

Now, we have p1 ≥ 2l·4+1−1
2

= 2l−1 · 4. With the 2l−1 · 4 primary variables at level 1

and one (1)-secondary we obtain p2 ≥ 2l−2 ·4. Continuing like this we obtain pl ≥ 4.

If ml ≥ 7 we are done. If not, then m1 + · · ·+ml−2 > 2l ·10−5 and we can contract

these variables to get sl ≥ 7.

• Case 2l · (7
2
) + 1 ≤ m0 ≤ 2l · 4.

In this case we have m1 ≥ 2l · 2 + 1. We use these variables to construct one (j)-

seconadary for j = 1, · · · , l− 3. We contract the 2l−3 · 28 + 1 variables at level zero

to n = 2l−4 · 28 new variables at higher levels. We’ll denote by ni the number of the

new variables that are at level i, so we have

2l−4 · 28 = n = n1 + · · ·+ nl+1.

Of course, we are not considering the case where nl+2 ≥ 1 since if this happens we

have nothing to do.

Now we’ll prove two auxiliary facts.

Fact I. If
∑
i≥2

ni ≥ 2l−4 · 4, then we can obtain a (l + 2)-primary variable.

Suppose
∑
i≥2

ni ≥ 2l−4 · 4. We assume the worst case: n2 = 2l−4 · 4 and n1 = 2l−4 · 24.

So we have p1 ≥ 2l−4 · 24, s1 ≥ 1 and p2 ≥ 2l−4 · 4. Then, we apply Lemma 3.1 and



38

get

p2 ≥ 2l−4 · 4 +
2l−4 · 24 + 1− 1

2

= 2l−5 · 8 + 2l−5 · 24

= 2l−5 · 32

Again we use the (2)-primary variables and one (2)-secondary to obtain p3 ≥ 2l−6·32.

Continuing this way we obtain pl−2 ≥ 16. Now, if ml−2 ≥ 43, then we can contract

variables and get sl−2, sl−1, sl, sl+1 ≥ 1. With sixteen (l−2)-primary and one (l−2)-

secondary we get pl−1 ≥ 8. Continuing this way we obtain pl+2 ≥ 1. Then, we can

assume ml−2 ≤ 42. But in this case we have

m0 +m1 + · · ·+ml−3 +ml−2 ≥ (l − 1)2l · 3 + 1 ⇒

m1 + · · ·+ml−3 ≥ (l − 1)2l · 3 + 1− 2l · 4− 42

≥ 2l · 12− 2l · 4− 41 since l ≥ 5

= 2l · 8− 41

and even assuming that all of these variables have level 1 we can contract them to

obtain sl−2 ≥ 43 and in this process at least one (j)-secondary is left behind so we

can proceed exactly as we did above.

Fact II. If
∑
i≥3

ni ≥ 2l−4 · 2, then we can obtain a (l + 2)-primary variable.

Fact II can be proved in the same way as fact I has been proved.

By Fact I, we only have to consider the cases where

0 ≤
∑
i≥2

ni < 2l−4 · 4.

We’ll divide the demonstration in two parts.

Part I. 2l−4 · 2 ≤
∑
i≥2

ni < 2l−4 · 4
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We will assume the worst case: n1 = 2l−4 · 24 and n2 = 2l−4 · 2.

Here we use a change of variables to get an equivalent form F 1 and then we will try

to find non-trivial zero for F 1. The change of variables is obtained in the following

way: Let F be our form with all the new variables obtained by the aforementioned

contractions. We use Lemma 2.3 with the change of variables

F 1 =
1

2
F (2x1, · · · , 2xm0 , xm0+1, · · · , xN).

to get the equivalent form F 1. We will denote by m
(1)
i the number of variables of

F 1 at level i, i = 0, 1, · · · , d− 1. It is easy to see that F 1 satisfies

m1
0 ≥ m1 + n1

= m0 +m1 − (m0 − n1)

≥ 2l · 6 + 1−
(

2l · 4− 2l · 24

16

)
= 2l ·

(
7

2

)
+ 1

(4.2)

m1
0 +m1

1 ≥ m1 + n1 +m2 + n2

= m0 +m1 +m2 − (m0 − n1 − n2)

≥ 2l · 9 + 1−
(

2l · 4− 2l · 26

16

)
= 2l · 6 + 1 + 2l ·

(
5

8

)
(4.3)

and

m1
0 + · · ·+m1

j ≥ (j + 1)2l · 3 + 1 + 2l ·
(

5

8

)
(4.4)

for j = 2, · · · , 2l · 3− 1.

Again we use the variables at level zero to produce n1 = 2l−4 · 28 new variables at

higher levels. We denote by n1
i the number of these variables that have level i. By

Fact I, we only have to consider the case
∑
i≥2

n1
i < 2l−4 ·4. So we assume n1

1 ≥ 2l−4 ·24
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and then consider the equivalent form F 2 (obtained by the same change of variables

that we did above, now applied to F 1) that satisfy

m2
0 ≥ m1

1 + n1
1

= m1
0 +m1

1 − (m1
0 − n1

1)

≥ 2l · 6 + 1 + 2l ·
(

5

8

)
− (2l · 4− 2l · 24

16
)

> 2l · 4 + 1

(4.5)

and

m2
0 + · · ·+m2

j ≥ (j + 1)2l · 3 + 1

and since we have already treated the case m0 ≥ 2l · 4 + 1, we can find non-trivial

zero for F 2 and consequently, for F .

Observation From now on, we will keep using the same change of variables used

above. So keep in mind that whenever we say that we will get an equivalent form,

it will be by means of this change of variables.

Part II.
∑
i≥2

ni < 2l−4 · 2.

In this case we can assume n1 ≥ 2l−4 · 26. We construct the equivalent form F 1

that satisfy

m1
0 ≥ m1 + n1

= m0 +m1 − (m0 − n1)

≥ 2l · 6 + 1−
(

2l · 4− 2l · 26

16

)
= 2l · 3 + 1 + 2l ·

(
5

8

)
(4.6)

and

m1
0 + · · ·+m1

j ≥ (j + 1)2l · 3 + 1 + 2l ·
(

5

8

)
.

Again we use the variables at level zero to obtain n1 = 2l−3 · 28 new variables at

higher levels. By Fact I we only have to consider the case
∑
i≥2

n1
i < 2l−4. So we

assume n1
1 ≥ 2l−4 · 24 and then consider the equivalent form F 2 satisfying
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m2
0 ≥ m1

1 + n1
1

= m1
0 +m1

1 − (m1
0 − n1

1)

≥ 2l · 6 + 1 + 2l ·
(

5

8

)
−
(

2l · 4− 2l · 24

16

)
> 2l · 4 + 1

(4.7)

and

m2
0 + · · ·+m2

j ≥ (j + 1)2l · 3 + 1

and by the above cases we know that it is possible to find non trivial zero for F 2.

