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ABSTRACT

This manuscript presents the project of an analog-to-digital converter with a wavelet-based sam-

pling scheme. Instead of sampling a signal with uniformly spaced samples and in a frequency limited

by Nyquist's criteria, the proposed ADC represents an input signal based on its characteristics�

speci�cally, the critical points localization and the estimation of the signal's morphology around

these points. The �rst part of this work contains the system-level development, where the sam-

pling algorithm is proposed as well as a polynomial reconstruction algorithm. Tests are run for

di�erent resolutions and wavelet bases and scales. The results show that the system successfully

localizes the critical points and estimates the morphology of the signal, with high correlation and

low RMS error values observed between the reconstructed signal and the input. The second part

of this work contains the circuit-level development, where the wavelet transform is implemented

with analog wavelet �lters. The transfer functions of these �lters are obtained by applying two

di�erent approximation methods. The results across scales show the critical points' localization.

RESUMO

Nesta dissertação, é proposto um conversor analógico-digital cujo processo de amostragem é

baseado em propriedades da transformada wavelet. Tais propriedades permitem identi�car car-

acterísticas de interesse do sinal�especi�camente, a localização de seus pontos críticos e a de-

scrição da morfologia nos trechos entre esses pontos�, e assim representá-lo, em vez de aplicar

a amostragem uniforme e limitada pelo critério de Nyquist. A primeira parte deste trabalho ap-

resenta a implementação do conversor em nível de sistema para diferentes resoluções e bases e

escalas da transformada wavelet. Para validar o algoritmo de amostragem, é proposto também

um algoritmo de reconstrução polinomial do sinal. Os resultados mostram que a identi�cação de

pontos críticos e a estimativa da morfologia do sinal são realizadas com sucesso, tendo sido pos-

sível recuperar o sinal de entrada com alta correlação e baixo erro RMS entre os sinais original e

reconstruído. A segunda parte deste texto apresenta o desenvolvimento em nível de circuito. A

transformada wavelet é implementada por �ltros wavelet analógicos, que são testados utilizando-se

duas aproximações diferentes para sua resposta em frequência. Os resultados de simulações para

variadas escalas permitem identi�car os pontos críticos do sinal.



TABLE OF CONTENTS

1 Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Context: analog-to-digital conversion .............................. 1

1.2 Our proposal ................................................................... 6

1.2.1 Objectives ....................................................................... 7

1.3 Outline ........................................................................... 8

2 Theoretical Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1 The Wavelet Transform.................................................... 9

2.1.1 Lipschitz coefficient......................................................... 14

2.2 Analog WT filters ........................................................... 17

2.2.1 Padé approximation........................................................... 17

2.2.2 L2 approximation .............................................................. 19

2.2.3 Gm-C filters .................................................................... 20

2.3 Summary of the Chapter ................................................... 23

3 System-Level Development . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.1 Sampling algorithm .......................................................... 25

3.2 Reconstruction algorithm ................................................ 26

3.3 Methodology ................................................................... 27

3.3.1 The test signal ................................................................ 27

3.3.2 WT parameters ................................................................ 28

3.3.3 Error metrics .................................................................. 29

3.3.4 Quantization.................................................................... 30

3.4 System Results................................................................. 32

3.4.1 Comparison with a standard ADC....................................... 44

3.5 Summary of the chapter ................................................... 46

4 Circuit-Level Development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1 Circuit block diagram ...................................................... 47

4.2 Methodology ................................................................... 48

4.3 Results............................................................................ 49

4.3.1 Analog wavelet filter block ............................................. 49

viii



4.3.2 Lipschitz exponent estimation............................................ 63

4.4 Discussion ........................................................................ 67

5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 Future works .................................................................. 72

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Appendices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

I Resumo Estendido em Português . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

II MATLAB scripts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

II.1 Sampling algorithm .......................................................... 83

II.1.1 Quantization function ...................................................... 86

II.1.2 Lipschitz exponent estimation function .............................. 87

II.1.3 Function to generate test signal ...................................... 88

II.2 Reconstruction algorithm ................................................ 88

II.3 Reconstruction tests ....................................................... 89

II.3.1 Error metrics .................................................................. 92

II.4 Gaussian filters ............................................................... 94



LIST OF FIGURES

1.1 Conventional ADC (adapted from de la Rosa [1]). .................................... 2

1.2 Anti-aliasing �lter (adapted from de la Rosa [1]). ..................................... 2

1.3 Ideal quantizer characteristics [2]. ........................................................ 3

1.4 Level-crossing ADC (adapted from Tsividis [3]). ...................................... 5

1.5 Information acquired to represent a signal based on (a) its critical points and

(b) its morphology. ............................................................................ 7

2.1 The WT compares the signal to the left to versions of the wavelet basis in

various scales and positions, shown to the right [4]. .................................. 10

2.2 Some wavelet bases: (a) gaus1 (b) gaus2 (c) Morlet (d) Daubechies (db6). [5] 11

2.3 In small scales (left) the base is compressed and the details of the signal

can be analyzed. For larger scales (right), the base is expanded and slow

variations of the signal become more evident. [4] ..................................... 12

2.4 The convolution smooths the original signal. The �rst-order transform,

W1f(u, s), is computed with ψ = −θ′, while the second-order transform,

W2f(u, s), is computed with ψ = θ′′. [6] ................................................. 14

2.5 Function from Eq. (2.20) for di�erent values of α [5]. ................................ 16

2.6 Gm-C integrator [5]. .......................................................................... 21

2.7 System block diagram for state-space representation [5]. ............................ 21

2.8 Filter implementation scheme with state-space matrices [5]. ....................... 22

2.9 Gm-C �lter implementation of a 6th order �lter with orthonormal ladder

structure (adapted from Karel et al. [7]. ................................................. 23

3.1 Wavelet-based ADC sampling algorithm................................................. 26

3.2 Identi�ed critical points of a test signal: `x' represents a local maximum or

minimum, and `+' represents an in�ection point. `Pn' are the polynomials

that reconstruct the signal piecewise...................................................... 27

3.3 Test signal. ...................................................................................... 28

3.4 Gaussian wavelet bases [8]. .................................................................. 31

3.5 (a) Daubechies and biorthogonal bases with n = 1 vanishing moment. Bases

with n = 2 vanishing moments: (b) Daubechies (c) Biorthogonal (d) Reverse

biortogonal [8]. ................................................................................. 31

3.6 Critical points detection: local maxima and minima. ................................ 32

x



3.7 Critical points detection: in�ection points. ............................................. 33

3.8 Coe�cients lines for second order wavelet transform at scales 16, 32, 48 and

64. ................................................................................................. 35

3.9 Lipschitz exponent estimation. ............................................................. 36

3.10 Sampled signals................................................................................. 37

3.11 Quantized sampled signals for 4, 8, and 12-bit resolutions. ......................... 38

3.12 Input signal (red, solid line) and reconstructed signal (yellow, dashed line)

for gaus1 and gaus2 wavelet bases, set of scales from 16 to 64, and ideal (not

quantized) values............................................................................... 39

3.13 Input signal (red, solid line) and reconstructed signal (yellow, dashed line)

for gaus1 and gaus2 wavelet bases, set of scales from 16 to 64, and quantized

values. ............................................................................................ 40

3.14 Input signal (red, solid line) and reconstructed signal (yellow, dashed line)

for db1 and db2 wavelet bases, set of scales from 1 to 64, and ideal (not

quantized) values............................................................................... 44

3.15 Input signal (red, solid line) and reconstructed signal (yellow, dashed line)

for db1 and db2 wavelet bases, set of scales from 1 to 64, and quantized values. 45

3.16 Number of bits x RMS error x sampling rate........................................... 46

4.1 Wavelet-based ADC block diagram. ...................................................... 47

4.2 First derivative of a gaussian (gaus1) for sixth order L2 approximation for

(a) original transfer function Hgaus1(s) (b) approximated transfer function

H
′
gaus1(s). ........................................................................................ 50

4.3 Second derivative of a gaussian (gaus2) for sixth order L2 approximation for

(a) original transfer function Hgaus2(s) (b) approximated transfer function

H
′
gaus2(s). ........................................................................................ 51

4.4 Circuit implementation of gaussian wavelet �lters. ................................... 53

4.5 Testbench schematic for WT-1 and WT-2 gaussian �lters. ......................... 53

4.6 Impulse responses for gaus1. ................................................................ 54

4.7 Impulse responses for gaus2. ................................................................ 55

4.8 First-order wavelet transform of the test signal using analog wavelet �lters

with gaussian basis. ........................................................................... 56

4.9 Second-order wavelet transform of the test signal using analog wavelet �lters

with gaussian basis. ........................................................................... 58

4.10 First (top) and second (bottom) derivatives of the gaussian function for 10-th

order �lter. ...................................................................................... 60

4.11 Impulse response for gaus1 for 10-th order �lter. ...................................... 61

4.12 Impulse response for gaus2 for 10-th order �lter. ...................................... 62

4.13 First-order wavelet transform for the test signal and gaus1 wavelet basis in

selected scales, using a 10th order Padé approximation. ............................. 64



4.14 Second-order wavelet transform for the test signal and gaus1 wavelet basis

in selected scales, using a 10th order Padé approximation. .......................... 65

I.1 Informação amostrada do sinal de entrada pelo ADC proposto.................... 78

I.2 Algoritmo de amostragem. .................................................................. 80

I.3 Diagrama de blocos do circuito proposto para o conversor A/D................... 81

I.4 Sinal de entrada (vermelho) e sua reconstrução (amarelo, linha tracejada). .... 82



LIST OF TABLES

2.1 Taylor coe�cients for expansions in the Laplace domain (k = 16) of gaussian

functions (part 1). ............................................................................. 19

2.2 Taylor coe�cients for expansions in the Laplace domain (k = 16) of gaussian

functions (part 2). ............................................................................. 19

2.3 Padé coe�cients for Q(s) (n = 10) of gaussian functions. ........................... 19

2.4 Padé coe�cients for P(s) (m = 6) of gaussian functions. ............................ 20

3.1 Chosen wavelet bases ......................................................................... 28

3.2 Polynomial reconstruction parameters for gaus1, gaus2, scales from 16 to 64

(ideal case) ...................................................................................... 39

3.3 Correlation coe�cient (%) for scales from 16 to 64 ................................... 41

3.4 RMS error (%) for scales from 16 to 64 .................................................. 41

3.5 Correlation coe�cient (%) for scales from 1 to 64..................................... 42

3.6 RMS error (%) for scales from 1 to 64 ................................................... 42

4.1 Extrema of the WT2 coe�cients lines across scales for the analog �lter with

sixth order transfer function approximation. ........................................... 66

4.2 Lipschitz exponents obtained with manual calculations for the analog �lter

with sixth order transfer function approximation...................................... 66

4.3 Extrema of the WT2 coe�cients lines across scales for the analog �lter with

tenth order transfer function approximation. ........................................... 67

4.4 Lipschitz exponents obtained with manual calculations for the analog �lter

with tenth order transfer function approximation. .................................... 67

xiii



LIST OF SYMBOLS

Greek Symbols

α Lipschitz Coe�cient

Superscripts

∗ Complex conjugate

Abbreviations

AAF Anti-Aliasing Filter

A/D Analog-to-Digital

ADC A/D Converter

CS Compressive Sensing

CTADC Continuous-Time Analog-to-Digital Converter

DAC Digital-to-Analog Converter

LMSE Least-Mean-Square-Error

LSB Least Signi�cant Bit

MRI Magnetic Resonance Imaging

NUS Non-Uniform Sampler

RMPI Random-Modulation Pre-Integrator

S/H Sample-and-Hold

sps Samples per second

WNN Wavelet Neural Network

WT Wavelet Transform

xiv



Chapter 1

Introduction

In this chapter we present the context and motivation for the design of a wavelet-based

analog-to-digital converter, describing the main characteristics and objectives of the project.

In addition, this manuscripts' outline is described.

1.1 Context: analog-to-digital conversion

Analog-to-digital conversion is fundamental to modern signal processing, given the need

to represent signals from our analog world in the digital domain. In order to complete this

conversion, the analog signal needs to be sampled. One of the most important theorems that

rule the way in which this sampling is done is the Nyquist-Shannon Sampling Theorem [9,

10]: to assure that a signal can be recovered after sampling, it must be sampled at a rate

equal to at least twice its bandwidth. Many of the converters today, then, sample at or

slightly above Nyquist's rate (the so-called Nyquist converters), or at a rate way greater

than Nyquist's (a practice known as oversampling).

Figure 1.1(a) shows a typical analog-to-digital converter block diagram, composed of an

anti-aliasing �lter (AAF); a sampler, implemented with a sample-and-hold (S/H) block; a

quantizer; and an encoder. The need for the AAF is one of the consequences of following

Nyquist's criterion: if the sampling rate is based on the signal's bandwidth, then the input

signal must be band-limited. Also, a Nyquist converter must have a very well designed

AAF to account for the sharp edge required for sampling at the Nyquist rate, as is shown

in Figure 1.2(a), whereas an oversampled converter can apply an AAF with a smooth edge,

as shown in �gure 1.2(b) [1].

The next block is the sampling block. A sampled-and-held signal is illustrated in Fig-

ure 1.1(b): the input signal is continuous in time and amplitude, while the sampled signal is

discrete in time, but still continuous in amplitude. The typical ADC applies uniform sam-

pling techniques, which means that the sampling times are uniformly-distributed according

to the sampling rate.

1



(a) Typical ADC block diagram

(b) Steps of analog-to-digital conversion

Figure 1.1: Conventional ADC (adapted from de la Rosa [1]).

(a) AAF for Nyquist-rate converter

(b) AAF for oversampled converter

Figure 1.2: Anti-aliasing �lter (adapted from de la Rosa [1]).
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Figure 1.3: Ideal quantizer characteristics [2].

The third block, the quantizer, discretizes the amplitude of the signal. Unlike the

sampling process, quantization is irreversible and always results in some permanent loss

of information. Figure 1.3 shows the characteristics of an ideal uniform mid-tread 3-bit

quantizer. The quantizer divides the reference tension, VREF , in intervals, and allocates the

samples to the closest quantization levels. A binary N bit code is set to each of the 2N

quantization levels. The quantization error is also shown in Figure 1.3, and is limited to

±0.5 LSB (Least Signi�cant Bit). The quantized signal is then represented as a strand of

bits, in the process named encoding.

The processes described above underly the functioning of almost all ADCs in consumer

appliances known today. However, they do have their �aws. First of all, the design of

ADCs presents trade-o�s between conversion speed, conversion resolution, and power con-

sumption, among other features. For example, �ash ADCs are known to be high-speed

converters, but with low resolution and also high power consumption, while oversampled

ADCs, such as Σ∆ ADCs, have high resolution and low conversion speed. Another possible

trade-o� is the one between bandwidth and resolution: in order to keep the same reso-

lution, a Nyquist-rate converter (less bandwidth) must have more amplitude quantization

levels than an oversampled one [11]. Another important point is that the Shannon-Nyquist

theorem only sets a su�cient condition for reconstruction�and not a necessary condition.

The choice of a rate that follows the Nyquist-Shannon criteria comes with disadvantages

3



other than the need to limit the bandwidth of the signal; for instance, a signal with time

varying frequency has its sampling rate determined based on its highest frequency compo-

nent, which implies that the lower frequency portions of the signal will be unnecessarily

oversampled.

The problem of developing a more e�cient sampling techniques arises. Many solutions to

this problem and alternative ways to develop sampling and sensing of signals are investigated

in the �eld of compressive sensing (CS). In an overly simpli�ed manner, CS applies di�erent

transforms and/or bases in order to reach a sparse representation of a signal of interest. The

use of a basis for which this signal is sparse and densely represented allows a sub-Nyquist

sampling of the signal, along with its compression, since the useful information is comprised

in a small amount of data. Undersampling can be useful when there are project constraints,

such as a limited number of sensors; or when the �nancial cost of a measurement is very

high, as in imaging processes via neutron scattering; or when the sensing process is slow, as

in MRI scans [12]; or for low-power consumption applications, such as biomedical devices.

CS methods mostly apply computational and mathematical tools to the processing of

discrete signals. The implementation of a CS device in integrated circuits to exceed the

performance of a state-of-the-art ADC for high-bandwidth signals was the object of the

�Analog-to-Information Project� [13]. Their results were two prototypes, called NUS (�Non-

Uniform Sampler�) and RMPI (�RandomModulation Pre-Integrator�): RMPI is a prototype

that digitizes signals at high-bandwidth at a sub-Nyquist rate; while NUS digitizes analog

signals with a sparse representation in the frequency domain at Nyquist rate [12, 14, 15].