• 2l · 3 + 1 ≤ m0 ≤ 2l · (7
2
).

Observe that in this case we have m1 ≥ 2l−1 · 5 + 1. We can contract these variables

and get sj ≥ 5 for j = 1, 2, · · · , l−1. We use the variables at level zero to construct

n = 2l−4 · 24 new variables at higher levels. We denote by ni the number of these

new variables that are at level i.

Affirmation. If
∑
i≥2

ni ≥ 2l−4 · 8 then we can obtain a (l + 2)-primary variable.

We assume the worst case: n1 = 2l−4 · 16 and n2 = 2l−4 · 8. Then, using one

(1)-secondary variable and Lemma 3.1 we get

p2 ≥ n2 +
n1 + 1− 1

2

= 2l−4 · 8 + 2l−5 · 16

= 2l−5 · 32

Then, with one (2)-secondary and the (2)-primary variables, using Lemma 3.1 we

get p3 ≥ 2l−6 · 32. Continuing this way we obtain pl ≥ 4. It’s easy to see that if

ml ≥ 7 then we are done. If not we would have m1 + · · · + ml−1 ≥ 2l · 11 − 5 and

we would be able to construct seven (l)-secondary.

So we have the affirmation proved and remains to be analysed the case
∑
i≥2

ni <

2l−4 · 8. In this case we have n1 ≥ 2l−4 · 16 + 1. We consider the equivalent form F 1



42

satisfying

m1
0 ≥ m1 + n1

= m0 +m1 − (m0 − n1)

≥ 2l · 6 + 1−
(

2l ·
(

7

2

)
− 2l − 1

)
= 2l · (7

2
) + 2

(4.8)

and

m1
0 + · · ·+m1

j ≥ (j + 1)2l · 3 + 1

and by the above cases we know that it is possible to find non trivial zero for F 1.

Now we just have to analyse the cases d = 2l ·m with l = 1, 2, 3, 4.

• Case d = 3 · 24

By the proof we just gave for l ≥ 5, we just have to analyse the cases 24 · 3 + 1 ≤

m0 ≤ 24 · 4 since for the remaining cases we only used the hypothesis l ≥ 3. We

divide in subcases.

– Case 63 ≤ m0 ≤ 64.

We have m1 ≥ 33 and, by Lemma 3.1, we can get s1, s2, s3 ≥ 1. We contract

the variables at level zero to n = 31 new variables at higher levels. We denote

by ni the number of these new variables at level i so

31 = n1 + n2 + · · ·+ n5.

We affirm that if n2 + · · ·+ n5 ≥ 16 then we can create a (6)-primary. Indeed,

assuming the worst case n2 = 16, then with these (2)-primary and one (2)-

secondary we obtain p3 ≥ 8 and repeating the argument, p4 ≥ 4. If m4 ≥ 7 we

are done, since we can use Lemma 3.1 to obtain s4, s5 ≥ 1 and then create a

(6)-primary. But if m4 ≤ 6 we get a bigger m1 and then we can create seven

(4)-secondary.

So we can assume n1 ≥ 15. Suppose n1 = 15, then we can contract these

variables to seven variables at higher levels. We get n2 + · · · + n5 ≥ 15 + 7 =



43

22 ≥ 16 and we are done. If n1 = 16 we use these variables and one (1)-

secondary to get seven new variables and we are again in the situation just

described. This same argument shows us that we only have to analyse the

cases n1 = 31.

So we consider the equivalent form F 1 satisfying

m1
0 ≥ m1 + n1

= m0 +m1 − (m0 − n1)

≥ 2 · 24 + 32

= 4 · 24

(4.9)

and m1
0 +m1

1 ≥ 7 · 24, m1
0 + · · ·+m1

i ≥ (i+ 1)3 · 24 + 24.

and it is sufficient to find non trivial solution for F 1. By proof of the case

l ≥ 5 we can assume m1
0 = 64. And repeating the argument we just used, we

obtain an equivalent form F 2 for which

m2
0 ≥ m1

1 + 31

= m1
0 +m1

1 − (m1
0 − 31)

≥ 5 · 24 + 31

(4.10)

and m2
0+· · ·+m2

i ≥ (3i+1)24+31. And for the form F 2 we can find nontrivial

solution.

– Case 61 ≤ m0 ≤ 62

Again we use the (1)-secondary variables to obtain s1, s2, s3 ≥ 1. We contract

the variables at level zero to n = 30 primary variables at higher levels. The

same argument used in the last case shows that we can assume n1 ≥ 29.

So we create the equivalent form F 1 for which

m1
0 ≥ m1 + 29

= m0 +m1 − (m0 − 29)

≥ 6 · 24 + 1 + 29− (4 · 24 − 2)

= 4 · 24

(4.11)

and for the form F 1 we can find nontrivial solution.
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– Case 57 ≤ m0 ≤ 60.

We use the (1)-secondary variables to obtain s1, s2, s3 ≥ 1. We contract the

variables at level zero to n = 28 primary variables at higher levels. The same

argument used in the first case shows that we can assume n1 ≥ 25.

So we create the equivalent form F 1 for which

m1
0 ≥ m1 + 25

= m0 +m1 − (m0 − 25)

≥ 6 · 24 + 1 + 25− (4 · 24 − 4)

= 2 · 24 + 2 · 24 − 2

= 4 · 24 − 2

(4.12)

and for the form F 1 we can find nontrivial solution.

– Case 49 ≤ m0 ≤ 56.

We use the (1)-secondary variables to obtain s1, s2, s3 ≥ 1. We contract the

variables at level zero to n = 24 primary variables at higher levels. The same

argument used in the first case shows that we can assume n1 ≥ 17.

So we create the equivalent form F 1 for which

m1
0 ≥ m1 + 17

= m0 +m1 − (m0 − 17)

≥ 6 · 24 + 1 + 17− (4 · 24 − 8)

= 2 · 24 + 2 · 24 − 6

= 4 · 24 − 6

(4.13)

and for the form F 1 we can find nontrivial solution.

• Case d = 3 · 23 Our goal now is to obtain (5)-primary variables. By the proof we

gave for l ≥ 5, we just have to analyse the cases 23 · 3 + 1 ≤ m0 ≤ 23 · 4. We divide

in subcases.

– Case 31 ≤ m0 ≤ 32.
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Here we have m1 ≥ 17 so we can guarantee s1, s2 ≥ 1. We use the variables at

level zero to create n = 15 new variables at higher levels. As usual we denote

by ni the number of these new variables that are at level i. Then

n = n1 + · · ·+ n4.

We assert that if n2 + · · ·+ n4 ≥ 8, then we can create a (5)-primary. Indeed,

assuming the worst case n2 = 8, we use one (2)-secondary and the (2)-primary

variables to get p3 ≥ 4. Assume m3 ≥ 7. This allows us to obtain s3, s4 ≥ 1.

Then with four (3)-primary and one (3)-secondary we get p4 ≥ 2. These two

(4)-primary together with one (4)-secondary give us a (5)-primary. So, we can

assume m3 ≤ 6. In this case we have

m0 + · · ·+m3 ≥ 12 · 23 + 1

⇒ m1 +m2 ≥ 12 · 23 + 1− 32− 6

= 8 · 23 − 5

and we can use these variables to obtain s3 ≥ 7 and proceed as before.

So we can assume that n1 ≥ 8. If n1 = 8, then we use one (1)-secondary and

the (1)-primary to get four new variables at level at least 2. Then we stay with

n2 + · · · + n4 ≥ 7 + 4 = 11 > 8 and we are done. Following this reasoning we

conclude that the only delicate case is n1 = 15.

For solve this case we consider the equivalent form F 1 that satisfies

m1
0 ≥ m1 + 15

= m0 +m1 − (m0 − 15)

≥ 6 · 23 + 1 + 15− 32

= 4 · 23

(4.14)

and m1
0 + · · ·+m1

i ≥ (i+ 1)3 · 23 + 23 for i = 1, . . . , d− 1.

It is sufficient to find non trivial solution to F 1. By our results for l ≥ 5

we can assume m1
0 = 4 · 23 and use the exact same approach we used above.

That is, use the variables at level zero to create n = 15 new variables at higher
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levels. Again we can assume n1 = 15 and consider a second equivalent form

F 2 satisfying

m2
0 ≥ m1

1 + 15

= m1
0 +m1

1 − (m1
0 − 15)

≥ 7 · 23 + 15− 32

= 39

(4.15)

and for this form we can obtain nontrivial solution.

– 29 ≤ m0 ≤ 30. We use the (1)-secondary variables to obtain s1, s2 ≥ 1. We

contract the variables at level zero to n = 14 primary variables at higher levels.

Using the same reasoning as above we can assume n1 ≥ 13. So we create the

equivalent form F 1 satisfying

m1
0 ≥ m1 + 13

= m0 +m1 − (m0 − 13)

≥ 6 · 23 + 1 + 13− 30

= 32

(4.16)

and we can find non trivial solution for this form.

– 25 ≤ m0 ≤ 28.

We use the (1)-secondary variables to obtain s1, s2 ≥ 1. We contract the

variables at level zero to n = 12 primary variables at higher levels. Using the

same reasoning as above we can assume n1 ≥ 9. So we create the equivalent

form F 1 satisfying

m1
0 ≥ m1 + 9

= m0 +m1 − (m0 − 9)

≥ 6 · 23 + 1 + 9− 28

= 30

(4.17)

and we can find non trivial solution for this form.
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• d = 3 · 22.

Now we have to create a (4)-primary. As usual, we divide in cases according to m0.

– m0 ≥ 8 · 22 − 1. This case is just Lemma 3 part I applied recursively.

– 23 ≤ m0 ≤ 30.

We use part I of Lemma 3.1 recursively to obtain p3 ≥ 2. If we have m3 ≥ 1 we

are done since we can contract the (3)-primary variables with one (3)-secondary

to get a (4)-primary. So, assume m3 = 0. This implies that

m0 + · · ·+m3 ≥ 12 · 22 + 1

⇒ m1 +m2 ≥ 12 · 22 + 1− 30

= 19

and with these variables we can create a (3)-secondary.

– 21 ≤ m0 ≤ 22. Now we have m1 ≥ 3. We use the variables at level zero to

get p1 ≥ 10. These variables with one (1)-secondary give us p2 ≥ 5 which

implies p3 ≥ 2. If m3 ≥ 1 we are done since we can contract it with the two

(3)-primary to one (4)-primary. Assuming m3 = 0 we get m1 + m2 ≥ 27 and

we can create a (3)-secondary.

– 17 ≤ m0 ≤ 20.

We have m1 ≥ 5. we’ll analyse two cases.

First we suppose that at least three of the (1)-secondary variables have the

same zeroterm. Then we apply part III of Lemma 3.1 and stay with s1, s2 ≥ 1.

Applying Part I of Lemma 3.1 to the variables at level zero we get p1 ≥ 8.

With these (1)-primary and one (1)-secondary we get p2 ≥ 4. And with these

four (2)-primary and one (2)-secondary we get p3 ≥ 2. If m3 ≥ 1 we are done.

If not, we have m1 +m2 ≥ 29 and we can create a (3)-secondary.

Now we analyse the case where at most two of the five (1)-secondary have the

same zeroterm. In this case, we necessarily have two pairs of (1)-secondary with

distinct zeroterms. Each of these pairs, together with one (1)-primary give us
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a (2)-primary. With the six remaining (1)-primary and one (1)-secondary we

get three more (2)-primary. So, we have p2 ≥ 5. Applying part I of Lemma

3.1 to these variables we obtain p3 ≥ 2. If m3 ≥ 1 we are done. If not, we do

as we did above and create a (3)-secondary.

– 15 ≤ m0 ≤ 16.

Since m1 ≥ 9, part III of Lemma 3.1 give us s1, s2 ≥ 1. We apply part I of

Lemma 3.1 to the variables at level zero and obtain n = 7 new variabels at

higher levels. As usual we denote by ni the number of these variables that are

at level i so we have

n = 7 = n1 + n2 + n3.

We assert that if n2+n3 ≥ 4 we can create a (4)-primary. Indeed, assuming the

worst case n2 ≥ 4, we use these four (2)-primary and one (2)-secondary to get

p3 ≥ 2. If m3 ≥ 1 we are done. If not we have m1 +m2 ≥ 31 and we can create

a (3)-secondary. So we can assume n1 ≥ 4. In fact, putting some thought we

can easily see that if 4 ≤ n1 ≤ 6, then we can contract the (1)-primary to get

n2 + n3 ≥ 4. So we assume n1 ≥ 7. Then we create the equivalent form F 1

satisfying

m1
0 ≥ m1 + 7

= m0 +m1 − (m0 − 7)

≥ 6 · 22 + 1 + 7− 16

= 16

(4.18)

and m1
0 + · · ·+m1

i ≥ (i+ 2)3 · 22− 8. It is sufficient to find nontrivial solution

to F 1. We only have to analyse the case m1
0 = 16. Proceeding exactly as we

just did, we get a second equivalent form F 2 satisfying

m2
0 ≥ m1

1 + 7

= m1
0 +m1

1 − (m1
0 − 7)

≥ 28 + 7− 16

= 19

(4.19)
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and for this form we can obtain a non trivial solution.

– 13 ≤ m0 ≤ 14. We use the (1)-secondary variables to obtain s1, s2 ≥ 1. We

contract the variables at level zero to n = 16 primary variables at higher levels.