Another line of research that investigated novel sampling schemes started with Sayiner [16,

17, 11] and the level-crossing ADC, also referred to as a continuous time ADC (CTADC) [18].

Sayiner proposes a high resolution, high speed ADC architecture which outputs amplitude-

time ordered pairs that represent samples that are non-uniformly spaced in time. Level-

crossing sampling is an intermediate scheme between the Nyquist and the zero-crossing

sampling schemes. Zero-crossing sampling schemes are the ones which represent the signal

by the instants at which the signal equals a determined value. While the zero-crossing

sampling represents a signal with a minimal number of values within a time interval, it

also requires very high time resolution, in order to represent with high precision those zero-

crossing instants [11]. The level-crossing sampling, then, consists of sampling the signal

whenever it crosses a quantization level, also called a threshold level. Figure 1.4 illus-

trates this process. The additional information required to recover the input signal can be

approximated by interpolation methods [3].

Recently, in 2016, Masry and El-Dib [18] proposed an ADC in which a signal is sam-

pled using the level-crossing ADC approach, followed by a wavelet neural network (WNN)

applied as an interpolation method, generating a high-resolution low-power converter. The

main reasons to choose the wavelet networks are the known wavelet transform properties

and applications, especially its strong compression, time-series prediction and data classi�-

4



Figure 1.4: Level-crossing ADC (adapted from Tsividis [3]).
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cation abilities.

Even though the project presented in this manuscript does not belong to the research

�elds of CS and level-crossing ADCs, it shares with them some similarities in their objectives

of undersampling and signal compression (for compressive sensing) and of asynchronous

sampling and low power performance (for CTADCs), as well as the use of the wavelet

transform properties, in the speci�c case of the clockless asynchronous ADC from Masry

and El-Dib [18]. This projects' proposed ADC is the object of the next section.

1.2 Our proposal

This project proposes a novel wavelet-based sampling technique that aims to reduce the

power consumption of an ADC by selecting which points to sample, instead of using the

traditional uniform sampling method.

The traditional sampling block of an ADC has been discussed. Another important aspect

is how to recover a signal from its samples. After a signal is sampled, it is quantized and

converted to digital form, with codes that represent each sample. Even if we consider that

the recovery of all the samples from the digital code is lossless, we need to interpolate this

data in order to reconstruct the input signal from the samples. Usually, we use a constant

function to interpolate these samples. The last step is to smooth this curve, what can be

achieved with a low-pass �lter.

During sampling, we not only wish to convert the signal from analog to digital form,

but we also choose how to represent the signal, or how to store the information it carries.

In the traditional method, we choose samples in a uniform and periodic manner, regardless

of the signal's characteristics or properties. CS changes the way a signal is sampled with

no modi�cations to the way it is reconstructed, since the signal is represented in another

domain, where less samples are needed to store the same information as in other domains.

This projects' proposal is:

1. when sampling the signal: to choose only samples that carry relevant and speci�c

information about the signal;

2. when recovering the signal: to use another interpolation function instead of the con-

stant/step one traditionally applied.

One way to analyze a signal and its behaviour is to localize its critical points. This is

our approach: the special points selected during sampling are the signal's local maxima,

minima, and in�ection points. In this way, the proposed sampling algorithm is event-based.

Fig. 1.5(a) shows an example of the critical points identi�cation in the test signal, where

the `x's correspond to the local maximum and minimum points, and the `+'s correspond to

the in�ection points. The interpolation function is based on the signal's morphology, which

6



0 200 400 600 800 1000
0

0.5

1

1.5

Time[s]

P1

P2
P3

P4 P5

P6 P7
P8

(a) Critical points identi�cation.

(b) Signal whose morphology varies with the Lipschitz expo-

nent.

Figure 1.5: Information acquired to represent a signal based on (a) its critical points and (b) its morphology.

can be represented by the Lipschitz exponent extracted at a given point. A function whose

concavity varies according to the Lipschitz exponent is shown in Fig. 1.5(b). This function

is the basis for a polynomial reconstruction algorithm that is also proposed and allows the

validation of this sampling method: the signal is reconstructed piecewise, with polynomials

described by the Lipschitz coe�cient and limited by two consecutive critical points. These

polynomials are also indicated in Fig. 1.5(a). Both the critical points localization and the

Lipschitz coe�cient estimation, which are the outputs of this ADC, are realized by applying

the wavelet transform (WT) to the input signal.

1.2.1 Objectives

The objective of this project is to evaluate and validate a novel wavelet-based sampling

scheme for ADCs both in system- and circuit-level. Even though no speci�c application

is taken into account in the scope of this project, we expect that it must be suitable for

low-power applications because of its asynchronous and compressive characteristics.

The algorithm for a wavelet-based analog-to-digital converter was initially proposed in

7



a previous work [8]. The �rst speci�c objective of this work is to give continuity to that

research, by improving possible �aws in the algorithm and expanding its scope to circuit-

level analysis.

1.3 Outline

Chapter 2 contains a review of the wavelet transform theory that was applied in the

development of this project. Chapter 3 shows the system-level implementation of the pro-

posed ADC and the polynomial reconstruction method. Chapter 4 contains the circuit

development and a discussion of the results, and Chapter 5 concludes this manuscript.
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Chapter 2

Theoretical Background

This chapter contains an overview of the theory that was necessary to develop the

wavelet-based analog-to-digital converter project. The �rst section contains the theoretical

framework regarding the wavelet transform and the Lipschitz exponent, and the last section

explains the methods chosen to implement the wavelet transform in circuit level.

2.1 The Wavelet Transform

A transform can be interpreted as an operation which represents a signal from one

domain in another domain. Mathematically, it is the result of the convolution of a basis

with the function that represents the analyzed signal. The convolution integral of a linear,

shift-invariant system (LSIS) with input signal x(t) and output signal y(t) is:

y(t) =

∫ ∞
−∞

x(τ)h(t− τ)dτ (2.1)

where h(t) is the system's impulse response.

Then, the Fourier transform of a function f(t) is expressed by the convolution between

the Fourier basis, ejωt, and the function f(t):

F (ω) =

∫ ∞
−∞

f(t)ejωtdt (2.2)

The wavelet transform of an input signal f(t) is the convolution of this signal with a

wavelet basis ψ(t), and is expressed by Equation 2.3, where a > 0. The superscript ∗
indicates complex conjugate, and can be removed from the equation when the wavelet basis

is real.
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Wf (u, s) =
1√
s

∞∫
−∞

f(t)ψ∗
(
t− u
s

)
dt (2.3)

Equation 2.3 shows that the wavelet transform has two parameters: the scale s and the

position u. This means that the wavelet transform outputs coe�cients that indicate the

correlation between the input signal f(t) and versions of the wavelet basis ψ(t) shifted in

time and also compressed or expanded according to the scale. Figure 2.1 [4] illustrates this

interpretation of the wavelet transform.

Figure 2.1: The WT compares the signal to the left to versions of the wavelet basis in various scales and

positions, shown to the right [4].

A wavelet basis is a �small wave�, a �nite and not necessarily symmetrical signal, hence

the name �wavelet� transform. There are some requirements for a function to be a wavelet

basis:

� It must have �nite energy, oscillatory behaviour and zero average, according to Eq. 2.4:

∞∫
−∞

ψ(t)dt = 0 (2.4)

� Its Fourier transform must have a zero-frequency component:

∞∫
−∞

|Ψ(ω)|2

|ω|
dω = CΨ <∞ (2.5)

Eq. 2.5 implies that the wavelets can be interpreted as pass-band �lters in the Fourier

domain [5].

Some well-known wavelet bases are the �rst and second derivatives of the gaussian func-

tion (�gaus1� and �gaus2�, respectively), the Morlet wavelet and the Daubechies wavelets

(�db�). Figure 2.2 [5] shows examples of such bases.
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Figure 2.2: Some wavelet bases: (a) gaus1 (b) gaus2 (c) Morlet (d) Daubechies (db6). [5]

While the Fourier transform allows total frequency resolution and no time resolution,

the wavelet transform can have varied degrees of time and frequency resolution according

to the settings of the scale and position parameters. By altering these parameters, one can

evaluate a signal for di�erent time and frequency resolutions and thus describe it [5].

Mallat [6] shows that the time resolution, ∆t, and the frequency resolution, ∆ω, are

related by Heisenberg's uncertainty principle, which is expressed by Equations 2.6 to 2.8,

where Ψ(t) is the wavelet basis' derivative. In this way, the higher the frequency resolution

is, the smaller the time resolution will be. On the other hand, the wavelet transform allows

the signal to be analyzed under di�erent conditions, by altering the scale. A small scale

corresponds to a compressed wavelet basis, then, the transform will have higher coe�cients

in positions corresponding to the details and sharp transitions of the signal, that is, its

higher frequency components. A large scale corresponds to an expanded wavelet base,

which will indicate general characteristics of the signal, slower transitions, the low-frequency

components. Figure 2.3 [4] illustrates this property. This means that one way to analyze

the signal behaviour in one speci�c point of interest is to compute the WT of this signal and

gradually reduce the scale, focusing more and more on the point of interest. This property

is known as the wavelet zoom property.

∆t∆ω >
1

2
(2.6)
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∆t =

√∫
t2|ψ(t)|2dt∫
|ψ(t)|2dt

(2.7)

∆ω =

√∫
ω2|Ψ(ω)|2dω∫
|Ψ(ω)|2dω

(2.8)

Figure 2.3: In small scales (left) the base is compressed and the details of the signal can be analyzed. For

larger scales (right), the base is expanded and slow variations of the signal become more evident. [4]

In this way, the wavelet zoom can be a powerful tool in characterizing singularities

in a signal. In signal processing, singularities and discontinuities often carry relevant in-

formation, such as the edges of an image, consonantal sounds in speech, and even sharp

transitions in the �nancial market system [19], so, it must be useful to be able to watch

these important points closely.

It can be demonstrated that the signal's regularity is characterized by the reduction of

the wavelet transform coe�cients across scales. Therefore, the signal's singularities can be

determined by the local maxima at di�erent scales. The set of information about these

maxima for di�erent scales determines what is called the maxima line. By de�nition, a

modulus maximum is a point (t0, s0) such that |Wf(t, s0)| has a local maximum at t = t0,

which implies [6]:

∂Wf(t0, s0)

∂t
= 0 (2.9)

The maxima line shows the modulus maxima on the scale-space plane, and this indicates

the wavelet transform modulus behaviour at di�erent instants and for di�erent scales.

Another interesting WT property useful for regularity detection are the the vanishing

moments. A vanishing moment is a zero moment, and can be expressed by Equation 2.10,

for a moment of kth order.

m[k] =

∫
tkψ(t)dt = 0 (2.10)
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As long as wavelets are concerned, the number of vanishing moments corresponds to the

number of zeroes at π for the wavelet representation in the Z domain. In this case, if a

wavelet has n vanishing moments, it has n zeroes at π and can be rewritten as [20]:

H(z) =

(
1 + z−1

2

)
Q(z) (2.11)

Furthermore, Mallat [6] shows that a wavelet with n vanishing moments can be expressed

as the nth derivative of a function θ(t), and thus its WT functions as an nth order multiscale

di�erential operator. This is established in Theorem 1.

Theorem 1 A wavelet ψ with fast decay has n vanishing moments if, and only if, there is

a function θ with fast decay such that

ψ(t) = (−1)n
dnθ(t)

dtn
(2.12)

Consequently,

Wf(u, s) = sn
dn

dun
(f ∗ θ̄s)(u) (2.13)

θ̄s = s−1/2θ(−t/s) (2.14)

Also, ψ has no more than n vanishing moments if, and only if,
∫∞
−∞ θ(t)dt 6= 0.

Therefore, if the chosen wavelet basis has n = 1 vanishing moment, the WT will function

as a �rst order di�erential operator, and its modulus maxima shall identify discontinuities;

also, the points for which the absolut value of the WT coe�cients equal zero will correspond

to the signals' maximum and minimum points. Moreover, if the chosen wavelet basis has

n = 2 vanishing moments, the WT functions as a second order multiscale di�erential

operator, and its modulus maxima localize maximum curvature points, while the points

for which |Wf(u, s)| = 0 identify the in�ection points in f(t). Figure 2.4 illustrates these

properties [6].

Vanishing moments have more properties that depend on the description of a signal's

regularity with the Lipschitz coe�cient, and thus will be explained in the following subsec-

tion.
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Figure 2.4: The convolution smooths the original signal. The �rst-order transform, W1f(u, s), is computed

with ψ = −θ′, while the second-order transform, W2f(u, s), is computed with ψ = θ′′. [6]

2.1.1 Lipschitz coe�cient

The Lipschitz coe�cient, also known as the Hölder coe�cient in Mathematics, can

characterize the local signal regularity both for a time interval and for one speci�c instant.

If a signal contains a singularity in a point ν i.e is not di�erentiable at ν, this singularity is

characterized by the Lipschitz coe�cient at ν.

De�nition 1 A function f is Lipschitz α ≥ 0 at ν if there exist a constant K > 0 and a

polynomial pν of order m = bαc such that, ∀t ∈ R,

|f(t)− pν(t)| ≤ K |t− ν|α (2.15)

The function is uniformly Lipschitz α over the interval [a, b] if the Equation 2.15 is

satis�ed for all ν ∈ [a, b], with K independent of ν.

The Lipschitz regularity of f at ν or over the interval [a, b] is the supremum of α such

that f is Lipschitz α.

In the above de�nition, the approximation polynomial is unique for every point ν [21].

This polynomial can be the Taylor polynomial. Equation 2.16 shows the expression for the
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Taylor expansion at ν for an m times di�erentiable polynomial, m = bαc.

pν =
m−1∑
k=0

f (k)(ν)

k!
(t− ν)k (2.16)

The Taylor polynomial approximation error is expressed as:

εν(t) = f(t)− pν(t) (2.17)

and must satisfy

∀t ∈ R, |εν(t)| ≤
|t− ν|m

m!
supu∈[ν−h,ν+h]|fm(u)| (2.18)

In this way, when t tends towards ν, m yields a superior bound to the Taylor polynomial

approximation error with f in the vicinity of ν. In fact, when De�nition 1 is applied with

pν(t) being Taylor's polynomial, this superior bound is a function of the Lipschitz coe�cient,

α, and depends on the value of the constant K:

|εν(t)| = |f(t)− pν(t)| ≤ K|t− ν|α (2.19)

Consider the following example. Let f be a signal such that

f(t) = |1− t|α (2.20)

Figure 2.5 shows this signal's plot for values of α between 0.2 e 2. This signal is regular

with Lipschitz α in the intervals 0 ≤ t < 1 and 1 < t ≤ 2, but it contains a singularity at

t = 1: to the left of this singularity, f increases; to the right of the singularity, it decreases.

Then, if we know the position of a singular point, as well as the Lipschitz coe�cient value

and the signal morphology in each interval, we can describe the signal. In other words, the

Lipschitz coe�cient comprises the signal's data around a singular point [5].

The Lipschitz regularity of a signal at ν depends on the decay at small scales of the

absolute value of the wavelet transform amplitude in the neighbourhood of ν [6]. The decay

of the absolute value of the wavelet transform in the neighbourhood of ν is determined by

the decay of the modulus maxima in the cone of in�uence |u− ν| ≤ Cs. f is Lipschitz α if,

and only if, there exists a constant A > 0 such that every modulus maximum in the cone

of in�uence satis�es Equation 2.21.
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Figure 2.5: Function from Eq. (2.20) for di�erent values of α [5].

|Wf(u, s)| ≤ Asα+ 1
2 (2.21)

Taking the logarithm of both sides of the equation,

log2|Wf(u, s)| ≤ log2A+

(
α +

1

2

)
log2s (2.22)

Equation 2.22 shows that the Lipschitz regularity at ν corresponds to the maximum

slope of log2|Wf(u, s)| as a function of log2s across the maxima lines that converge to ν [5].

Also, to estimate the Lipschitz coe�cient of a signal, the wavelet basis must have n > α

vanishing moments:

∫ ∞
−∞

tkψ(t)dt = 0 , 0 ≤ k < n (2.23)

The wavelet transform of the signal's polynomial approximation, f(t) = pν(t)+ εν(t), is:
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Wf(u, s) = Wpν(t) +Wεν(t) = Wεν(t) (2.24)

which means that the WT estimates α suppressing pν , since the Lipschitz coe�cient can

be expressed in terms of the approximation error of the polynomial, as shown previously in

Equation 2.19. This property is known as the polynomial suppression property.