Using the same reasoning as above we can assume n1 ≥ 6. So we create the

equivalent form F 1 satisfying

m1
0 ≥ m1 + 6

= m0 +m1 − (m0 − 6)

≥ 6 · 22 + 1 + 6− 14

= 17

(4.20)

and we can find non trivial solution for this form.

• d = 3 · 2

In the second part of this work, we show that Γ(6,Q2(
√

5)) ≤ 29. In particular,

Artin’s conjecture holds. But for completeness we give here a more elementary proof

that avoids some information of the sixth powers in OQ2(
√
5)).

Here we have to construct a (3)-primary. Again we divide in cases according to m0.

– m0 ≥ 15. In This case we just apply part I of Lemma 3.1 successively.

– 11 ≤ m0 ≤ 14.

Here we analyse two cases. First we assume m2 ≥ 1. Then we use the variables

at level zero to create five (1)-primary and use these five (1)-primary to get

p2 ≥ 2. And with one (2)-secondary and two (2)-primary we get a (3)-primary.

Now assume m2 = 0. This implies that m1 ≥ 5. If we have at least three

of these (1)-secondary variables having the same zeroterm we use Part III of

Lemma 3.1 and create a (2)-secondary and proceed as before. So we assume

that at most two of these five (1)-secondary have same zeroterm. In this case we

can construct two pairs of (1)-secondary with distinct zeroterms. Like before,

we construct five (1)-primary. Each of the two pairs of (1)-secondary together
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with one (1)-primary give us a (2)-primary. With the three remaining (1)-

primary we get a third (2)-primary. Finally, with three (2)-primary, we can

get a (3)-primary.

– 9 ≤ m0 ≤ 10.

Here we have m1 ≥ 3. With the variables at level zero we can create four

(1)-primary. These four together with one (1)-secondary give us p2 ≥ 2. If

m2 ≥ 1 we are done. If not, we must have m1 ≥ 9 and by Part III of Lemma

3.1 we can create a (2)-secondary.

– 7 ≤ m0 ≤ 8.

Now we have m1 ≥ 5. We use the variables at level zero to create n = 3

new variables at higher levels. As usual we denote by ni the number of these

variables that are at level i so we have

3 = n1 + n2.

Suppose n2 ≥ 2. If m2 ≥ 1, then we can contract these three variables to

a (3)-primary. If m2 = 0 we must have m1 ≥ 11 and we can create a (2)-

secondary. So we can assume n1 ≥ 2. We again appeal to the equivalent form

F 1 satisfying

m1
0 ≥ m1 + 2

= m0 +m1 − (m0 − 2)

≥ 7

(4.21)

and

m1
0 +m1

1 ≥ 14

m1
0 +m1

1 +m1
2 ≥ 20

m1
0 +m1

1 +m1
2 +m1

4 ≥ 26

(4.22)

and it is sufficient to find non trivial solution for F 1. We can assume 7 ≤ m1
0 ≤

8. And repeating the arguments just used, we obtain a second equivalent form

F 2 satisfying
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m2
0 ≥ 8

m2
0 +m2

1 ≥ 15

m2
0 +m2

1 +m2
2 ≥ 21

(4.23)

and it is sufficient to find non trivial zero for F 2. We can assume m2
0 = 8.

Repeating the same argument we get a third equivalent form F 3 satisfying

m3
0 ≥ 9

m3
0 +m3

1 ≥ 16
(4.24)

and for this form we can find non trivial solution.

• d = 3.

This is the easiest case. We only have to produce a (1)-primary. But since m0 ≥ 3

we use Lemma 3.1 and get it. This completes the proof of the theorem.

�



Chapter 5
Additive forms of degree 6

In this chapter we prove Theorem 2. We restate it here.

Theorem 2. Let K = Q2(
√

5) be the only unramified quadratic extension of Q2. Then

Γ(6, K) ≤ 29.

We give the proof of this theorem in the first section of this chapter. In the second

section we present a lower bound for Γ(6, K) that was found by Knapp.

5.1 Upper bound for Γ(6,Q2(
√

5))

Proof of Theorem 2. Let F be a diagonal form with coefficients in K in 29 variables

and with degree 6 . We assume F normalized. Remember (Lemma 2.3) that this implies

m0 ≥ 5

m0 +m1 ≥ 10

m0 +m1 +m2 ≥ 15

m0 +m1 +m2 +m3 ≥ 20

m0 +m1 +m2 +m3 +m4 ≥ 25

m0 +m1 +m2 +m3 +m4 +m5 = 29.

(5.1)

We want to find non-trivial zero for F . By Hensel’s Lemma, it is sufficient to construct

a (3)-primary variable. We again divide our proof in cases, according to the value of m0.

But first, we make some observations.
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√

5)) 53

1 - Again we emphasize that when contracting primary variables, we’ll assume the

worst case scenario, that is, the jump in the level being of exactly one unit (unless stated

otherwise). It is easy to see that, if we can obtain a (3)-primary under this assumption,

then we would also be able to do the same if the jumps were higher.

2 - Lemma 3.1 is again our basic tool when contracting variables. So, in order to

avoid a massive use of the same quotation, whenever we say that a set of variables can be

contracted to a new variable of higher level, and no reference is given, keep in mind that

Lemma 3.1 is being used.

So, lets have some fun.

• Case m0 ≥ 15.

This is easy. Just apply Lemma 3.1 repeatedly and get p3 ≥ 1.

• Case 13 ≤ m0 ≤ 14.

If m2 ≥ 1, then using Lemma 3.1 repeatedly we get p2 ≥ 2. Two (2)-primary and

one (1)-secondary give us one (3)-primary. Now, if m2 = 0, then we’ll have m1 ≥ 1

(see (5.1)). Applying Lemma 3.1 to the variables at level zero we obtain six (1)-

primary. These six (1)-primary and one (1)-secondary give us three (2)-primary.

We contract these three to one (3)-primary.

• Case 11 ≤ m0 ≤ 12.

If m2 ≥ 1 we proceed as we did above. Suppose m2 = 0. This implies m1 ≥ 3.

If the three (1)-secondary have all the same zeroterm, then part (c) of Lemma 3.1

says that we can create a (2)-secondary and then proceed as in case m2 ≥ 1. So we

suppose that not all (1)-secondary have the same zeroterm. We’ll try to create sets

containing three variables at level zero all having distinct zeroterms. The maximum

number of these sets that we can form will be denoted by I3. By Corollary 3.5 we

can assume I3 = 0. So, we’ll have only two zeroterms represented by the variables

at level zero. Let them be a and b. We assume the worst case m0 = 11 and analyse

the possibilities.
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Possibility I - 11a (meaning we have eleven elements with zeroterm a) - In this case

we use Corollary 3.9 repeatedly to create two (2)-primary having zeroterm a (see

the observation following Corollary 3.9). And then we contract these two variables

to a (3)-primary.

Possibility II - 10a, 1b - If one of the (1)-secondary have zeroterm a we proceed

as above. If not, we have the other two zero terms (b and c) represented. So we

use Corollary 3.9 to create a (1)-primary having zeroterm a. This (1)-primary and

the (1)-secondary having zeroterms b and c can be contracted to a (2)-primary.

We remain with 8 variables at level zero having zeroterm a. We contract these

eight to four (1)-primary. These four together with the (1)-secondary that was left

behind can be contracted to two more (2)-primary. Three (2)-primary give us one

(3)-primary.

Possibility III - 9a, 2b - Same reasoning as Possibility II.

Possibility IV - 8a, 3b - We know that one of the (1)-secondary must have zeroterm

a or b. Without loss of generality we assume it is a. We use Corollary 3.9 to create

a (1)-primary having zeroterm a. This (1)-primary and the (1)-secondary with

zeroterm a can be contracted to a (2)-primary. With the remaining variables at

level zero we create four (1)-primary. These four and one (1)-secondary give us two

more (2)-primary. Three (2)-primary give us one (3)-primary.

Possibility V - 7a, 4b - Same reasoning as Possibility IV.

Possibility VI - 6a, 5b - Same reasoning as Possibility IV.

• Case m0 = 10. Here we can assume m2 ≥ 1. Indeed, suppose m2 = 0. Then we

would have m1 ≥ 5. If three of the (1)-secondary have the same zeroterm, then part

(c) of Lemma 3.1 says that we can contract two of them to a (2)-secondary. So,

assume this does not happen. Then we would have all three zeroterms appearing.

We choose three (1)-secondary having all distinct zeroterms. By Lemma 3.3 either

we can contract these three to a (4)-secondary (which would solve our problem by

Hensel’s Lemma) or to a (2)-secondary. So, we assume m2 ≥ 1.
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Suppose first that I3 ≥ 2. Then we can select three variables having the same

zeroterm and use two of them to create a (1)-primary. We can do this in such a

way that after the contraction we still have I3 ≥ 2. Then Corollary 3.4 give us one

(3)-primary.

Now we assume I3 = 1. We would have three variables having distinct zeroterms

a, b and c and the others all having zeroterms a or b (Without loss of generality).

We have the following possibilities.

Possibility I - 1a, 1b, 1c, 7a - If the zeroterm of the (2)-secondary if different from

a we apply Corollary 3.7 and get a (2)-primary having this same zeroterm. We

then contract these two variables to a (3)-primary. So we assume the zeroterm of

the (2)-secondary being a. With seven variables at level zero having zeroterm a

we create one (2)-primary with zeroterm a (Corollary 3.9). Then we contract the

(2)-secondary and the (2)-primary to a (3)-primary.

Possibility II - 1a, 1b, 1c, 6a, 1b - Same thing we did in possibility I.

Possibility III - 1a, 1b, 1c, 5a, 2b - We can use Corollary 3.9 to create one (1)-

primary having zeroterm a and one (1)-primary having zeroterm b. Then we have

I3 = 1 and there are two variables at level 1 having distinct zeroterms. We are done

by Corollary 3.5.

Possibility IV - 1a, 1b, 1c, 4a, 3b - Same thing we did in possibility III.

It remains the case I3 = 0. Now we’ll have just two types of zeroterms being

represented by the variables at level zero. We assume these types being a and b.

We’ll have the following possibilities.

Possibility I - 11a - If the zeroterm of the (2)-secondary is different from a we

are done by Corollary 3.7. Assume it is a. Then we apply Corollary 3.9 repeatedly

and get a (2)-primary with zeroterm a. We contract this (2)-primary and the (2)-

secondary to a (3)-primary.

The same reasoning used in Possibility I can be applied to all possibilities that have

at least seven variables with zeroterm a. So we skip these cases.
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Possibility II - 6a, 5b - Here we can use Corollary 3.9 to create four (1)-primary,

two of them having zeroterm a and the other two having zeroterm b. Each pair

of these can be contracted to a (2)-primary. Then, two (2)-primary and one (2)-

secondary give us one (3)-primary.

• Case m0 = 9. We have m1 ≥ 1 and again we can assume m2 ≥ 1.

If I3 ≥ 2, then we are done by Corollary 3.4. Suppose I3 = 1. We analyse all the

possibilities separately.

Possibility I - 1a, 1b, 1c, 6a - If the (2)-secondary has zeroterm different from a

then we apply Corollary 3.7 and we are done. If it is a, then Corollary 3.9 applied

repeatedly give us a (2)-primary with zeroterm a, and we contract it with the (2)-

secondary to a (3)-primary.

Possibility II - 1a, 1b, 1c, 5a, 1b - Again we can assume the (2)-secondary having

zeroterm a. If the zeroterm of the (1)-secondary is also a, then we use Corollary

3.9 to create a (2)-primary with zeroterm a and we are done. If not, then we use

Corollary 3.9 to create a (1)-primary with zeroterm a. Then, I3 = 1 and we have

two variables at level 1 with distinct zeroterms and we are done by Corollary 3.5.

Possibility III - 1a, 1b, 1c, 4a, 2b - Same thing we did in Possibility II.

Possibility IV - 1a, 1b, 1c, 3a, 3b - We use Corollary 3.9 to create one (1)-primary

with zeroterm a and another with zeroterm b. Then Corollary 3.5 give us a (3)-

primary.

Now we analyse the case I3 = 0. We’ll have just two types of zeroterms being

represented by the variables at level zero. We assume these types being a and b. It

is easy to see, that it will always be possible to form four pairs of variables at level

zero such that the variables of each pair have the same zeroterm. Each of these pairs

can be contracted to a (1)-primary. Four (1)-primary and one (1)-secondary give us

two (2)-primary. Two (2)-primary and one (2)-secondary give us a (3)-primary.

• Caso m0 = 8. Now we have m1 ≥ 2 and again we can assume m2 ≥ 1.
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If I3 = 2 then we are done by Corollary 3.4. Assume I3 = 1. By Corollary 3.5 we

can assume the two (1)-secondary variables having the same zeroterm. We analyse

the possibilities.

Possibility I - 1a, 1b, 1c, 5a - By Corollary 3.7 we can assume the (2)-secondary

having zeroterm a. If the (1)-secondary variables have zeroterm a, then we use

Corollary 3.9 to create a (2)-primary with zeroterm aand then contract it with one

(2)-secondary obtaining a (3)-primary. If not, then we use the same lemma to create

a (1)-primary having zeroterm a. So we stay with I3 = 1 and two variables at level

1 having distinct zeroterms. Then we are done by Corollary 3.5.

Possibility II - 1a, 1b, 1c, 4a, 1b - Same thing we did in Possibility I.