2.2 Analog WT �lters

Now that the basics of the wavelet transform theory have been presented, we move on to

the theory of how to implement it, since we want to propose a sampling method that is based

on it. The most common way to implement the wavelet transform is by using its digital

form, applying the discrete wavelet transform. This method requires an analog-to-digital

converter in order to compute the WT, which would be controversial for this project and

also would require high power consumption. Fortunately, it is possible to implement the

WT using analog wavelet �lters: this project follows the approach presented by Haddad [5]

and Karel [7]. The analog wavelet �lters implemented throughout this project are based on

two approximation methods (L2 and Padé) for the wavelet �lter transfer function and on

one design for circuit implementation, the transconductance ampli�er-capacitance (Gm-C)

method, and these are the objects of this subsection.

When designing an analog wavelet �lter, its impulse response must correspond to the

desired wavelet base, whose behavior and mathematical description are known. The approx-

imation methods are used here to obtain a �lter transfer function, whose impulse response,

h′(t), is very close to the desired impulse response corresponding to the wavelet basis, h(t).

2.2.1 Padé approximation

The Padé method approximates the Laplace transform of h(t), because it is assured to

represent a transfer function of a possible �lter. If the opposite was to be done, that is,

the Padé approximation of h(t) was to be taken before applying the Laplace transform, the

resulting transfer function would not necessarily be suitable for implementation. The Padé

method approximates a function around one of its points and is based on the function's

Taylor expansion coe�cients, as shown in the following mathematical development.

Consider the function F (s), whose truncated Taylor expansion is expressed in Equa-

tion 2.25, where {c0, c1, . . . , ck} are the Taylor coe�cients of F (s).

F (s) = c0 + c1s+ . . .+ cks
k +O(sk+1) (2.25)
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However, to build a �lter, we need zeroes and poles, and F(s) has no poles, only zeroes.

The function in Equation 2.25 can be transformed to a rational function by means of the

Padé approximation:

F̂ (s) =
P (s)

Q(s)
=
p0 + p1s+ . . .+ pms

m

q0 + q1s+ . . .+ qnsn
(2.26)

In Equation 2.26, F̂ (s) is the approximated F (s) function, for k = m + n. This means

that the Taylor coe�cients of F̂ (s) are known as {c0, c1, ..., cm+n}. Also, from Equation 2.26,

F̂ (s) ·Q(s) = P (s) and:


c0 0 . . . 0

c1 c0 . . . 0
...

...
. . .

...

ck ck−1 . . . ck−n

 ·

q0

q1

...

qn

 =


p0

p1

...

pk

 (2.27)

Equation 2.27 shows that the coe�cients {q0, q1, . . . , qn} depend on the restrictions im-

posed over the coe�cients {p0, p1, . . . , pk}. These restrictions are:

1. The larger the order of the �lter is, the better the approximation result will be.

Therefore, we must maximize k;

2. P (s) is of order m, according to Equation 2.26;

3. m ≤ n for a physically realizable (causal) �lter.

From restriction number 2 and Equations 2.26 and 2.27, we can conclude that {pm+1, . . . , pk} =

0. This leads to the following matricial representation:

pm+1

...

pk

 =
[
F̂
]
m+1,k

· [Q] = 0 (2.28)

Therefore,

q ∈ Nullspace


cm+1 . . . c0 0

cm+2 . . . c1 c0

...
. . .

...
...

cm+n . . . cm−1 cm

 (2.29)

In Equation 2.29, qn = 1. The coe�cients {p0, . . . , pm} are de�ned as:
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p0

p1

...

pm

 =


c0 0 . . . 0

c1 c0
. . .

...
...

...
. . . c0

cm cm−1 . . . cm−n

 ·

q0

q1

...

qn

 (2.30)

If the function that results from the approximation has a numerator of order m and a

denumerator of order n, the original function can be approximated up to order k = m+ n.

Therefore, the Padé approximation is de�ned by the values of m and n, and is referred to

as a [m/n] Padé approximation.

Tables 2.1, 2.2, 2.3 and 2.4 show the [6/10] Padé and Taylor approximations coe�cients

for the �rst and second derivatives of the gaussian function, taken from an example in

Haddad [5]. The �rst derivative of the gaussian function, hereafter referred to as gaus1, is

expressed as ψ(t) = −2(t − 3)e−(t−3)2 ; and the second derivative of the gaussian function,

hereafter referred to as gaus2, is expressed as ψ(t) = (−2 + 4(t− 3)2)e−(t−3)2 .

Table 2.1: Taylor coe�cients for expansions in the Laplace domain (k = 16) of gaussian functions (part 1).

c0 c1 c2 c3 c4 c5 c6 c7 c8

gaus1 0 1.77 -5.31 8.41 -9.3 8.03 -5.74 3.54 -1.92

gaus2 0 0 1.77 -5.31 8.41 -9.3 8.03 -5.74 3.54

Table 2.2: Taylor coe�cients for expansions in the Laplace domain (k = 16) of gaussian functions (part 2).

c9 c10 c11 c12 c13 c14 c15 c16

gaus1 0.94 -0.42 0.17 -0.066 0.023 -0.008 0.002 -0.007

gaus2 -1.92 0.94 -0.42 0.17 -0.066 0.023 -0.008 0.002

Table 2.3: Padé coe�cients for Q(s) (n = 10) of gaussian functions.

q0 q1 q2 q3 q4 q5 q6 q7 q8 q9 q10

gaus1 3.86E4 1.036E5 1.305E5 1.022E5 5.53E4 2.17E4 6.3E3 1.35E3 205.6 20.27 1

gaus2 3.78E4 1.007E5 1.264E5 9.86E4 5.33E4 2.09E4 6.1E3 1.3E3 199.7 19.91 1

2.2.2 L2 approximation

The L2 method's approach is to minimize an error metric, speci�cally, the least-mean-

square-error (LMSE) metric. Unlike Padé approximation, it is global, and not based around
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Table 2.4: Padé coe�cients for P(s) (m = 6) of gaussian functions.

p0 p1 p2 p3 p4 p5 p6

gaus1 -4.77 6.85E4 -2.2E4 6.1E3 -576.95 44.67 5.81

gaus2 -4.67 -13.21 1.11E4 -3.7E3 1.08E3 -131.28 13.54

one point of the function. Also, the L2 approximation is performed in the time domain,

starting with the impulse response h(t) of a given �lter. The next step is to minimize the

LMSE with respect to the poles and zeroes of the �lter. The LMSE integral is de�ned in

Equation 2.31, where f(t) is the original function and f̂(t) is the approximation.

εL2 =

∫ ∞
0

[f(t)− f̂(t)]2 dt (2.31)

Since, in this work, we want to approximate a wavelet basis, f(t) is a wavelet, and

its approximation f̂(t) is the transfer function of the �lter in the time domain. Then, we

know that f(t) = ψ(t) and f̂(t) = h(t) have explicit expressions, and the error εL2 can be

minimized using standard numerical and/or computational methods.

Also, Equation 2.31 indicates that the L2 approximation, which is the minimal value for

εL2 , corresponds to the energy of the di�erence between the function and its approxima-

tions. This means that this method can be applied both in time and frequency domains,

which is another advantage over the Padé approximation method: the L2 approximation

method allows us to focus on speci�c points in the Laplace domain, for example, and start

the approximation based on them. One disadvantage of this method, however, is that dif-

ferent starting points can yield di�erent results, that is, we cannot assure, in general, the

optimality of any approximation obtained with this method. Therefore, it also requires

more computational e�ort than the Padé method.

2.2.3 Gm-C �lters

Now that we know how to obtain the transfer function for an analog wavelet �lter, we

need to de�ne the �lter's topology. A good option for low-power applications is to design a

Gm-C (transconductor-capacitor) �lter. This �lter implements a transfer function G/sC,

where G is implemented by a tranconductor, and 1/sC, by a capacitor, hence its name.

This transfer function is characteristic of an integrator. A �lter of nth order is described

by an nth order di�erential equation, and can be implemented with n integrators. Indeed,

Figure 2.6 [5] shows a single-ended Gm-C integrator. A Gm-C �lter, composed of Gm-C

integrators, can achieve transconductance values in the order of nA/V, what allows the use

of capacitors with not so large capacitances. This relation can be deduced by evaluating

Figure 2.6. From it, we see that the capacitor voltage is expressed as:
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Figure 2.6: Gm-C integrator [5].

Figure 2.7: System block diagram for state-space representation [5].

Vcap =
Icap
sC

=
GmVin
sC

(2.32)

and the time constant τ , as:

τ =
C

Gm
(2.33)

From control theory, it is known that an nth order di�erential equation can be trans-

formed to a set of �rst order di�erential equations using a state-space representation. The

typical system of state-space di�erential equations is expressed in Equation 2.34, where

u(t) is the system's input; y(t) is the system's output; and x(t) is the state-space variable.

Figure 2.7 [5] shows the block diagram for the system represented in the state-space form.

ẋ = Ax+Bu

y = Cx+Du
(2.34)

To describe the system in its state-space representation, we need to obtain the elements

of the matrices A, B, C and D. Knowing that the system's transfer function expressed in

terms of the state-space matrices is as described in Equation 2.35, where I is the identity

matrix, and knowing the desired transfer function of the �lter, the state-space matrices'
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Figure 2.8: Filter implementation scheme with state-space matrices [5].

elements can be determined. For more information on state-space representations or how

these equations are derived, please refer to a control engineering theory book, such as

Ogata [22].

H(s) = C · (sI − A)−1 ·B +D (2.35)

Once the state-space matrices are obtained, they must be implemented in order to com-

pose the �lter, in the manner shown in Figure 2.8 [5]. However, it would be advantageous

if these matrices were in their sparse representations, so that there are more elements that

equal zero, and, consequently, less coe�cients to be implemented in the circuit. There

are many ways to obtain an orthogonal representation of the state-space matrix [5], but

the chosen strategy for this project is to transform the matrices to their corresponding or-

thonormal ladder structure. The orthonormal ladder structure is unique for a given transfer

function and its general con�guration is:

A =



0 a1 0 0 · · · 0 0

−a1 0 a2 0 · · · 0 0

0 −a2 0 a3 · · · 0 0
...

...
...

...
. . .

...
...

0 0 0 0 · · · 0 an−1

0 0 0 0 · · · −an−1 an


BT =

[
0 0 0 · · · 0 bn

]
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Figure 2.9: Gm-C �lter implementation of a 6th order �lter with orthonormal ladder structure (adapted

from Karel et al. [7].

C =
[
c1 c2 c3 · · · cn−1 cn

]

D = [0]

Finally, putting together the schematics from Figures 2.6 to 2.8, we can obtain the Gm-C

�lter topology, shown in Figure 2.9 for a sixth-order �lter, adapted from Karel et al. [7].

2.3 Summary of the Chapter

This chapter presented a review of the theoretical framework that is necessary to the

understanding of the development in the next chapters. First, the continuous wavelet

transform was presented, along with its main properties, followed by the Lipschitz exponent

de�nition and how it can be estimated with the wavelet transform. The last section shows

one way to design and implement analog wavelet �lters, which will be used in this project

to compute the wavelet transform.
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The chapters that follow contain the project's development per se, starting with the

system-level design in Chapter 3.
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Chapter 3

System-Level Development

In this chapter, the project is studied at a system-level. The proposed sampling method

is presented, as well as the polynomial reconstruction algorithm that enables its veri�cation.

The theoretical portion is followed by the methodology adopted for the system simulations

and their results.

3.1 Sampling algorithm

The �owchart for the sampling algorithm is shown in Figure 3.1. The input signal is

processed and its critical points must be identi�ed, as well as the Lipschitz exponent at

local maxima and minima. After choosing the WT parameters (bases and scales), the

local maxima and minima are identi�ed by computing the �rst-order WT of the input

signal. Because of the wavelet zoom property, the coe�cients line for the smallest scale is

used for this purpose, and the maxima and minima points are localized by identifying this

coe�cients line's zero-crossings. Similarly, to detect the in�ection points, the second-order

WT is computed, but, for this purpose, the coe�cients line for a large scale is selected, and

its zero-crossings are detected. At this point, some approximations may be necessary:

� The maxima and minima identi�cation prevails over the in�ection points' localization,

that is, if the algorithm detects a local extremum at the same point as an in�ection,

this point is considered to be an extremum;

� This algorithm considers that there is only one in�ection point between a local maxi-

mum and a local minimum. If more than one in�ection point is detected, its location

is approximated by taking the mean of the positions of all the points detected; if no

in�ection is detected, its location is approximated as the midrange of the maximum

and the minimum points' positions.

The second-order WT is also used to estimate the Lipschitz exponent. This is done by

applying the de�nition in Equation 2.22, and selecting the instants which correspond to the
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local maxima and minima, identi�ed in the previous steps.

Input Signal

Choose WT 

bases and scales

1st order WT 2nd order WT

Zero-crossing

detection
Zero-crossing

detection

Estimate

Lipschitz exp.

Amplitude

and time info for

local maxima and

minima

Approximations

Discard

inflections?

Amplitude

and time info for

inflection points

Lipschitz

for local maxima

and minima

N

Figure 3.1: Wavelet-based ADC sampling algorithm.

3.2 Reconstruction algorithm

In order to verify that the sampled information allows recovery of the input signal, a

reconstruction algorithm is also proposed, as illustrated in Fig. 3.2.

Since the critical points have been sampled, we choose to reconstruct the signal piecewise,

with each piece determined by one maximum or minimum point and one in�ection point.

The morphology of the signal between the critical points is determined by the Lipschitz

exponent, and each piece is expressed as a polynomial. This polynomial is based on the

function in Equation 2.20, modi�ed to allow time and amplitude shifting. The result is:

Pn(t) = Ai + (Am − Ai)
(

1−
∣∣∣∣τ − tµ

∣∣∣∣αm
)

, t0 ≤ t ≤ tf (3.1)

where

� Ai and Am are the sampled amplitudes for, respectively, the in�ection points and the
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Figure 3.2: Identi�ed critical points of a test signal: `x' represents a local maximum or minimum, and `+'

represents an in�ection point. `Pn' are the polynomials that reconstruct the signal piecewise.

local maxima or minima;

� αm is the estimated Lipschitz exponent at the local maximum or minimum;

� t0 and tf are the initial and �nal points of the polynomial Pn, that is, one of them must

be an in�ection while the other must be either a local maximum or a local minimum;

� µ is the time interval for Pn i.e. µ = tf − t0;

� τ is the position of the local maximum or minimum.

The variables τ and µ allow shifting in time. The shift in amplitude is achieved by

multiplying the expression by (Am − Ai), and then adding Ai. The expression (Am − Ai)
also indicates the concavity of the signal: if Am > Ai, then (Am−Ai) > 0 and the extremum

is a local maximum; if Am < Ai, then (Am − Ai) < 0 and the extremum must be a local

minimum. The addition of Ai to the expression guarantees the continuity of the signal

when all pieces are put together.

3.3 Methodology

The algorithms were evaluated by simulation in the softwares MATLAB and Simulink.

All the scripts necessary to run the tests are available in Appendix II. The parameters for

the measurements are detailed in the following subsections.

3.3.1 The test signal

A test signal, shown in Figure 3.3 and expressed by Equation 3.2, was chosen to evaluate

these algorithms. This function was chosen as the primary test signal because it is well-

behaved, making it easier to observe the di�erences between the reconstructed signal and
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the input signal; and also because of its singular point, which should require a high sampling

rate in trivial ADCs to achieve a good representation of the signal.

f(t) = exp

[
−(t− 0.2)2

2 · 0.12

]
+

0.750.6 − |t− 0.7|0.6

0.750.6
(3.2)
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Figure 3.3: Test signal.

3.3.2 WT parameters

The parameters for the wavelet transform are its bases and scales. Since the algorithm

applies �rst- and second-order wavelet bases, we chose wavelet bases from the same families

in these two versions. The bases available in MATLAB that corresponded to this criterion

are the ones indicated in Table 3.1. The tests were run with two sets of scales: the �rst one

with the smallest scale being a = 1 and every integer scale until the largest one, a = 64;

the second set consists of four scales: a = 16, a = 32, a = 48 and a = 64.

Table 3.1: Chosen wavelet bases

Family 1st order 2nd order

Gaussian gaus1 gaus2, mexh

Daubechies db1 db2

Biorthogonal bior1 bior2

Reverse biorthogonal rbio1 rbio2

The gaussian wavelet bases are the derivatives of p-th order of the gaussian function,

described in Equation 3.3. The gaussian wavelet bases family is normally represented in

literature as gausN, where N is the number of vanishing moments of the base. Therefore,

the wavelet bases gaus1 and gaus2 are, respectively, the �rst and second order derivatives of

the gaussian function. The mexican hat basis, mexh, is proportional to gaus2, having two
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vanishing moments as well. Figure 3.4 [8] shows the plots of these three gaussian wavelet

bases.

f(x) = Cpe
−x2∥∥f (p)

∥∥2
= 1

(3.3)

The Daubechies bases were described by Ingrid Daubechies [23]. They are orthonormal

wavelets of compact support, with the generic expression of Equation 3.4 [24], where ψ

is the wavelet, φ is the scaling function, and hn is the expression for both the associated

reconstruction and decomposition �lters. The Daubechies wavelet bases are referred to as

dbN, where N ∈ Z∗+ is the number of vanishing moments.

ψ(x) =
√

2
∑
n

(−1)nh−n+1φ(2x− n) (3.4)

φ(x) =
√

2
∑
n

hnφ(2x− n) (3.5)

The biorthogonal bases are biorthogonal splines, characterized by the general expression

of Equation 3.6 [24, 25]. Their associated reconstruction and decomposition �lters, hn and

gn, are not necessarily identical, and thus confer both the wavelet function ψ and the scaling

function φ one synthesis and one analysis form. In this project, the analysis form of the

wavelet function is applied. The reverse biorthogonal basis is derived from the biorthogonal

by inverting the analysis and synthesis functions. The biorthogonal bases are represented

as biorNr.Nd, and the reverse biorthogonal bases, as rbioNr.Nd, where Nr and Nd are the

number of vanishing moments of the synthesis and analysis functions, respectively.

ψ(x) =
√

2
∑
n

gnφ(2x− n) (3.6)

φ(x) =
√

2
∑
n

hnφ(2x− n) (3.7)

Figure 3.5 [8] shows the wavelet bases from the Daubechies and biorthogonal families.

For n = 1, they are all equal to the Haar wavelet, in Figure 3.5(a). The others are the bases

for n = 2 vanishing moments: (b) for db2, (c)for bior2.2, and (d) for rbio2.2.

3.3.3 Error metrics

In order to measure the quality of the signal reconstruction, two metrics are used in this

project: the RMS error metric and the correlation coe�cient between the original and the

recovered signals.
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The RMS error is the root-mean-squared error, expressed by Equation 3.8, where l is

the length of the original signal y and of the recovered signal ŷ. This error is represented

by a scalar value, and allows us to compare the similarity between the two signals globally.

eRMS =

√∑l
k=1(ŷk − yk)2

l
(3.8)

The Pearson correlation coe�cient ρ between the discrete random variables X and Y is

expressed by Equation 3.9, where: E(X) is the expected value of the variable X; σ(X) is

the standard deviation of the variable X; and cov(X, Y ) is the covariance of the variables

X and Y . The correlation coe�cient is a scalar of absolute value between 0 and 1. The

covariance of X and Y is the �rst central moment of the variables. If cov(X, Y ) = 0,

then X and Y are completely independent and ρ = 0, which also means that X and Y

are uncorrelated [26]. The correlation coe�cient between the original and the recovered

signals, then, will express how much their morphologies are alike, or correlated.

ρ =
E[XY ]− E[X] · E[Y ]

σX · σY
=
cov(X, Y )

σX · σY
(3.9)

3.3.4 Quantization

To analyze the e�ect of quantization of the sampled values (amplitudes and Lipschitz

exponents) in the signal recovery, a uniform quantizer was implemented, with resolutions

of 4, 8 and 12 bits, representing low, medium, and high resolution.
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Figure 3.4: Gaussian wavelet bases [8].

Figure 3.5: (a) Daubechies and biorthogonal bases with n = 1 vanishing moment. Bases with n = 2

vanishing moments: (b) Daubechies (c) Biorthogonal (d) Reverse biortogonal [8].
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3.4 System Results

According to the �owchart in Figure 3.1, the �rst step in the algorithm is to determine

the WT bases and scales, in order to identify the signal's critical points. Let us evaluate

the algorithm step-by-step with one of the test con�gurations: the pair of gaussian wavelet

bases, gaus1 and gaus2, and the second set of scales (from a = 16 to a = 64). With the

�rst-order WT results, the local maxima and minima points can be detected, as Figure 3.6

shows. Note that the local maxima and minima are correctly identi�ed with the �rst-order

wavelet transform processing. Figure 3.6(b) shows the coe�cients line for a = 16 and the

zero-crossing detection output. The second-order WT is used to detect the in�ection points

positions, which is shown in Figure 3.7. Figure 3.7(b) shows the coe�cients line for the

largest scale, a = 64, and the zero-crossing detection result. In this case, an approximation

was needed, because the coe�cients line crosses zero thrice in the last portion of the signal,

meaning that two in�ection points are detected initially. Apart from this approximation,

the in�ection points appear to have been detected with accuracy by applying the coe�cients

line for the largest scale.
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(b) 1st order WT coe�cients line for scale a = 16 (green) and zero-crossing detection output

(dashed, blue).

Figure 3.6: Critical points detection: local maxima and minima.
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(b) 2nd order WT coe�cients line for scale a = 64 (green) and zero-crossing detection output

(dashed, blue).

Figure 3.7: Critical points detection: in�ection points.
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The second-order WT results are also used to estimate the Lipschitz exponent at every

point of the signal. The gaus2 coe�cients lines for the four scales are shown in Figure 3.8,

and Figure 3.9 displays the result of the Lipschitz exponent estimation. The peaks of the

coe�cients line in Figure 3.8 all happen at the same position when evaluating them for

di�erent scales. The Lipschitz exponent is estimated based on the decay of these maxima

across scales at the identi�ed critical points positions. As an exercise, let us estimate the

Lipschitz coe�cient, manually, by evaluating the �gures and applying the de�nition, for the

�rst local maximum point of the input signal. The �rst maximum occurs at approximately

0.2s, so the �rst step is to determine the values of the coe�cients lines for all scales at that

point of interest:

a = 16 → amplitude ≈ 0.1

a = 32 → amplitude ≈ 0.5

a = 48 → amplitude ≈ 1.3

a = 64 → amplitude ≈ 2.2

Then, applying the de�nition of the Lipschitz coe�cient (α) estimation, we must calcu-

late the decay across scales. This is achieved by evaluating the decay in amplitude at every

two consecutive scales, and then taking the mean value of those results:

α =
α1 + α2 + α3

3
− 0.5

α1 =
log|2.2| − log|1.3|
log|64| − log|48|

= 1.83

α2 =
log|1.3| − log|0.5|
log|48| − log|32|

= 2.36

α3 =
log|0.5| − log|0.1|
log|32| − log|16|

= 2.32

∴ α = 2.17− 0.5 = 1.67

In Figure 3.9, the Lipschitz coe�cient at t = 0.2 s appears to be α ≈ 1.7. Actually, its

precise value is 1.7654, which is fairly close to the result obtained analytically, above, with

approximated values from the plots in Figure 3.8.

With the localization of the critical points, the input and Lipschitz signals can be sam-

pled. Figure 3.10(a) shows the amplitude sampling, which happens at all identi�ed critical

points. The Lipschitz coe�cient is sampled only at the detected local maxima and minima,

as shown in Figure 3.10(b). It is worth noting that the estimated Lipschitz exponent at the

critical points cannot be larger than 2, because this is the number of vanishing moments
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Figure 3.8: Coe�cients lines for second order wavelet transform at scales 16, 32, 48 and 64.
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(b) Lipschitz exponent estimated at all points of the input signal.

Figure 3.9: Lipschitz exponent estimation.
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of the wavelet basis that is used to estimate α, in this case, gaus2. Figure 3.11 shows the

amplitude and Lipschitz coe�cient sampling signals, but quantized for three di�erent res-

olutions: 4, 8, and 12 bits. Note that there is a considerable di�erence between the values

for 4 bits resolution and the values for 8 and 12 bits resolutions. Also, the latter ones are

practically indistinguishable.
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(a) Amplitude sampling.
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(b) Lipschitz coe�cient sampling.

Figure 3.10: Sampled signals.

In order to test this algorithm, the signal must be recovered from these outputs. The

polynomial reconstruction algorithm for the ideal case yields the result shown in Figure 3.12.

The signal reconstruction is successful, with a high correlation coe�cient between the re-

covered signal and the input signal of ρ = 0.98853, and an RMS error of eRMS = 0.008547.

Table 3.2 contains the polynomial parameters used to reconstruct the signal piece by piece

for this case, in the manner illustrated earlier by Figure 3.2. Table 3.2 is in terms of the

parameters in Equation 3.1, where Ai and Am are the amplitudes of the critical points, αm
is the Lipschitz exponent, measured at the local maxima and minima, and the others are

time parameters. The Lipschitz exponent indicates the morphology of the signal around

a local maximum or minimum, which is why it is only sampled at these points; also, this

means that its value is used for two polynomials, for example, P2 and P3, that reconstruct

the signal around the �rst identi�ed maximum, localized at 0.2110 s and with an amplitude
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(a) Amplitude sampling.
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(b) Lipschitz coe�cient sampling.

Figure 3.11: Quantized sampled signals for 4, 8, and 12-bit resolutions.
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of 1.2204 V. P2 starts with an in�ection point, identi�ed at 0.0830 s and with an amplitude

of 0.6087 V, and P3 ends with an in�ection, which occurs at 0.3090 s with an amplitude of

0.8790 V.
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Figure 3.12: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for gaus1 and gaus2

wavelet bases, set of scales from 16 to 64, and ideal (not quantized) values.

Table 3.2: Polynomial reconstruction parameters for gaus1, gaus2, scales from 16 to 64 (ideal case)

n Ai Am τ µ αs t0 (s) tf (s)

1 0.6087 0.1759 0.0010 0.0820 1.2464 0.0010 0.0830

2 0.6087 1.2204 0.2110 0.1280 1.7654 0.0830 0.2110

3 0.8790 1.2204 0.2110 0.0980 1.7654 0.2110 0.3090

4 0.8790 0.5263 0.4460 0.1370 1.9970 0.3090 0.4460

5 0.7442 0.5263 0.4460 0.1770 1.9970 0.4460 0.6230

6 0.7442 0.9909 0.7000 0.0770 0.6024 0.6230 0.7000

7 0.5726 0.9909 0.7000 0.1820 0.6024 0.7000 0.8820

8 0.5726 0.4229 1.0000 0.1180 1.0232 0.8820 1.0000

Figures 3.13(a), (b) and (c) show the results for the three quantization resolutions,

respectively 4, 8 and 12 bits. As noticed before, the quality of the reconstruction with 4-bit

resolution is clearly below the quality of the ones with 8 and 12 bits, which come very close

to the ideal case of Figure 3.12. The correlation coe�cients and RMS errors for each of

these cases, as well as the results for other tests, for scales from 16 to 64 are displayed in

Tables 3.3 and 3.4. In these tables, the column labeled `Ideal' contains the metrics for the

case when the signal is recovered with the values before they pass through the quantizer,

and this serves as a comparison parameter for the other results. This is the case illustrated

in Figure 3.12, for the bases gaus1 and gaus2. The column labeled `Amplitude' contains

the results for when only the amplitudes are quantized, and the Lipschitz coe�cient values

are the ideal ones. Similarly, the column labeled `α' evaluates the e�ects of quantizing only

the Lipschitz exponent in the signal reconstruction. The column labeled `Amplitude + α
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shows the results when the amplitudes and the Lipschitz coe�cients are quantized at the

same resolution, which are the cases shown in Figure 3.13. Following this same pattern,

the metrics obtained from the tests for the other set of scales, ranging from 1 to 64, are

displayed in Tables 3.5 and Tables 3.6.

0 0.25 0.5 0.75 1

0

0.5

1

1.5

Time (s)

A
m

pl
itu

de
 (

V
)

 

 
Input signal
Reconstruction

(a) 4-bit resolution
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(b) 8-bit resolution
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(c) 12-bit resolution

Figure 3.13: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for gaus1 and gaus2

wavelet bases, set of scales from 16 to 64, and quantized values.

The tables allow us to compare the results according to the chosen bases, the set of
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Table 3.3: Correlation coe�cient (%) for scales from 16 to 64

Bases

Quantization (bits)

Ideal
Amplitude α Amplitude + α

12 8 4 12 8 4 12 8 4

gaus1,
98.9 98.9 98.9 96.0 98.9 98.9 97.0 98.9 98.9 94.7

gaus2

gaus1,
99.0 99.0 99.0 96.5 99.0 99.0 94.2 99.0 98.8 90.0

mexh

db1,
73.9 73.9 74.7 63.1 73.8 73.8 75.3 73.9 74.6 64.2

db2

bior1,
88.4 88.5 88.8 79.5 88.4 88.5 89.3 88.5 88.9 82.1

bior2

rbio1,
96.0 96.0 95.7 94.7 96.0 96.0 94.9 96.0 95.7 94.7

rbio2

Table 3.4: RMS error (%) for scales from 16 to 64

Bases

Quantization (bits)

Ideal
Amplitude α Amplitude + α

12 8 4 12 8 4 12 8 4

gaus1,
0.855 0.855 0.877 6.119 0.855 0.852 1.379 0.855 0.874 6.381

gaus2

gaus1,
0.869 0.874 1.032 6.291 0.870 0.885 2.155 0.875 1.052 7.239

mexh

db1,
4.510 4.498 4.341 6.318 4.510 4.516 4.487 4.450 4.348 6.308

db2

bior1,
2.935 2.925 2.809 5.082 2.934 2.917 2.634 2.924 2.792 5.173

bior2

rbio1,
2.068 2.071 2.194 6.358 2.067 2.057 2.186 2.070 2.185 6.497

rbio2
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Table 3.5: Correlation coe�cient (%) for scales from 1 to 64

Bases

Quantization (bits)

Ideal
Amplitude α Amplitude + α

12 8 4 12 8 4 12 8 4

gaus1,
98.3 98.3 98.4 94.9 98.3 98.3 98.2 98.3 98.4 94.6

gaus2

gaus1,
99.2 99.2 99.1 96.7 99.2 99.1 98.9 99.2 99.1 96.3

mexh

db1,
68.5 68.6 69.4 61.3 68.5 68.4 66.8 68.6 69.3 58.9

db2

bior1,
86.9 86.9 87.3 73.8 86.9 87.2 90.9 86.9 87.5 78.6

bior2

rbio1,
98.3 98.3 98.3 92.7 98.3 98.3 98.3 98.3 98.3 93.5

rbio2

Table 3.6: RMS error (%) for scales from 1 to 64

Bases

Quantization (bits)

Ideal
Amplitude α Amplitude + α

12 8 4 12 8 4 12 8 4

gaus1,
1.064 1.057 0.996 5.859 1.063 1.057 1.157 1.056 0.992 5.773

gaus2

gaus1,
0.726 0.725 0.783 6.001 0.727 0.733 0.909 0.726 0.816 6.109

mexh

db1,
5.147 5.134 4.969 5.951 5.147 5.154 5.325 5.134 4.977 6.121

db2

bior1,
3.314 3.308 3.159 4.702 3.312 3.284 2.815 3.306 3.129 4.488

bior2

rbio1,
1.075 1.071 1.039 5.576 1.075 1.062 1.049 1.070 1.025 5.560

rbio2
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scales, and the quantization resolution. The correlation coe�cient indicates how much

of the original signal's morphology is preserved, which is primarily due to the Lipschitz

coe�cient estimation, and the RMS error re�ects mostly the accuracy in determining the

critical points' positions and amplitudes. It is clear from both metrics, though, that the

best results occur for the gaussian pairs of wavelet bases, and the worst results are observed

for the Daubechies pair. This is expected, since the gaussian bases hold a higher correlation

with the test signal than the Daubechies and biorthogonal wavelet bases, and the wavelet

transform is also a measure of correlation between the analyzed signal and the wavelet basis

function. A consequence of this is that the Daubechies and biorthogonal wavelets would

probably yield better results if the input signal had sharp transitions, for example, as an

ECG signal. This is shown in a previous work [8]. It is worth noting that the results

obtained with the reverse biorthogonal bases present higher correlation coe�cients and

smaller RMS error than the tests for the Daubechies and biorthogonal bases, which was

not expected.

When comparing the characteristics of the RMS error tables and the correlation coef-

�cient tables, it is noticeable that the di�erence between results for the error are greater

than for the correlation coe�cient. This indicates that there is little change in the Lipschitz

coe�cient estimation error for all cases, because it shows that, even if there is error in the

amplitudes of the critical points, the morphology of the signal is well described. This is

evidenced by evaluating the quantized α column in Tables 3.4 and 3.6: for 12- and 8-bit

resolutions, the results are practically the same, or very close. For a resolution of 4 bits, the

error increases, but not so much as it does for the cases when the amplitude is quantized. In

other words, the Lipschitz coe�cient can be quantized with only 4 bits and yield medium

to high quality signal recovery.