Possibility III - 1a, 1b, 1c, 3a, 2b - Here we can use Lemma 3.9 to create one (1)-

primary with zeroterm a and one (1)-primary with zeroterm b. Then we are done

by Corollary 3.5.

Now we assume I3 = 0. The possibilities are:

Possibility I - 8a - If the zeroterm of the (2)-secondary is different from a we are

done by Corollary 3.7. Assume it is a. Then we apply Corollary 3.9 repeatedly

and get a (2)-primary with zeroterm a. We contract this (2)-primary and the (2)-

secondary to a (3)-primary.

Possibility II - 7a, 1b - Same thing we did in possibility I.

possibility III - 6a, 2b - We contract three pairs of variables having zeroterm a

to three three (1)-primary and the pair of variables with zeroterm b to a fourth

(1)-primary. With four (1)-primary and one (1)-secondary we get two (2)-primary.

Two (2)-primary and one (2)-secondary give us one (3)-primary.

Before we start the next case we make an observation.

Observation. Suppose we have two variables at level zero with same zeroterm a

and same oneterm. Then we can contract them to a variable T at level 1 having

zeroterm a and we have a choice of two possible oneterms for T .
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Indeed, Consider the two variables with their respective coefficients

(a+ 2b+ 22c1)x
6, (a+ 2b+ 22c2)y

6.

Contracting them we get a new variable T with cofficient 2a + 4(b + c1 + c2 + δa).

So we have two possibilities for the oneterm of T according to δa = 0 or δa = a.

Possibility IV - 5a, 3b - Again we can assume the zeroterm of the (2)-secondary

being a (Corollary 3.7).

Suppose one of the (1)-secondary having zeroterm a. Then we use Corollary 3.9

to create a (2)-primary with zeroterm a and we are done. Now suppose one of

the (1)-secondary having zeroterm b. Then we use Corollary 3.9 to create one (1)-

primary with zeroterm b and contract it with the (1)-secondary with zeroterm b to

a (2)-primary. Then we use Corollary 3.9 to create two (1)-primary with zeroterm

a. We contract these two to a second (2)-primary. Two (2)-primary and one (2)-

secondary give us one (3)-primary. Remains to be analysed the case where the two

(1)-secondary variables have zeroterm c. If they also have the same oneterm, then

we would be able to contract them to a (2)-secondary having zeroterm c (Corollary

3.9) and then we would be done by Corollary 3.7. So we assume they have distinct

oneterms. We use Corollary 3.9 to create two (1)-primary variables having zeroterm

a and one (1)-primary having zeroterm b. If the two (1)-primary having zeroterm

a also have the same oneterm, then we can contract them to a (2)-primary with

zeroterm a (Corollary 3.9), and we are done, since we can contract it with the (2)-

secondary to a (3)-primary. So, the critical situation is: We have two (1)-primary

having zeroterm a and distinct oneterms, one (1)-primary with zeroterm b and

two (2)-secondary with zeroterm c and distinct oneterms. The coefficients of these

variables mod8 are represented bellow:

2a+ 22γ1, 2a+ 22γ2, 2b+ 22β, 2c+ 22λ1, 2c+ 22λ2

where λ1 6= λ2 and γ1 6= γ2.

Keep in mind that, by the observation we did above, we can choose the oneterm γ1

between two options. Indeed, in the five variables with same zeroterm from which
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we selected two in order to contract them to the new (1)-secondary with zeroterm a

and ondeterm γ1, at least two of them had the same oneterm (pigeonhole principle).

We have four possible ways to contract three variables with distinct zeroterms

between the five above. The possible results are

1 22(1 + α + γ1 + β + λ1)

2 22(1 + α + γ1 + β + λ2)

3 22(1 + α + γ2 + β + λ1)

4 22(1 + α + γ2 + β + λ2)

If at least three zeroterms are represented by these four possibilities, we are done.

Indeed, if one of them is zero we have a (3)-primary. If not, we choose the contraction

that give us a (2)-primary having zeroterm a and then contract the new variable

with the (2)-secondary to a (3)-primary. Note that the first three ways to contract

the variables will not be all different if, and only if,

γ1 + λ2 = λ1 + γ2.

If this is the case, we just choose the second option for γ1 (guaranteed by the

observation above) and proceed as before.

Possibility V - 4a, 4b - Same thing we did in Possibility III.

Before we start the next case, we make a little pause in order to highlight the following

fact: We are halfway through the demonstration and we already have a partial result.

That is, we already know that:

Partial Result. If F is an additive form of degree 6, with coefficients in OK and satisfy

m0 ≥ 8

m0 +m1 ≥ 10

m0 +m1 +m2 ≥ 15

then we can find nontrivial zero for F .

Our strategy to attack the next case is to obtain an equivalent form satisfying these

hypothesis.
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• Case m0 = 7. Here we have m1 ≥ 3 and again we can assume m2 ≥ 1.

If I3 ≥ 2 we are done by Corollary 3.4. Assume I3 = 1. By Corollary 3.5 we

can assume the (1)-secondary variables having the same zeroterm. We analyse the

possibilities.

Possibility I - 1a, 1b, 1c, 4a - If the (1)-secondary variables have zeroterm distinct

from a we use Corollary 3.9 to create a (1)-primary with zeroterm a and we are done

by Corollary 3.5. If it is a, then we use the same lemma to create a (1)-primary with

zeroterm a and contract it with one (1)-secondary to a (2)-primary. We contract

two variables at level zero with zeroterm a to a (1)-primary and still have I3 = 1,

which give us a second. Two (1)-primary and one (1)-secondary give us a second

(2)-primary. Two (2)-primary and one (2)-secondary give us one (3)-primary.

Possibility II - 1a, 1b, 1c, 3a, 1b - If the (1)-secondary variables have zeroterm

distinct from a we use Corollary 3.9 to create a (1)-primary with zeroterm a and we

are done by Corollary 3.5. If it is a, then we use the same lemma to create a (1)-

primary with zeroterm a and contract it with one (1)-secondary to a (2)-primary.

With two pairs of variables at level zero having the same zeroterm we obtain two (1)-

primary. These two (1)-primary and one (1)-secondary give us a second (2)-primary.

Two (2)-primary and one (2)-secondary give us one (3)-primary.

Possibility III - 1a, 1b, 1c, 2a, 2b - We use Corollary 3.9 to create two (1)-primary

with distinct zeroterms (a and b). Then we are done by Corollary 3.5.

Remains the case I3 = 0. Remember that, since our form is normalized we have

m0 = 7

m0 +m1 ≥ 10

m0 +m1 +m2 ≥ 15

m0 +m1 +m2 +m3 ≥ 20

m0 +m1 +m2 +m3 +m4 ≥ 25

m0 +m1 +m2 +m3 +m4 +m5 = 29.
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With six of the seven variables at level zero we can obtain three new variables at

higher levels. It is easy to see that if at least one of these variables has level higher

than 1, then we can create a (3)-primary. So we assume all variables at level 1.