Regarding the choice of scales, the expected result is that the smaller the scale, the

better the local maxima and minima detection will be, i.e. there should be smaller error

for the set of scales from 1 to 64. Also, in this set, there are more scales than in the other

one (from 16 to 64), what would give more information to estimate the Lipschitz exponent

and result in higher correlation coe�cients. However, the results vary for both metrics, and

this di�erence is not always signi�cant. This is not the expected result, but it can be a sign

that, for this signal and these bases, the critical points localization for scale 64 is already

good enough, with no gain when we try to increase the precision in this process. However,

the increase in the RMS error metric when we zoom in on a smaller scale is not expected.

According to the data in the tables, the worst result occurs when the pair of Daubechies

bases are selected with the second set of scales (from 1 to 64). The reconstruction results

for this con�guration are shown in Figures 3.14 and 3.15, respectively for the ideal and

the quantized cases. The analysis of these �gures shows that the high RMS error and low

correlation coe�cients are due to errors in the �rst and last portions of the signal. This can

happen because, for these portions, the Lipschitz exponent is estimated with only one half

of the information, since the local minima are the �rst and last points of the signal. In this
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case, the error in the Lipschitz coe�cient estimation resulted in not only a not so precise

approximation for the polynomial, but also in a change of concavity. It is expected that in

a real signal this �edge e�ect� might show up again, but not a�ect the following portions of

the signal, as occurs with the middle portions of the signal in Figures 3.14 and 3.15.
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Figure 3.14: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for db1 and db2

wavelet bases, set of scales from 1 to 64, and ideal (not quantized) values.

3.4.1 Comparison with a standard ADC

In order to compare the results with those of a standard ADC, a simple Simulink model

was used. The standard ADC was modeled by passing the input signal through an ideal

quantizer block and altering its parameters (quantization interval and sample time), and

then measuring the RMS error of the output. Figure 3.16 shows the results in a graph that

compares the number of bits, n, the RMS reconstruction error, and the sampling rate (in

samples per second - sps) of the standard ADC and one example of the proposed wavelet-

based ADC (WT ADC) for the test signal. From the previous analysis, the test signal was

sampled at nine identi�ed critical points, and the Lipschitz exponent, at �ve maxima or

minima, resulting in 14 samples. Since the signal's duration is of 1 second, this yields 14

sps. For the set that was evaluated �rst, that is, gaussian bases and scales from 16 to 64,

with both the amplitude and the Lipschitz exponent quantized with 12 bits, the RMS error

is eRMS = 0.00855. If, however, we choose to quantize the Lipschitz exponent with 4 bits

and the amplitude with 8, the RMS error would increase, but the number of bits/sample

would decrease signi�cantly as well.
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(b) 8-bit resolution
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Figure 3.15: Input signal (red, solid line) and reconstructed signal (yellow, dashed line) for db1 and db2

wavelet bases, set of scales from 1 to 64, and quantized values.
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Figure 3.16: Number of bits x RMS error x sampling rate

3.5 Summary of the chapter

This chapter presented the system-level development of the wavelet-based analog-to-

digital converter. The �rst section showed the proposed sampling and reconstruction algo-

rithms. Then, the experimental tests and results were presented, which showed that the

input signal could be recovered with little loss of information with only 13 samples of the

input signal. Also, a high resolution can be achieved with not so high resolution quantiza-

tion of the amplitude and Lipschitz exponent parameters. The next step is to implement

this ADC in circuit-level, which is the object of the next chapter.
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Chapter 4

Circuit-Level Development

In this chapter, the project is studied at circuit-level, starting with the proposed circuit

block diagram and the theory of how each block can be implemented. The following sections

describe the tests and their results. The last section contains a discussion of the results

obtained in the project, both at system- and circuit-level.

4.1 Circuit block diagram

Based on the algorithm in Fig. 3.1, a circuit block diagram is proposed, as shown in

Fig. 4.1.

Figure 4.1: Wavelet-based ADC block diagram.

The WT of �rst and second orders of the input signal vin can be implemented by analog

wavelet �lters with the method in Chapter 2. To localize the critical points, the coe�cients

line coeff1 and coeff2, which are the wavelet coe�cients line for scales a1 and a2, go
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through a comparator, implementing the zero-crossing detection. This outputs the signals

tm and tinf, which have transitions at the instants when local maxima or minima occur,

and when in�ection points are detected. The amplitudes will be sampled at all these

transitions, so the amplitude sampling is represented by a sample-and-hold block controlled

by tamp = tm ⊕ tinf.

The Lipschitz coe�cient (α) estimation is based on Equation 2.22, and is implemented

by the absolute value block (`abs') followed by the logarithm block (`log'), and then the

division block. The output of this chain is the signal lpz, which contains the Lipschitz

exponent estimated at all points of vin. Since the Lipschitz exponent is only sampled at

local maxima and minima, α is obtained by the sample-and-hold block controlled by tm. The

mathematical operations of absolute value and division can be implemented with translinear

circuits working in current mode, the logarithm can be obtained by using MOS transistors

operating in weak inversion [5].

This ends the sampling algorithm implementation in circuit-level. Since the next step in

an ADC is quantization, and in this project we would like to minimize power consumption,

we made a choice to propose a circuit block diagram using only one quantizer, represented

by the block Q. In order to do this, the signals for sampled amplitudes (amp) and for

sampled Lipschitz coe�cients (α) must be comprised together, without loss of information.

One solution for this is to apply a switch controlled by a synchronization signal, sync,sw.

At local maxima and minima points, both the amplitude and the Lipschitz exponent are

sampled. The signal sync,sw contains pulses at these points, when α should be selected

by the switch. After the pulse, the switch goes back to its prior position, selecting amp

and collecting the amplitude at the maximum or minimum point and at the subsequent

in�ection point. The synchronization signal sync,sw is generated based on tamp and its

delayed version tamp,d:

sync,sw = (tamp ⊕ tamp,d) · tamp,d (4.1)

This process outputs a single signal (vout), which is then quantized (vout,q) and must be

encoded. There are many suitable options for encoding, including the use of binary coding,

and these are not thoroughly discussed in this project.

4.2 Methodology

The tests for the circuit were implemented in CADENCE VIRTUOSO ADE, with XFAB

XC018 technology. The veri�cation methodology for the proposed circuit was to test each

block individually, starting with ideal blocks. After each block is completed, the results

are collected and are processed o�ine in MATLAB. These results are then compared to

the system results. In this recursive method, some circuit results evidenced the need for
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modi�cations to the proposed system algorithm, as will be shown in the following section.

Because of this and of other issues and project constraints, the circuit analysis could not

be completed in due time and some parts are left as future work.

4.3 Results

Analyzing the circuit block diagram in Fig. 4.1, we see that the blocks that implement

the wavelet transform and the ones concerning the estimation of the Lipschitz exponent are

the critical components of the circuit. The �rst blocks to be implemented are the WT ones.

4.3.1 Analog wavelet �lter block

The WT is implemented with an analog �lter. In order to do so, we must de�ne the

orthonormal state-space representation of the basis we are interested in, which is obtained

by its transfer function. The 6th order transfer function for the �rst derivative of the

gaussian function, obtained with L2 approximation, is available in the paper from Karel [7],

and is expressed as:

Hgaus1(s) =
−0.08946s5 − 0.1683s4 − 8.326s3 + 6.642s2 − 139.6s

s6 + 5.927s5 + 30.52s4 + 83.11s3 + 163.6s2 + 176.6s+ 93.29
(4.2)

One way to obtain the second derivative of a gaussian would be to multiply the transfer

function in Equation 4.2 by s, yielding:

Hgaus2(s) =
−0.08946s6 − 0.1683s5 − 8.326s4 + 6.642s3 − 139.6s2

s6 + 5.927s5 + 30.52s4 + 83.11s3 + 163.6s2 + 176.6s+ 93.29
(4.3)

However, since the numerator in Equation 4.2 is of 5th order, the transfer function for the

second derivative of the gaussian function, shown in Equation 4.3, is a transfer function with

the same number of zeroes and poles. Even though this would still be a proper function,

the numerator coe�cient of highest order is signi�cantly smaller than the others, and so

the transfer function can be approximated to:

H
′

gaus1(s) =
−0.1683s4 − 8.326s3 + 6.642s2 − 139.6s

s6 + 5.927s5 + 30.52s4 + 83.11s3 + 163.6s2 + 176.6s+ 93.29
(4.4)

Hence, the transfer function for the second derivative of the gaussian function is ex-

pressed as is in Equation 4.5.

H
′

gaus2(s) =
−0.1683s5 − 8.326s4 + 6.642s3 − 139.6s2

s6 + 5.9275s5 + 30.52s4 + 83.11s3 + 163.6s2 + 176.6s+ 93.29
(4.5)
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The impulse responses for the transfer functions in Equations 4.2 and 4.4 are shown in

�gure 4.2. The impulse response is very close to the theoretical response expected for the

�rst derivative of the gaussian function. The e�ect of the approximation in the numerator

is observed as a slightly more oscillatory behaviour in the start of the signal in Figure 4.2

(b) when compared to the signal in Figure 4.2(a).
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Figure 4.2: First derivative of a gaussian (gaus1) for sixth order L2 approximation for (a) original transfer

function Hgaus1(s) (b) approximated transfer function H
′

gaus1(s).

The impulse responses for the second derivative of the gaussian function, the transfer

functions in Equations 4.3 and 4.5, are shown in Figure 4.3. The impulse responses resemble

the original gaus2 function, however, there is an assymetry in the amplitude of both peaks

of the impulse response, in both cases of Figures 4.3(a) and (b). Then, this assymetry is

either a consequence of the L2 approximation or of the procedure of obtaining the second

derivative by multiplying the �rst derivative transfer function by s. As observed for the

cases of gaus1 in Figure 4.2, the approximation in the order of the numerator in the transfer

function adds a small error in the start of the signal and a slightly more oscillatory behaviour

to the transfer function impulse response.

Due to the fact that the di�erences between the original transfer functions, Hgaus1(s)
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Figure 4.3: Second derivative of a gaussian (gaus2) for sixth order L2 approximation for (a) original transfer

function Hgaus2(s) (b) approximated transfer function H
′

gaus2(s).

and Hgaus2(s), and their approximations, H
′
gaus1(s) and H

′
gaus2(s), are very subtle, we chose

to implement the �lters with the approximated transfer functions. Having decided which

transfer functions to apply, the next step is to obtain an orthonormal state-space represen-

tation of the transfer functions, and thus obtain the coe�cients to implement the Gm-C

�lter. The orthonormal state-space representation for H
′
gaus1(s) in Equation 4.4 is obtained

with a MATLAB function (available in the Appendix II). The resulting matrices are:

A =



0 1.185 0 0 0 0

−1.185 0 1.637 0 0 0

0 −1.637 0 2.007 0 0

0 0 −2.007 0 2.431 0

0 0 0 −2.431 0 4.062

0 0 0 0 −4.062 −5.927


B =



0

0

0

0

0

1.374


C =

[
−0.1948 −2.424 0.2941 −0.5214 −0.03016 −0.06514

]
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D = [0]

The orthonormal state-space representation for the transfer function H
′
gaus2(s), in Equa-

tion 4.5, is obtained by the same procedure as:

Agaus2 = A =



0 1.185 0 0 0 0

−1.185 0 1.637 0 0 0

0 −1.637 0 2.007 0 0

0 0 −2.007 0 2.431 0

0 0 0 −2.431 0 4.062

0 0 0 0 −4.062 −5.927


Bgaus2 = B =



0

0

0

0

0

1.374


Cgaus2 =

[
−4.617 −0.7125 7.609 −0.6636 −1.492 −0.1225

]

Dgaus2 = D = [0]

As expected, matrices A and B in the state-space representation for the second derivative

of the gaussian function are the same as the ones in the representation for the �rst derivative,

matrix D remains null, and only matrix C has di�erent coe�cients.

These matrices coe�cients are the values of the transconductances of the Gm-C elements

in the circuit schematic. Both WT-1 and WT-2 �lters can be implemented in the same

schematic by placing the matrices Cgaus1 and Cgaus2 in parallel, as shown in the schematic

in Figure 4.4. The �rst schematic simulations were run with ideal elements available in the

software library. The ideal transconductor block was implemented using a voltage-controlled

current source (vccs block). The order of the transconductances is adjusted according to

the capacitances and the operation frequency. The initial con�guration was of C = 2pF

and transconductances in the order of nA/V.

From this point on, altering the capacitances alters the operation bandwidth, which

corresponds to altering the WT scale. The capacitance values that were chosen for the

simulations were: C = 2, 8, 16, 32, 64 and 128pF . The testbench schematic for these

simulations is the one shown in Figure 4.5, and consists in cascading the WT analog �lters

for each scale.

The system's impulse response is shown in Figure 4.6(a) (transient simulation result) and

(b) (AC simulation result), for gaus1. For gaus2, the transient simulation results are shown

in Figure 4.7(a) and the AC simulation results are shown in Figure 4.7(b). The impulse

responses are obtained when a pulse of high amplitude and short duration is applied as an

input signal. The expected results are versions of the waveforms shown in Figures 4.2(b)

and 4.3(b), expanded (for larger scales) or compressed (for smaller scales). The frequency

responses show how larger scales correspond to lower frequencies, and how smaller scales
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Figure 4.4: Circuit implementation of gaussian wavelet �lters.

Figure 4.5: Testbench schematic for WT-1 and WT-2 gaussian �lters.

correspond to higher frequencies. The impulse responses present the expected behaviour,

with the symmetry error in the second derivative of the gaussian function being observed

again.

Changing the input signal from an impulse to the test signal, the testbench outputs are

the �rst- and second-orders wavelet transform coe�cients lines for each scale they represent.

Since there could not be established any direct mathematical relation to identify which
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(a) Transient simulation results.
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(b) AC simulation results.

Figure 4.6: Impulse responses for gaus1.

frequencies correspond to which values of the scales used during the system simulation, the

scales for the circuit results are identi�ed by the values of the capacitances in pF.

Figure 4.8(a) shows the coe�cients line for each scale/capacitance, while Figure 4.8(b)
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(a) Transient simulation results.
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(b) AC simulation results.

Figure 4.7: Impulse responses for gaus2.

shows the frequency response in each case for gaus1. It is worth noting that the zero-

crossing of the coe�cients line for the smallest scale, a = 2 or C = 2pF , identi�es the

maxima and minima of the test signal approximately at the instants t = 0.2s, t = 0.5s, and
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t = 0.7s. This is in conformity with the real values obtained from the system simulations,

in Table 3.2: t = 0.211s, t = 0.446s, and t = 0.700s.
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(a) Coe�cients lines for all scales.
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(b) AC simulation results.

Figure 4.8: First-order wavelet transform of the test signal using analog wavelet �lters with gaussian basis.

The coe�cients lines for gaus2 are shown in Figure 4.9(a), and the frequency response is
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shown in Figure 4.9(b). Observe how the peaks in the coe�cients lines happen at di�erent

instants in time. This delay was not observed in the system simulations and a�ects the

algorithm for Lipschitz exponent estimation, since the estimated α at a given instant, when

a critical point of interest occurs, will not correspond to its real value. When exporting the

coe�cients line in Figure 4.9 to MATLAB and running the system-level tests, the Lipschitz

coe�cient at the local maxima and minima (including the �rst and last points of the signal)

were estimated as: 0.5, 1.07, 1.6, 0.96, and 1.63. The real values obtained at system-level,

according to the data in Table 3.2, are, however: 1.25, 1.77, 1.997, 0.60, and 1.02.

Since there were some �aws in the gaussian function approximation for the sixth order

L2 approximation, the following subsection presents a second attempt to implement the

gaussian wavelets in analog �lters, applying a higher order approximation obtained with

the Padé method.
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(a) Coe�cients lines for all scales.
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(b) AC simulation results.

Figure 4.9: Second-order wavelet transform of the test signal using analog wavelet �lters with gaussian

basis.
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4.3.1.1 A higher order approximation

In this subsection, the same tests from the previous subsection were repeated for a 10th

order [6/8] Padé approximation, obtained from the book by Haddad and Serdijn [5]. The

transfer function for gaus1, in this case, is the one in Equation 4.6:

Hgaus1(s) =
−4.4820s6 − 34.446s5 + 444.32s4 − 4708.1s3 + 16977s2 − 52829s+ 3.6809

−0.77104s10 − 15.627s9 − 158.57s8 + 1043.7s7 − 4880.8s6 − 16787s5−
−42703s4 − 78851s3 − 100660s2 − 79880s− 29823

(4.6)

Multiplying Equation 4.6 by s yields the transfer function for gaus2:

Hgaus2(s) =
−4.4820s7 − 34.446s6 + 444.32s5 − 4708.1s4 + 16977s3 − 52829s2 + 3.6809s

−0.77104s10 − 15.627s9 − 158.57s8 + 1043.7s7 − 4880.8s6 − 16787s5−
−42703s4 − 78851s3 − 100660s2 − 79880s− 29823

(4.7)

The impulse responses to the transfer functions in Equations 4.6 and 4.7 are shown in

Figure 4.10. In this case, there was no need for approximations in the �rst derivative transfer

function in order to produce the transfer function for the second derivative. Both impulse

responses correspond to the theoretical expected behaviour of the gaussian functions. The

asymmetry observed in the 6th order L2 approximation for gaus2 is not observed for this

approximation.

The orthogonal state-space representation for the gaus1 �lter is:

A =



0 1.071 0 0 0 0 0 0 0 0

−1.071 0 1.492 0 0 0 0 0 0 0

0 −1.492 0 1.799 0 0 0 0 0 0

0 0 −1.799 0 2.069 0 0 0 0 0

0 0 0 −2.069 0 2.379 0 0 0 0

0 0 0 0 −2.379 0 2.836 0 0 0

0 0 0 0 0 −2.836 0 3.641 0 0

0 0 0 0 0 0 −3.641 0 5.380 0

0 0 0 0 0 0 0 −5.380 0 11.78

0 0 0 0 0 0 0 0 −11.78 −20.27


BT =

[
0 0 0 0 0 0 0 0 2.540

]

Cgaus1 =
[
0.9739 2.220 −1.216 0.6866 −0.1700 0.02687 0.009916 0 0 0

]
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Figure 4.10: First (top) and second (bottom) derivatives of the gaussian function for 10-th order �lter.

D = [0]

As expected for the second derivative, matrices A and B are the same as the ones for

the �rst derivative, with only matrix C being modi�ed:

Cgaus2 =
[
−2.378 2.857 2.077 −1.835 1.357 −0.4326 0.07621 0.0361 0 0

]
The circuit implementation of these �lters follows the same method that was applied

for the sixth-order �lter in Figure 4.4. The value of the capacitances determine the WT

�lter bandwidth. Thus, di�erent capacitances correspond to di�erent frequencies, which

correspond to di�erent scales. The chosen values for the capacitances are the same as

before: 2, 8, 16, 32, 64 and 128 pF, and the transconductances are in the order of nA/V .

Figure 4.11 shows the impulse responses for gaus1 at all tested scales in time and fre-

quency domain obtained with the circuit implementation. Figure 4.12 shows the results of

the same tests for gaus2. The �rst derivative of the gaussian function is clearly identi�ed
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in the impulse responses in Figure 4.11(a), as well as the second derivative, gaus2, in the

impulse responses in Figure 4.12(a). The frequency responses for each case are shown in

Figure 4.11(b) and Figure 4.12(b).
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(a) Transient simulation results.
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(b) AC simulation results.

Figure 4.11: Impulse response for gaus1 for 10-th order �lter.
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(b) AC simulation results.

Figure 4.12: Impulse response for gaus2 for 10-th order �lter.

The �lter response to the test signal for the �rst-order wavelet transform are displayed in

Figure 4.13. By evaluating the zero-crossing of the coe�cients line for a = 2, or C = 2pF , in

Figure 4.13(a), we can identify the local maxima/minima of the test signal at the instants:
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t = 0.23s, t = 0.4s, and t = 0.7s. These are closer to the real values in Table 3.2�

t = 0.211s, t = 0.446s, and t = 0.700s� than the ones obtained in the previous subsection

for the 6th order L2 approximation.

Figure 4.14 shows the responses to the test signal for the second-order wavelet. Notice

that the delay between the coe�cients lines in Figure 4.14(a) is larger than in the results

obtained for the 6th order approximation. Not only can we not measure the Lipschitz

exponent in a given instant, but also it is not possible to estimate α for the �nal portions of

the signal, since the coe�cients line for the largest scale no longer carries this information.

This variation in the pattern of the results for the coe�cients lines for the second-order WT

implemented by analog wavelet �lters is an obstacle to implement a computational algorithm

both for estimating the Lipschitz exponent and for the identi�cation of the in�ection points.

4.3.2 Lipschitz exponent estimation

With the di�erences observed, the Lipschitz exponent can no longer be estimated by

sampling the coe�cients line at the same point (the point identi�ed as the position of a

local maximum or minimum), as was done in Chapter 3. In an attempt to verify if the

coe�cients lines for the second order WT, obtained in the previous subsection for L2 and

Padé approximations, allow the correct estimation of the Lipschitz exponent, we manually

calculate the values of α by evaluating the peaks of the coe�cients lines in Figures 4.14(a)

and 4.9.

The extrema of each coe�cient line for WT2 can be identi�ed by taking the zero-crossing

of the corresponding coe�cients line for WT1. Before, in the system simulations results,

there was no delay and these points of interest were identi�ed at the maxima and minima

points' positions. Now, because of the delay, these points are localized at such instants only

for the smallest scales. The choice of which extrema to observe begins with identifying which

ones on the coe�cients line for scale a = 2 are closer to the zero-crossing positions of the

gaus1 coe�cients line for a = 2. Then, the amplitude of these peaks across the other scales

is measured and the Lipschitz coe�cient at each of these points can be estimated by using

the same method applied in Chapter 3. Also, the following results include the estimated

Lipschitz coe�cient at all maxima and minima points, except the initial and �nal points of

the signal. For the test signal, this means that only three points were evaluated, identi�ed

hereafter as points 1, 2 and 3.

Table 4.1 contains the amplitude and positions of the coe�cients lines' extrema at all

tested scales for the 6th order L2 approximation. The positions at which these amplitudes

were sampled demonstrate the presence of a delay, and allow a comparison between the

position of a peak in the coe�cients line for the second-order WT and the position of a

zero-crossing in the coe�cients line for the �rst-order WT. The Lipschitz coe�cient values

that were estimated with the data in Table 4.1 are shown in Table 4.2. This table contains

the system results as a reference, which are identi�ed as αref and tref ; as well as the mean
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(a) Transient simulation results.
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(b) AC simulation results.

Figure 4.13: First-order wavelet transform for the test signal and gaus1 wavelet basis in selected scales,

using a 10th order Padé approximation.

value of α for each pair of consecutive scales, ᾱ; the maximum value of α for each pair

of consecutive scales, αmax; and these values subtracted by 0.5. In theory, the estimated
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(a) Transient simulation results.
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Figure 4.14: Second-order wavelet transform for the test signal and gaus1 wavelet basis in selected scales,

using a 10th order Padé approximation.

Lipschitz exponent should be the one in the column ᾱ − 0.5. However, the closest values

to the references are observed in the column ᾱ: for points 1 and 3, the results are fairly
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close to αref ; however, this is not true for α in point 2, which is estimated way below its

reference value of 1.997. It is also worth noting that the positions of the extrema in the

coe�cients line for points 1 and 3 correspond to the reference ones, which does not happen

for point 2 as well.

Table 4.1: Extrema of the WT2 coe�cients lines across scales for the analog �lter with sixth order transfer

function approximation.

a amp1 (10−10 A) t1 (s) amp2 (10−10 A) t2 (s) amp3 (10−10 A) t3 (s)

128 -14.74 0.4415 6.985 0.6550 -6.235 0.9337

64 -5.421 0.3231 2.605 0.5035 -4.136 0.8168

32 -1.466 0.2611 7.418E-1 0.4327 -2.699 0.7587

16 -3.465E-1 0.2304 2.104E-1 0.4034 -1.764 0.7292

8 -6.182E-2 0.2184 7.824E-2 0.3861 -1.139 0.7151

2 2.692E-2 0.2101 3.754E-2 0.3812 -3.993E-1 0.7037

Table 4.2: Lipschitz exponents obtained with manual calculations for the analog �lter with sixth order

transfer function approximation.

point t (s) αref tref (s) ᾱ ᾱ− 0.5 αmax αmax − 0.5

1 0.2101 1.7654 0.2110 1.699 1.199 2.487 1.987

2 0.3812 1.997 0.446 1.402 0.902 1.818 1.318

3 0.7037 0.6024 0.700 0.642 0.142 0.756 0.256

The results obtained for the 10th order Padé approximation are displayed in Tables 4.3

and 4.4, in the same fashion as the results for the 6th order approximation. The analysis

of the results for this approximation yields similar conclusions: the best results for the

estimated Lipschitz exponent are obtained by taking the mean of the calculated values for

every pair of scales and not subtracting 0.5 from this result. Also, the values for ᾱ for points

1 and 3 are acceptable when compared to αref , while there is signi�cant error for point 2.

This also happens for the positions of the coe�cients line extrema (t) when compared to

the reference position values (tref ). There is no data for the third point at scale a = 128

because of the delay observed.

Comparing the results from Tables 4.1 and 4.3, we notice that the sampled values for

amplitude are similar, indicating again that both transfer function approximations are

good in general, di�ering in some details. Also, comparing the results from Tables 4.2

and 4.4, we notice that there is a larger di�erence between the sampling position and the

reference position for point number 3 for the tenth order approximation, as well as the

di�erence between ᾱ and the reference value for point number 1, also for the tenth order

approximation.

66



Table 4.3: Extrema of the WT2 coe�cients lines across scales for the analog �lter with tenth order transfer

function approximation.

a amp1 (10−10 A) t1 (s) amp2 (10−10 A) t2 (s) amp3 (10−10 A) t3 (s)

128 -11.26 0.5873 5.929 0.8216 � �

64 -5.39 0.3922 2.587 0.5808 -3.14 0.8928

32 -1.639 0.2965 7.982E-1 0.4764 -2.059 0.7976

16 -4.149E-1 0.2477 2.28E-1 0.4284 -1.347 0.7477

8 -8.639E-2 0.2243 7.636E-2 0.4072 -8.703E-1 0.7240

2 1.815E-2 0.2108 2.886E-2 0.3897 -3.186E-1 0.7063

Table 4.4: Lipschitz exponents obtained with manual calculations for the analog �lter with tenth order

transfer function approximation.

point t(s) αref tref (s) ᾱ ᾱ− 0.5 αmax αmax − 0.5

1 0.2108 1.7654 0.2110 1.630 1.130 2.264 1.764

2 0.3897 1.997 0.446 1.396 0.896 1.808 1.308

3 0.7603 0.6024 0.700 0.644 0.144 0.725 0.225

These results show that the Lipschitz exponent estimation, performed manually with

the data from the extrema of the coe�cients lines for gaus2 across scales, does not behave as

expected from the theory. Also, there were only acceptable values of α for two of the three

points studied in this subsection. This characterizes a new limitation to the system. The

research of why this happens and of other ways to estimate the Lipschitz exponent is left

as future work. Other alternatives to estimate the signal's morphology can be investigated

in the future, as well; one possibility would be to apply a form of interpolation, e.g. spline

interpolation, to reconstruct the signal using the identi�ed critical points information.

4.4 Discussion

In Chapter 3, the sampling algorithm was introduced. The test results show that the

test signal's critical points are identi�ed by the algorithm, and that the signal morphology

around the local maxima and minima are well described by the estimated Lipschitz expo-

nents. The tests also show that a signal can be recovered after sampling with the proposed

polynomial reconstruction algorithm, with high correlation coe�cients and low RMS error

veri�ed between the original and reconstructed signals. This also characterizes the �rst

limitation of this method, however: the signal can not be recovered from its samples using

a traditional Digital-to-Analog Converter (DAC). The polynomial reconstruction algorithm

was only implemented in system-level. Nevertheless, the proposed system processes the sig-
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nal with the wavelet transform, yielding as outputs the main characteristics of the signal,

which can be useful for applications that do not need the analog signal to be recovered, but

simply to be analyzed.

The tests to verify the quality of the reconstructed signal and the behaviour of the

sampling scheme were run for the same scheme, but for di�erent wavelet bases, sets of

scales, and quantization resolutions. The results con�rm some expectations: �rst of all,

since the wavelet transform measures the correlation between a function and compressed

or expanded versions of the wavelet basis, depending on the scale parameter, the critical

points identi�cation yields better results for the pairs of bases with a higher correlation

with the input signal. Since the test signal did not present any sharp transitions and is

in part composed of a gaussian function, the best results were veri�ed for the pairs of

gaussian wavelet bases, when compared to the pairs of Daubechies and biorthogonal bases.

Still, the results for these bases was satisfactory in general, apart from the problem in the

Lipschitz exponent estimation in the borders of the signal (�rst and last points, which were

sampled as local minima), which altered the concavity of the signal in the �rst and last

reconstruction polynomials.

Other results, even though not expected, led to interesting conclusions: �rst of all, the

local maxima and minima points identi�cation was expected to be more accurate for the

a smaller scale, but there were no signi�cant di�erences from the results with a = 1 and

a = 16, what shows that, for this signal, good results can be obtained for a scale as small as

16. Also, the Lipschitz exponent estimation for the set of 64 scales should yield better results

than those obtained with the set of only four uniformly distributed scales. Again, there

were no signi�cant improvements in the results. Since the wavelet transform is implemented

in circuit-level by analog wavelet �lters, these results indicate that it could be possible to

design �lters that operate in not so high frequencies to localize the maxima and minima,

and that a �lter bank of four wavelet �lters can be su�cient to estimate the morphology

of the signal, instead of a bank with 64 �lters. Regarding the e�ects of the quantization

resolution on the samples, an interesting result was observed: the system, independently

of the pair of wavelet bases applied, appears to be robust to quantization, since the results

obtained for both the sampled amplitudes and Lipschitz coe�cients at medium resolution

(8 bits) are already of high quality, and very close to the results labeled as ideal, which do

not take into account the e�ect of quantization. For the Lipschitz exponent, we are able to

go even further in this analysis and say that a resolution of 4 bits is enough to describe the

morphology of the signal with little error and high correlation.

These results were achieved with the sampling of the amplitude at nine critical points

and of the estimated Lipschitz exponent at �ve of them, the local maxima and minima,

a total of 14 samples. Since the signal has a duration of 1s, this yields 14 sps. With

Figure 3.16, we can estimate that the Nyquist rate for this signal is around 40 sps, since

for sampling rates equal to or higher than this, the recovery error is practically zero. This

means that the sampling rate for this signal is approximately 3 times sub-Nyquist.
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In Chapter 4, a circuit block diagram to implement the sampling algorithm was pro-

posed. The �rst block to be tested was the one that implements the wavelet transforms of

�rst and second orders, the analog wavelet �lters. In order to do so, the transfer functions

for the gaussian wavelet bases, which yielded the best results in the system simulations,

were obtained via a 6th order L2 approximation and a 10th order Padé approximation.

After obtaining the transfer functions, their orthonormal state-space representation matri-

ces were determined, and the matrices coe�cients were implemented as the values of the

transconductor elements of a Gm-C �lter.

The impulse response for the �rst order wavelet transform was correct for both approx-

imations, yielding compressed and expanded versions of the gaus1 wavelet basis. However,

the impulse response of the second order wavelet transform �lter for the L2 approximation

was asymmetric, what does not happen in the gaus2 wavelet basis. This was the main rea-

son why a higher order approximation for the transfer function was included and, in fact,

the impulse response for the Padé approximation of the second derivative of the gaussian

function was symmetric. The transfer function for gaus2, in both cases, was obtained by

multiplying the transfer function for the �rst derivative by s, instead of performing the

approximation algorithms again.

When changing the input signal of the �lters from an impulse to our test signal, the �lter

outputs must be the coe�cients lines for the �rst and second order wavelet transforms. Since

each �lter operates at a di�erent frequency, determined by the value of the capacitances,

a bank of �lters with di�erent frequencies yields the coe�cients lines at di�erent scales.

The results for the �lters designed with both transfer function approximations appeared to

be correct: the zero-crossings of the coe�cients line at scale a = 2 for gaus1 identi�ed the

positions of local maxima and minima, and the zero-crossings of the coe�cients line at scale

a = 128 for gaus2 identi�ed the in�ection points. However, the coe�cients lines present a

delay across scales that was not observed in the system simulation results. This delay a�ects

the Lipschitz estimation algorithm, since the extrema of each coe�cient line can no longer be

identi�ed at the local maxima and minima positions. One way to identify their positions is

to observe the zero-crossings of the �rst order WT for all scales, and not only at the smallest

scale. However, the observed delay can also omit some of these extrema, as was the case

for the a = 128 coe�cients line for the 10th order Padé approximation. This con�gures

an obstacle in the development of a generic test, since there is no way to assure how this

delay will a�ect the coe�cients line for di�erent input signals, bases, and transfer function

approximations. In order to verify if the Lipschitz exponent could be correctly estimated

by the extrema of the coe�cients lines, these calculations were performed manually, and

again yielded some unexpected results, since the values did not always correspond to the

ones obtained in the system simulations and, in the cases when they did, they did not

correspond to the ones obtained following the exact theoretical mathematical expression.