Next we use Lemma 2.3 and consider the change of variables

F 1 =
1

2
F (2x1, · · · , 2xm0 , xm0+1, · · · , x29).

This give us an equivalent form F 1. We denote by m1
i the number of variables of

the form F 1 that are at level i . Then we have

m1
0 ≥ m1 + 3 ≥ 6

m1
0 +m1

1 ≥ m1 + 3 +m2 = m0 +m1 +m2 − (m0 − 3) ≥ 11

and analogously

m1
0 +m1

1 +m1
2 ≥ 16

m1
0 +m1

1 +m1
2 +m1

3 ≥ 21

m1
0 +m1

1 +m1
2 +m1

3 +m1
4 ≥ 25

m1
5 = 1 (since we only used six variables at level 0)

And it is sufficient to find nontrivial solution for F 1. If m1
0 ≥ 8 we appeal to our

partial result and we are done. If m1
0 = 7, repeating the same argument twice, we

find an equivalent form F 3 satisfying the hypothesis of our partial result. So we

only have to analyse the case m1
0 = 6. We use the six variables at level zero in

contractions in order to produce two variables at higher levels. If one of them has

level higher than 2 we have nothing to do. Same thing goes if the two of them have

level 2. So we have to analyse two possibilities.

Possibilite I - Both variables at level 1.
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We proceed as before and obtain an equivalent form F 2 satisfying

m2
0 = 7

m2
0 +m2

1 ≥ 12

m2
0 +m2

1 +m2
2 ≥ 17

m2
0 +m2

1 +m2
2 +m2

3 ≥ 21

m2
4 = 1

and repeating the argument one more time we get another equivalent form F 3 that

satisfy the hypothesis of our partial result and we are done.

Possibilite II - One variable at level 1 and one at level 2.

We proceed as before and get an equivalent form F 2 satisfying

m2
0 = 6

m2
0 +m2

1 ≥ 12

m2
0 +m2

1 +m2
2 ≥ 17

m2
0 +m2

1 +m2
2 +m2

3 ≥ 21

m2
4 = 1

and it is sufficient to find nontrivial solution for F 2. If m2
0 ≥ 8 we have nothing to

do. If m2
0 = 7 then we repeat the same argument and find an equivalent form F 3

satisfying the hypothesis of our partial result. So we suppose m3
0 = 6. We contract

these six variables to two new variables at higher levels. Again we only have to

analyse two cases. If the two new variables are at level 1, then we repeat the same

argument and obtain an equivalent form F 3 satisfying the hypothesis of our partial

result and we are done. If one is at level 1 an the other at level 2, we construct an
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equivalent form F 3 satisfying

m3
0 = 7

m3
0 +m3

1 ≥ 13

m3
0 +m3

1 +m3
2 ≥ 17

m3
3 = 1

and repeating the same argument we find an equivalent form F 4 satisfying

m4
0 = 9

m4
0 +m4

1 ≥ 13

m4
2 = 1

and proceeding as in cases m0 ≥ 9 we can obtain a nontrial zero for F 4. We observe

that the extra variable at level 2 that remained after so many changes of variables

is of primal importance. This justify the separate approach of the cases I3 6= 0.

• Case m0 = 6. The strategy here is similar to what was done in Case m0 = 7.

Now that we have proved that the theorem is valid for normalized forms satisfying

m0 ≥ 7 one is tempted to use a second partial result as we did above and try to

obtain an equivalent form F 1 satisfying m1
0 ≥ 7. But there is a little problem in

that. Suppose we make one change of variables and get an equivalent form F 1

satisfying m1
0 ≥ 7 and then try proceed as in case m0 = 7. We would need more

changes of variables that we could perform. So, we have to be more careful here.

We use four (maybe five) of the six variables at level zero in contractions to get two

new variables at higher levels. If one of them is at a level higher than two we are

done. Same thing goes if both are at level 2. So we analyse the two possibilities

that are left.

Possibility I - Both variables at level 1.

We use Lemma 2.3 and consider the change of variables

F 1 =
1

2
F (2x1, · · · , 2xm0 , xt+1, · · · , x29).
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This give us an equivalent form F 1 satisfying

m1
0 ≥ 6

m1
0 +m1

1 ≥ 11

m1
0 +m1

1 +m1
2 ≥ 16

m1
0 +m1

1 +m1
2 +m1

3 ≥ 21

m1
0 +m1

1 +m1
2 +m1

3 +m1
4 ≥ 25

m1
5 ≥ 1

and it is sufficient to find nontrivial zero for F 1. We already know that if m1
0 ≥ 8

we can find it. If m1
0 = 7, we repeat the same process twice and find an equivalent

form F 3 for which the hypothesis of our partial result are satisfied and we are done.

Suppose m1
0 = 6. We use the variables at level zero to create two new variables of

higher levels. Again we only have to analyse two cases. If the two new variables

are at level one, we use the same change of variables one more time and obtain an

equivalent form F 2 satisfying

m2
0 = 7

m2
0 +m2

1 ≥ 12

m2
0 +m2

1 +m2
2 ≥ 17

m2
0 +m2

1 +m2
2 +m2

3 ≥ 21

m2
4 ≥ 1

m2
5 ≥ 1

and repeating the process one more time we get an equivalent form F 3 satisfying

the hypothesis of our partial result. Now, if one of the new variables is at level 1
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and the other at level 2, this process would give us an equivalent form F 2 satisfying

m2
0 = 6

m2
0 +m2

1 ≥ 12

m2
0 +m2

1 +m2
2 ≥ 17

m2
0 +m2

1 +m2
2 +m2

3 ≥ 21

m2
4 ≥ 1

and we try to find nontrivial solution for F 2. If m2
0 ≥ 8 we are done. If m2

0 = 7 we

just have to repeat the same argument one more time. So we assume m2
0 = 6. Again

we contract the variables at level zero to obtain two new variables and consider the

only two problematic cases. If both of the new variables are at level 1 we make

the same change of variables one more time to get an equivalent form satisfying the

hypothesis of our partial result. If one is at level 1 and the other at level 2, we use

the same change of variables and the new equivalent form F 3 will satisfy

m3
0 = 7

m3
0 +m3

1 ≥ 13

m3
0 +m3

1 +m3
2 ≥ 17

m3
3 ≥ 1

and we only have to find nontrivial zero for F 3. If m3
0 ≥ 8 we have nothing to

do. If m3
0 = 7 we use the same change of variables and get an equivalent form F 4

satisfying

m4
0 = 9

m4
0 +m4

1 ≥ 13

m4
2 = 1

and proceeding as in cases m0 ≥ 9 we can find nontrivial zero for F 4.