At last, there are some comments to be done regarding the circuit's total power con-

sumption. Since the circuit implementation has not been completed, we cannot calculate the
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total power consumption for the ADC. However, there are reasons to believe that this ADC

should be suited for low-power applications. When evaluating the circuit block diagram in

Figure 4.1, it is clear that many components are the same as the ones present in traditional

ADC circuits: sample-and-hold blocks, comparators, logic gates. References [5, 27] show

that it is possible to implement analog wavelet �lters with low power consumption, with

the same approach that was used in the presented project development. The Lipschitz

exponent estimation is based on its mathematical de�nition. The operations of absolute

value and division can be implemented with translinear circuits working in current mode,

and the logarithm operation result can be obtained by using MOS transistors operating

in weak inversion. Therefore, the proposed circuit should not dissipate much more static

power than does the circuit of a traditional ADC. Furthermore, the dynamic power should

be smaller than the one for a traditional ADC. The dynamic power is expressed as CfV 2
dd,

where C is the capacitance between the output node and ground, f is the frequency, and

Vdd is the supply voltage. The system-level results indicate that the sampling frequency

necessary to represent and recover the signal is of 14 samples per second, roughly three

times the Nyquist sampling rate. This means that the proposed wavelet-based ADC should

dissipate approximately one third of the dynamic power dissipated by a Nyquist ADC for

the same signal.

Moreover, an event-based sampling scheme can be advantageous when the input signal

is sparse: for example, a signal such as an electrocardiogram signal has its information of

interest densely located at its peaks, which are followed by long moments of nearly constant

behaviour. Adaptive sampling allows such a signal to be sampled at a high rate during the

peaks and at a low rate during the constant portions, while uniform sampling would acquire

unnecessary samples of the latter. Another advantage of the proposed ADC is that it does

not only convert the signal, but it also computes the wavelet-based analysis of the signal

without the need of a digital signal processing block, which is necessary when the digital

wavelet transform is applied.
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Chapter 5

Conclusion

Analog-to-digital converters are fundamental components of the digital signal processing

chains. Most of the ADCs in common appliances today follow the uniform sampling scheme

obeying the Nyquist criterion. This project proposes a novel ADC with a wavelet-based

sampling scheme, making use of the signal compression and regularity detection properties

of the wavelet transform and inspired by the idea of undersampling, asynchronous sampling,

and low power performance, uniting the �elds of research of di�erent groups.

The converter's system-level analysis, in Chapter 3, shows that the sampling algorithm

correctly identi�es the information necessary to represent the signal. To verify this, a poly-

nomial reconstruction algorithm was proposed, and the results show low error and high

correlation values between the input signal and the reconstructed signal. Also, the results

allow a comparison between the e�ects of using di�erent wavelet transform parameters

(bases and scales) and di�erent quantization resolutions to the quality of the signal recon-

struction result. As expected, a basis with higher correlation with the input signal yields

better results, as was the case of the gaussian wavelet bases with relation to the input test

signal, when compared to the other wavelet bases in the tests. Also, the smaller the scale,

the better the identi�cation of maxima and minima points should be, although, for the test

signal, there was not much di�erence between the two smallest scales of the tested sets, 1

and 16. A good Lipschitz coe�cient estimation could be achieved with only four di�erent

scales, with no signi�cant changes when compared to the results obtained with 64 scales.

One unexpected result was that an 8-bit resolution for the amplitude values and a 4-bit

resolution for the Lipschitz exponent are enough to yield a very good to high quality result.

Chapter 4 contains the circuit-level analysis. The wavelet transform is implemented with

analog wavelet �lters, which were evaluated for two di�erent approximation methods for the

transfer functions of the gaussian wavelet bases: the L2 method and the Padé method. The

orthonormal state-space representation for each of the transfer functions obtained with these

approximations were used to determine the values of the transconductances that compose

the Gm-C �lters, which implemented the �rst- and second- order wavelet transforms. The

71



impulse responses of the simulated �lters were correct and in accordance to the expected

behaviour, that is, versions of the �rst- and second-order wavelet bases, compressed for

lower scales and expanded for larger scales. When the input signal of the �lter is the test

signal, the �lter outputs the coe�cients lines for each scale for the �rst- and second-order

wavelet transforms of the test signal. Regarding the critical points identi�cation, the results

obtained with both approximations were similar and in conformity to the theoretical results.

However, a delay that grows larger with the scales was observed in these results, and not

in the system simulation results. This delay a�ected the Lipschitz exponent estimation,

which had to have its algorithm adapted in order to be performed. Still, the results did

not always correspond to the theoretical expected value. This problem could not be further

investigated or �xed in due time, and is left as future work.

This project also resulted in a published conference paper at ISCAS, the IEEE Interna-

tional Symposium on Circuits and Systems, available in the IEEEXplore database [28].

5.1 Future works

The complete circuit analysis is left as future work. The investigation of the unexpected

behaviour of the coe�cients lines for the second order WT in the circuit simulation is

included in the complete circuit analysis, as well as the study of possible alternatives not

only to the circuit that was implemented, but also to the algorithm that requires the

Lipschitz exponent estimation to implement the signal reconstruction. The complete circuit

analysis will also allow a good estimation of the total power consumption, to determine

if the proposed ADC is suitable for low-power applications, or if there are other better

applications for it. Another future work includes the circuit-level implementation of the

polynomial reconstruction algorithm, since it has only been implemented in system-level

and the proposed ADC's outputs do not allow signal reconstruction with conventional

DACs.

Regarding the system-level implementation, a possibility of future work is the investi-

gation of a method to identify the in�ection points which does not need approximations.

Also, the tests run in this project only considered the e�ect of linear uniform quantization;

future works can include the system simulations with other quantizer topologies.
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I. RESUMO ESTENDIDO EM PORTUGUÊS

Introdução

Os conversores analógico-digitais são trasidicionalmente compostos por quatro blocos:

um �ltro anti-aliasing; um amostrador; um quantizador; e um codi�cador. Normalmente,

o sinal é amostrado a uma taxa constante e uniforme, obedecendo ao Critério de Nyquist-

Shannon. Apesar de ser este o processo que guia o funcionamento de conversores A/D em

diversas aplicações comerciais na atualidade, ele estabelece apenas uma condição su�ciente,

e não necessária, para que um sinal seja amostrado de forma que possa ser recuperado sem

perdas posteriormente. Vale lembrar, ainda, que o processo de quantização, que faz parte

do processo de conversão analógico-digital, é um processo que acarreta, necessariamente,

perda de informação.

Outras formas de realizar a amostragem de um sinal são estudadas em outros campos

de pesquisa, entre eles, podemos destacar o compressive sensing (CS) e o estudo de conver-

sores assíncronos, como os conversores que operam por level-crossing. Este projeto propõe

um conversor A/D com amostragem assíncrona baseada em propriedades da transformada

wavelet (WT), com vistas a reduzir o consumo de potência do circuito. Esse processo

de amostragem é realizado identi�cando-se os pontos críticos do sinal por meio do pro-

cessamento com a transformada wavelet. Essa informação, juntamente com a descrição

da morfologia do sinal nos trechos entre esses pontos, permite representar o sinal de uma

forma que leve em consideração suas propriedades e peculiaridades. A morfologia do sinal

é descrita pelo coe�ciente de Lipschitz, que também pode ser estimado com auxílio da WT.

A Figura I.1(a) ilustra o processo de identi�cação de máximos e mínimos locais e pontos de

in�exão para um sinal de teste, e a Figura I.1(b) mostra uma função cujo comportamenteo

varia de acordo com o coe�ciente de Lipschitz. A expressão dessa função é o ponto de par-

tida para o desenvolvimento de um algoritmo de reconstrução polinomial, também proposto

neste projeto, que permite avaliar o algoritmo de amostragem sugerido. A Figura I.1(a)

também ilustra como esse algoritmo funcionaria, reconstruindo o sinal por partes com os

polinômios.

Referencial teórico

A transformada wavelet tem dois parâmetros: escala a e posição u, como expresso pela

Equação I.1.

Wf(u, a) =
1√
a

∫ ∞
−∞

f(t)ψ∗
(
t− u
a

)
dt. (I.1)

A propriedade da WT que permite que ela seja usada para a identi�cação de pontos

críticos é a de que ela funciona como um operador diferencial de n-ésima ordem. Assim,
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Figura I.1: Informação amostrada do sinal de entrada pelo ADC proposto.
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determinando os coe�cientes que são iguais a zero para uma transformada realizada com

uma base com um vanishing moment (n = 1), os pontos máximos e mínimos do sinal são

localizados. Analogamente, para um abase com n = 2, identi�cam-se os pontos de in�exão

do sinal.

A escolha das escalas permite ajustar a resolução tempo-frequência da transformada.

Para escalas pequenas, a base é comprimida e são identi�cados os detalhes do sinal, ou

seus componentes de mais altas frequências; para escalas menores, a base é expandida e são

identi�cados os componentes de baixa frequência. Assim, na identi�cação de máximos e

mínimos, é escolhida a menor escala; para os pontos de in�exão, é escolhida a maior escala.

O coe�ciente de Lipschitz α pode ser estimado por um aexpressão derivada de sua

de�nição, onde A > 0 é uma constante:

log2|Wf(u, a)| ≤ log2A+

(
α +

1

2

)
log2a (I.2)

A função da Figura I.1(b) tem sua expressão de�nida pela Equação I.3, para valores de

α entre 0.2 e 2.

f(t) = |1− t|α (I.3)

Desenvolvimento

O �uxograma do processo de amostragem é mostrado na Figura I.2. Depois de serem

escolhidas as bases e escalas da transformada wavelet, as transformadas de primeira e

segunda ordem são computadas para a identi�cação dos pontos críticos e para o cálculo do

coe�ciente de Lipschitz. Algumas aproximações são necessárias na identi�cação dos pontos

de in�exão: a detecção de máximos e mínimos tem preferência sobre a detecção de pontos de

in�exão; ainda, o algoritmo assume que há apenas um ponto de in�exão entre um máximo

e um mínimo consecutivos. Assim, se for identi�cado mais de um ponto de in�exão em um

trecho, a posição da in�exão é aproximada para a posição média dos pontos detectados; se

não for identi�cado nenhm ponto de in�exão no trecho, a posição da in�exão é aproximada

para o ponto médio do trecho. As saídas do sistema de amostragem são a amplitude nos

pontos críticos e o coe�ciente de Lipschitz apenas nos máximos e mínimos. Após o processo

de amostragem, essas saídas devem ser quantizadas e codi�cadas.

A Figura I.3 mostra o diagrama de blocos do circuito proposto para implementar o

ADC, que segue os mesmos passos do �uxograma da Figura I.2. A transformada wavelet de

primeira e segunda ordens para o sinal de entrada vin é calculada, e as linhas de coe�cientes

das escalas a1 e a2, respectivamente, coeff1 e coeff2, passam por um comparador, que

implementa a detecção de zero-crossing. Isso gera os sinais tm e tinf, que identi�cam os

máximos e mínimos locais, e os pontos de in�exão. As amplitudes são amostradas em todos

os pontos críticos, o que é representado pelo bloco de sample-and-hold controlado por tamp.
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Figura I.2: Algoritmo de amostragem.

O coe�ciente de Lipschitz é estimado em todos os pontos do sinal pela implementação de

sua de�nição matemática com os blocos `abs', `log', e divisor, resultando no sinal lpz, que

é amostrado apenas nos máximos e mínimos com o bloco de sample-and-hold controlado

por tm. A lógica de chaveamento, controlada por sync,sw, é incluída com a intenção de se

usar apenas um quantizador para as informações de amostragem de amplitude (amp) e do

coe�ciente de Lipschitz (α), a �m de se reduzir o consumo de potência do circuito. Assim,

um único sinal, vout, é quantizado (vout,q) e codi�cado.

A transformada wavelet é implementada com �ltros analógicos. As funções de transfe-

rência são aproximadas usando dois métodos diferentes: o método L2, com uma aproximação

de sexta ordem, e o método de Padé, com uma aproximação de décima ordem. Após se

obter a aproximação da função de transferência para os �ltros de primeira e segunda ordem,

a sua representação ortonormal no espaço de estados é calculada, permitindo que o �ltro

seja implementado utilizando-se a topologia Gm-C (transcondutância-capacitância).

Para veri�car que a informação extraída do sinal é su�ciente para que ele seja recuperado,

é desenvolvido também um algoritmo de reconstrução polinomial, expresso pela Equação I.4,

na qual:
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Figura I.3: Diagrama de blocos do circuito proposto para o conversor A/D.

� Ai e Am são as amplitudes amostradas nos pontos de in�exão, e nos pontos de máximos

e mínimos locais;

� αm é o valor do coe�ciente de Lipschitz estimado nos máximos e mínimos locais;

� t0 e tf são so instantes inicial e �nal do trecho que o polinômio Pn reconstrói;

� µ é o suporte no tempo de Pn i.e. µ = tf − t0;

� τ é a posição do máximo ou mínimo local.

Pn(t) = Ai + (Am − Ai)
(

1−
∣∣∣∣τ − tµ

∣∣∣∣αm
)

, t0 ≤ t ≤ tf (I.4)

Adicionar τ e µ à expressão da Equação I.4 permite o deslocamento no tempo, enquanto

o deslocamento em amplitude é garantido pela multiplicação por (Am − Ai), seguida da

soma de Ai. (Am − Ai) também indica a concavidade do trecho.

Resultados

A Figura I.4 mostra o resultado da reconstrução do sinal com as bases gaussianas, menor

escala 16, maior escala 64, para o sinal de teste, para quantização de 8 bits. Neste caso, o

coe�ciente de correlação entre os sinais original e reconstruído é de 0.989, e o erro RMS de

reconstrução é de 0.00874.

Conclusão

Este projeto apresenta um conversor analógico-digital baseado em transformada wavelet.

Esse conversor é avaliado a nível de sistema e a nível de circuito. Para que o método

de amostragem proposto possa ser veri�cado, é desenvolvido também um algoritmo de
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Figura I.4: Sinal de entrada (vermelho) e sua reconstrução (amarelo, linha tracejada).

reconstrução polinomial. Os resultados da implementação a nível de sistema mostram que

é possível recuperar o sinal de entrada com alta qualidade, atingindo-se alta correlação e

baixo erro de reconstrução.
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II. MATLAB SCRIPTS

This Appendix contains the MATLAB scripts used in the project, with due credit.

II.1 Sampling algorithm

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This MATLAB script implements a wavelet−based sampling algorithm.

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

8

9 close all;

10 clear;

11 clc;

12

13 %% 1. Generate the test signal.

14 format long;

15 t = linspace(0,1,1000);

16 sig = gaussmf(t,[0.1 0.2])+fz_p_sandro(t,1,0.75,0.7,0.6);

17

18 %% 2. Select WT parameters.

19

20 % Uncomment the desired set of scales:

21

22 % escalas = [16:16:64];

23 escalas = [1:1:64];

24

25

26 % Uncomment the first and second order bases:

27

28 % base1 = 'gaus1';

29 % base1 = 'db1';

30 % base1 = 'bior1.1';

31 base1 = 'rbio1.1';

32

33 % base2 = 'gaus2';

34 % base2 = 'mexh';

35 % base2 = 'db2';

36 % base2 = 'bior2.2';

37 base2 = 'rbio2.2';

38

39

40 % Compute the continuous wavelet transform with MATLAB function 'cwt':
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41 coefic = cwt(sig,escalas,base1);

42 coefic2 = cwt(sig,escalas,base2);

43

44 %% 3. Pick the coefficients line for critical points detection.

45

46 % 1st order WT: choose line at smaller scale:

47 linha_coef = coefic(1,:);

48

49 % 2nd order WT: choose line at larger scale:

50 s2 = size(coefic2);

51 linha_coef2 = coefic2(s2(1),:);

52

53 %% 4. Zero−crossing detection.

54

55 sing = +(linha_coef >= 0); % zero−crossing for local maxima and minima

56 inflexao = +(linha_coef2 >= 0); % zero−crossing for inflection points

57 % '+()' casts the variables from binary to double

58

59 % Identify transitions...