Possibility II - One variable at level 1 and one at level 2.
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Again we appeal to Lemma 2.3 and make the same change of variables to obtain an

equivalent form F 2 satisfying

m1
0 ≥ 5

m1
0 +m1

1 ≥ 11

m1
0 +m1

1 +m1
2 ≥ 16

m1
0 +m1

1 +m1
2 +m1

3 ≥ 21

m1
0 +m1

1 +m1
2 +m1

3 +m1
4 ≥ 25

m1
5 ≥ 1

and we have to find nontrivial solution for F 1. If m1
0 ≥ 8 we are done. If m1

0 = 7 we

repeat the same process twice and get an equivalent form satisfying the hypothesis

of our partial result. If m1
0 = 6 we use the variables at level zero to create two new

variables at higher levels and analyse the two problematic cases. If both of the new

variables are at level 1, then we make the same change of variables and obtain an

equivalent form F 2 satisfying

m2
0 = 7

m2
0 +m2

1 ≥ 12

m2
0 +m2

1 +m2
2 ≥ 17

m2
0 +m2

1 +m2
2 +m2

3 ≥ 21

m2
4 ≥ 1

and repeating the process one more time we get and equivalent form F 3 satisfying

the hypothesis of our partial result. Now, if one variable is at level 1 and the other

at level 2, the same change of variables lead us to an equivalent form F 1 satisfying

m2
0 = 6

m2
0 +m2

1 ≥ 12

m2
0 +m2

1 +m2
2 ≥ 17

m2
0 +m2

1 +m2
2 +m2

3 ≥ 21

m2
4 ≥ 1
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and we have to find nontrivial zero for F 2. If m2
0 ≥ 8 we are done. If m2

0 = 7 we

repeat the process one more time to find an equivalent form satisfying the hypothesis

of our partial result. If m2
0 = 6 we contract the variables at level zero and obtain

two new variables of higher levels. Again we only have two problematic cases. If

both new variables are at level 1 we make the same change of variables and obtain

an equivalent form F 3 satisfying the hypothesis of our partial result. If one is at

level 1 and the other at level 2, the same change of variables lead us to an equivalent

form F 3 satisfying

m3
0 ≥ 7

m3
0 +m3

1 ≥ 13

m3
0 +m3

1 +m3
2 ≥ 17

m3
3 ≥ 1

and we have to find nontrivial solution for F 3. If m3
0 ≥ 8 we are done. If m3

0 = 7

we repeat the process and obtain an equivalent form F 4 satisfying

m4
0 ≥ 9

m4
0 +m4

1 ≥ 13

m4
2 = 1

and proceeding as in cases m0 ≥ 9 we are done. We are almost there, remains

only the case m1
0 = 5. We contract the variables at level zero and get two new

variables. Again we analyse the two problematic cases. If both new variables are at

level 1, then we make the same change of variables and obtain an equivalent form

F 2 satisfying the hypothesis of our partial result. If one is at level 1 and other at

level two, the same change of variables lead us to an equivalent form F 2 satisfying

m2
0 = 7

m2
0 +m2

1 ≥ 13

m2
0 +m2

1 +m2
2 ≥ 18

m2
0 +m2

1 +m2
2 +m2

3 ≥ 22
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and repeating the same process one more time we get an equivalent form F 3 sa-

tisfying the hypothesis of our partial result.

• Case m0 = 5.

We use the variables at level zero in contractions and get two new variables at higher

levels. If one of them is at a level higher than two we are done. Same thing if both

are at level 2. So we analyse the last two possibilities.

Possibility I - Both variables at level 1. We make the same change of variables

and get an equivalent form F 1 satisfying

m1
0 ≥ 7

m1
0 +m1

1 ≥ 12

m1
0 +m1

1 +m1
2 ≥ 17

m1
0 +m1

1 +m1
2 +m1

3 ≥ 22

m1
0 +m1

1 +m1
2 +m1

3 +m1
4 ≥ 26

and we have to find nontrivial zero for F 1. If m1
0 ≥ 8 we are done. If m1

0 = 7 then

we repeat the process one more time and get an equivalent form F 2 satisfying the

hypothesis of our partial result.

Possibility II - One variable at level 1 and one at level 2. We apply the

same change of variables and get an equivalent form F 1 satisfying

m1
0 ≥ 6

m1
0 +m1

1 ≥ 12

m1
0 +m1

1 +m1
2 ≥ 17

m1
0 +m1

1 +m1
2 +m1

3 ≥ 22

m1
0 +m1

1 +m1
2 +m1

3 +m1
4 ≥ 26

and we look for nontrivial zero for F 1. If m0 ≥ 8 we are done. If m1
0 = 7 we repeat

the process one more time and obtain an equivalent form satisfying the hypothesis

of our partial result. So we analyse the case m1
0 = 6. We contract the variables at
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level zero and get two new variables at higher levels. Again we only have to analyse

the two problematic cases. If both new variables are at level 1, the same change of

variables give us an equivalent form satisfying the hypothesis of our partial result. If

one is at level 1 and the other at level 2, the change of variables give us an equivalent

form F 2 satisfying

m2
0 = 7

m2
0 +m2

1 ≥ 13

m2
0 +m2

1 +m2
2 ≥ 18

m2
0 +m2

1 +m2
2 +m2

3 ≥ 22

and it is sufficient to find nontrivial solution for F 2. If m2
0 ≥ 8 we are done. If

m2
0 = 7 we repeat the process one more time and get an equivalent form satisfying

the hypothesis of our partial result. This completes the proof.

�

5.2 Lower bound for Γ(6,Q2(
√

5))

Here we present a diagonal form in 18 variables and of degree 6 having no non-trivial zeros

in K. This example was found by Knapp. For x = (x1, x2, x3) we set F (x) = x61+x62+x63.

Let

G = F (x) + 2αF (y) + 22(1 + α)F (z) + 23F (u) + 24αF (v) + 25(1 + α)F (w).

We will show that G does not admit non-trivial zero. Suppose we have G = 0. Then,

in particular we would have G ≡ 0(mod2). Consequently, F (x) ≡ 0(mod2). Since the

only sixth powers modulo 4 are 0 and 1, we would have two possibilities. Either x1, x2, x3 ≡

0(mod2) or exactly two of them are not 0(mod2). If the latter case occurs, then, since

G ≡ 0(mod4), we would have 2(1 + αF (y)) ≡ 0(mod4), and so 1 + αF (y) ≡ 0(mod2).

But this is a contradiction since F (y) ≡ 0, 1(mod2). We conclude that x1, x2, x3 ≡

0(mod2). The same reasoning used above shows us that all the variables of G must be 0

(mod2). This implies that all of them are divisible by any power of 2. We conclude that

this solution is trivial and then we have Γ(6, K) ≥ 19.
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