60 idx = 1:1:length(sig);

61 tran = idx.*sing;

62 tran2 = idx.*inflexao;

63

64 x = diff(tran);

65 up = find(x>1);

66 down = find(x<0);

67 bordas = sort([up down]);

68

69 x2 = diff(tran2);

70 up2 = find(x2>1);

71 down2 = find(x2<0);

72 bordas2 = sort([up2 down2]);

73

74 % This includes the first and last points of the signal as local maxima and/or

75 % minima:

76 if bordas(1)~=1

77 bordas = [1 bordas];

78 end

79 if bordas(end)~=length(sig)

80 bordas = [bordas length(sig)];

81 end

82

83 lmaxmin = bordas; % lmaxmin: identified local maxima/minima positions

84

85 %% 5. Approximations:

86

87 % 5.1: If any inflection point coincides with a local maxima/minima, remove it.

88 x = intersect(bordas,bordas2);

89

90 if ~isempty(x)

91 for k = 1:length(x)

92 id = find(bordas2==k);
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93 bordas2(id) = [];

94 end

95 end

96

97

98 % 5.2: Only one inflection between consecutive maximum and minimum:

99

100 inflection = [];

101 for k = 2:numel(bordas)

102 int_i = bordas(k−1); % begginning of portion

103 int_f = bordas(k); % end of portion

104

105 test_i = find(bordas2 >= int_i);

106 test_f = find(bordas2 < int_f);

107

108 inf = intersect(test_i,test_f);

109

110 if numel(inf)==0

111 inflection(k−1) = round((int_i+int_f)/2);

112 elseif numel(inf)==1

113 inflection(k−1) = bordas2(inf);

114 else

115 inflection(k−1) = round(sum(bordas2(inf))/numel(inf));

116 end

117 end

118

119 %% 6. Calculate the Lipschitz coefficient for every point in the signal.

120

121 % applies custom function 'fz_lpz_calc_modif'

122 lpz = abs(fz_lpz_calc_modif(coefic2,escalas) − 0.5);

123

124 %% 7. Sampling at critical points.

125

126 sampling_clk = sort([lmaxmin inflection]);

127

128 % Amplitude sampling...

129 amp = sig(sampling_clk);

130 amp_graph = [];

131

132 for k = 1:length(sampling_clk)−1
133 amp_graph(sampling_clk(k):sampling_clk(k+1)−1) = amp(k);

134 end

135 amp_graph = [amp_graph amp(end)];

136

137

138 % Lipschitz coefficient sampling...

139 lip = lpz(lmaxmin);

140

141 lip_graph = [];

142 for k = 1:length(lmaxmin)−1
143 lip_graph(lmaxmin(k):lmaxmin(k+1)−1) = lip(k);

144 end
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145 lip_graph = [lip_graph lip(end)];

146

147 %% 8. Quantization (applies custom function 'quant').

148

149 % Amplitudes quantization...

150 n = max(amp_graph);

151 amp_n = amp_graph/n;

152 amp_quant4 = n*quant(amp_n,4);

153 amp_quant8 = n*quant(amp_n,8);

154 amp_quant12 = n*quant(amp_n,12);

155

156 % 4 bits

157 ampq4 = amp_quant4(lmaxmin); % amplitude @ local maxima/minima

158 infq4 = amp_quant4(inflection); % amplitude @ inflection

159

160 % 8 bits

161 ampq8 = amp_quant8(lmaxmin);

162 infq8 = amp_quant8(inflection);

163

164 % 12 bits

165 ampq12 = amp_quant12(lmaxmin);

166 infq12 = amp_quant12(inflection);

167

168

169 % Lipschitz coefficient quantization...

170 n = max(lip_graph);

171 lip_n = lip_graph/n;

172 lip_quant4 = n*quant(lip_n,4);

173 lip_quant8 = n*quant(lip_n,8);

174 lip_quant12 = n*quant(lip_n,12);

175

176 lipq4 = lip_quant4(lmaxmin); % 4 bits

177 lipq8 = lip_quant8(lmaxmin); % 8 bits

178 lipq12 = lip_quant12(lmaxmin); % 12 bits

II.1.1 Quantization function

This function was developed by José E. G. de Medeiros.

1 function [ output_code ] = quant(input, N)

2 %ADC_ELETRONICA2 Converte um valor analógico em inteiro

3 % input = input value

4 % N = resolution

5 % output_code = output value

6

7 LSB = 1/(2^N);

8 code = zeros(1,length(input));

9

10 % % Adjust RNG to generate always the same sequence based on the seed number
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11 % s = RandStream('mt19937ar', 'Seed', seed);

12 % RandStream.setGlobalStream(s);

13 %

14 % error_vector = randi(2^N − 1, 1, 5);

15 % erro = zeros(1, 2^N);

16 % erro(error_vector(1)) = 0.1*LSB;

17 % erro(error_vector(2)) = −0.3*LSB;
18 % erro(error_vector(3)) = −0.5*LSB;
19 % erro(error_vector(4)) = 0.5*LSB;

20 % erro(error_vector(5)) = 0.3*LSB;

21

22 % Quantizer process

23 for j = 1:length(input)

24 for k = 1:(2^N)−1
25 if(input(j) > k*LSB)

26 code(j) = k*LSB;

27 else

28 break;

29 end

30 end

31 end

32

33 % Output vector

34 % output_code = (code) * 2^N;

35 output_code = (code);

36 end

II.1.2 Lipschitz exponent estimation function

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % The fz_lpz_calc_modif function estimates the Lipschitz exponent

7 % at all points in a signal.

8 %

9 % Inputs:

10 % coef ..................... WT coefficients matrix

11 % scales ................... WT scales vector

12 %

13 % Output:

14 % lpz ...................... vector containing the Lipschitz coefficients

15 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

16

17 function [lpz] = fz_lpz_calc_modif(coef,scales)

18

19 dim = size(coef);

20
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21 coef = abs(coef);

22

23 a = log2(coef);

24

25 for n=1:dim(2)

26 alpha(:,n) = diff(a(:,n)')./diff(log2(scales));

27 end

28

29 lpz = sum(alpha)/(dim(1)−1);
30

31 end

II.1.3 Function to generate test signal

This function was developed by José Alberto [29].

1 function [f] = fz_p_sandro(t,A,v,tal,lipsc)

2

3 k = 1/(v)^lipsc;

4 f = A*k*(v^lipsc−abs(t−tal).^lipsc);
5 for n=1:length(t)

6

7 if(f(n)<0)

8 f(n)=0;

9 end

10 end

II.2 Reconstruction algorithm

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This function implements the piecewise polynomial reconstruction

7 % algorithm proposed in the manuscript.

8 %

9 % Inputs:

10 % num_pol ............. number of polynomials

11 % A_i ................. amplitudes sampled at inflection points

12 % A_s ................. amplitudes sampled at local maxima/minima

13 % am_lpz .............. sampled Lipschitz coefficients

14 % tempos .............. critical points positions

15 % delta ............... increment in time

16 % tau ................. local maxima and minima positions
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17 %

18 % Outputs:

19 % result .............. reconstructed signal

20 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

21

22 function [result] = reconstruct(num_pol,A_i,A_s,am_lpz,tempos,delta,tau)

23

24 tempo = [];

25 pol = [];

26 result = [];

27

28 for k = 1:num_pol

29 tempo = tempos(k):delta:tempos(k+1);

30

31 nu = tempos(k+1) − tempos(k); % time support

32

33 seli = ceil(k/2); % select inflection

34 sels = floor(k/2 + 1); % select maxima/minima

35

36 pol = A_i(seli) + (A_s(sels)−A_i(seli))*...
37 (1−(abs((tau(sels) − tempo)./nu).^am_lpz(sels)));

38

39 % Assembling the signal...

40 if k==1

41 result = pol;

42 else

43 result = [result pol];

44 result = result(1,1:length(result)−1);
45 end

46 end

II.3 Reconstruction tests

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This MATLAB script tests the reconstruction algorithm, implemented

7 % in the custom function 'reconstruct', for different output

8 % resolutions (ideal, 4, 8 and 12 bits). For each case, the input

9 % and reconstructed signals are plotted and the RMS error and the

10 % correlation coefficient between them are displayed on the command

11 % window.

12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

13

14 %% "Ideal" case (outputs before quantizations)

15
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16 % Polynomial parameters

17 num_pol = numel(lmaxmin)+numel(inflection)−1;
18 A_i = sig(inflection);

19 A_s = sig(lmaxmin);

20 am_lpz = lpz(lmaxmin);

21 tempos = sampling_clk/numel(t);

22 delta = (t(end) − t(1))/(numel(t));

23 tau = lmaxmin/numel(t);

24

25 % Reconstruction...

26 result = reconstruct(num_pol,A_i,A_s,am_lpz,tempos,delta,tau);

27

28 rms = RMSError(sig,result);

29 erro_rel = RELError(sig,result);

30 rho = correlation(sig,result);

31

32

33 figure

34 plot(t,sig,'b−',t,result,'r−−','LineWidth',2)
35 title('Reconstructed signal','FontSize',18)

36 xlabel('t(s)','FontSize',18)

37 set(gca,'FontSize',16)

38 grid on

39

40 disp('Ideal case:')

41 x = ['Correlation coefficient: ',num2str(rho)];

42 disp(x)

43 x = ['RMS error: ',num2str(rms)];

44 disp(x)

45

46 %% 4 bits resolution

47

48 % Polynomial parameters:

49 num_pol = numel(lmaxmin)+numel(inflection)−1;
50 % A_i = infq4;

51 % A_s = ampq4;

52 A_i = sig(inflection);

53 A_s = sig(lmaxmin);

54 am_lpz = lipq4;

55 % am_lpz = lpz(lmaxmin);

56 tempos = sampling_clk/numel(t);

57 delta = (t(end) − t(1))/(numel(t));

58 tau = lmaxmin/numel(t);

59

60 % Reconstruction...

61 result = reconstruct(num_pol,A_i,A_s,am_lpz,tempos,delta,tau);

62

63 rms = RMSError(sig,result);

64 erro_rel = RELError(sig,result);

65 rho = correlation(sig,result);

66

67
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68 figure

69 plot(t,sig,'b−',t,result,'r−−','LineWidth',2)
70 title('Reconstructed signal','FontSize',18)

71 xlabel('t(s)','FontSize',18)

72 set(gca,'FontSize',16)

73 grid on

74

75 disp('Quant 4 bits')

76 x = ['Correlation coefficient: ',num2str(rho)];

77 disp(x)

78

79 x = ['RMS error: ',num2str(rms)];

80 disp(x)

81

82 %% 8 bits resolution

83

84 % Polynomial parameters:

85 num_pol = numel(lmaxmin)+numel(inflection)−1;
86 % A_i = infq8;

87 % A_s = ampq8;

88 A_i = sig(inflection);

89 A_s = sig(lmaxmin);

90 am_lpz = lipq8;

91 % am_lpz = lpz(lmaxmin);

92 tempos = sampling_clk/numel(t);

93 delta = (t(end) − t(1))/(numel(t));

94 tau = lmaxmin/numel(t);

95

96 % Reconstruction...

97 result = reconstruct(num_pol,A_i,A_s,am_lpz,tempos,delta,tau);

98

99 rms = RMSError(sig,result);

100 erro_rel = RELError(sig,result);

101 rho = correlation(sig,result);

102

103

104 figure

105 plot(t,sig,'b−',t,result,'r−−','LineWidth',2)
106 title('Reconstructed signal','FontSize',18)

107 xlabel('t(s)','FontSize',18)

108 set(gca,'FontSize',16)

109 grid on

110

111 disp('Quant 8 bits')

112 x = ['Correlation coefficient: ',num2str(rho)];

113 disp(x)

114

115 x = ['RMS error: ',num2str(rms)];

116 disp(x)

117

118 %% 12 bits quantization

119
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120 % Polynomial parameters:

121 num_pol = numel(lmaxmin)+numel(inflection)−1;
122 % A_i = infq12;

123 % A_s = ampq12;

124 A_i = sig(inflection);

125 A_s = sig(lmaxmin);

126 am_lpz = lipq12;

127 % am_lpz = lpz(lmaxmin);

128 tempos = sampling_clk/numel(t);

129 delta = (t(end) − t(1))/(numel(t));

130 tau = lmaxmin/numel(t);

131

132 % Reconstruction...

133 result = reconstruct(num_pol,A_i,A_s,am_lpz,tempos,delta,tau);

134

135 rms = RMSError(sig,result);

136 erro_rel = RELError(sig,result);

137 rho = correlation(sig,result);

138

139

140 figure

141 plot(t,sig,'b−',t,result,'r−−','LineWidth',2)
142 title('Reconstructed signal','FontSize',18)

143 xlabel('t(s)','FontSize',18)

144 set(gca,'FontSize',16)

145 grid on

146

147 disp('Quant 12 bits')

148 x = ['Correlation coefficient: ',num2str(rho)];

149 disp(x)

150

151 x = ['RMS error: ',num2str(rms)];

152 disp(x)

II.3.1 Error metrics

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This function outputs the root eman square error 'rms' between the

7 % input vectors 'x' and 'y'.

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 function rms = RMSError(x,y)

11

12 if numel(x)~=numel(y)

13
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14 else

15 n = numel(x);

16 rms = sqrt(sum((x−y).^2)/n);
17

18 end

19

20 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This function outputs the relative error 'erro_rel' between the

7 % input vectors 'x' and 'y'.

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 function erro_rel = RELError(x,y)

11

12 erro_abs = abs(x−y); % erro absoluto

13 %erro_abs_max = max(erro_abs) % valor máximo do erro absoluto

14

15 erro_rel = 100*erro_abs./x; % erro relativo percentual

16 %erro_rel_max = max(erro_rel) % valor máximo do erro relativo (%)

17

18 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This function outputs the correlation coefficient 'rho' between

7 % input vectors 'x' and 'y'.

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 function rho = correlation(x,y)

11

12 Rxy = corrcoef(x,y); % Correlation matrix

13

14 Ex2 = Rxy(1,1);

15 Ey2 = Rxy(2,2);

16 Ex = sqrt(Ex2 − var(x)); % E[X]

17 Ey = sqrt(Ey2 − var(y)); % E[Y]

18 Exy = Rxy(1,2); % E[XY]

19

20 rho = (Exy − Ex*Ey)/(std(x)*std(y)); % Correlation coefficient
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II.4 Gaussian �lters

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % A Novel Wavelet−Based Analog−to−Digital Converter

3 % by Isadora Freire Martins

4 %

5 %

6 % This MATLAB script shows how to calculate the transfer function

7 % of the gaussian function and its orthonormal representation.

8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

9

10 % Transfer functions for 1st derivative 6th order filter:

11 num = [−0.09846 −0.1683 −8.326 6.642 139.6 0];

12 num2 = [−0.09846 −0.1683 −8.326 6.642 139.6 0 0];

13 denum = [1 5.927 30.52 83.11 163.6 176.6 93.29];

14 % gaus1

15 Hd1_comp = tf(num,denum);

16 % gaus 2

17 Hd2_nc = tf(num2,denum);

18

19 % Transfer functions for approximated 1st derivative 5th order filter:

20 % gaus1

21 Hd1 = tf([−0.1683 −8.326 6.642 139.6 0],denum);

22 % gaus 2

23 Hd2 = tf([−0.1683 −8.326 6.642 139.6 0 0],denum);

24

25 % Orthonormal representation for gaus2 (applies custom function orthonormal2)

26 h = orthonormal2([−0.1683 −8.326 6.642 139.6 0 0],denum)

27

28 %% 10th order 1st derivative filter

29 num=[−.44820e31 −.34446e32 +.44432e33 −.47081e34 .16977e35 −.52829e35 +.36809e31];

30 num2 = [num 0];

31 denum=[−.77104e30 −.15627e32 −.15857e33 −.10437e34 −.48808e34 −.16787e35 ...

32 −.42703e35 −.78851e35 −.10066e36 −.79880e35 −.29823e35];
33

34 Hgaus1_10 = tf(num,denum); % gaus1

35 Hgaus2_10 = tf(num2,denum); % gaus2

36

37 %Orthonormal representations

38 hgaus1 = orthonormal2(num,denum);

39 hgaus2 = orthonormal2(num2,denum);

The following function was developed by Sandro A. P. Haddad.

1 %calcula a representacao orthonormal do sistema a partir da funcao de

2 %transferencia

3 %ultima atualização: 24/02/2012

4

5 function H = orthonormal2(num, den)
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6 %% encontra a ordem do sistema

7

8 N=(length(den));

9 %% verifica necessidade de divisao do num pelo den

10

11 q = 0;

12 if(length(num)==N)

13 [q,r]=deconv(num,den); %realiza divisao para reduzir o grau do numerador

14 num = r(2:end);

15 end

16 %% deixa numerador com tamanho N−1
17

18 if(length(num)<(N−1))
19 num = [zeros(1,(N−1)−length(num)) num];

20 end

21 %% separa coeficientes de posicoes pares e impares do den

22

23 if(mod(N,2)==0) %den par

24 for i=1:ceil(N/2)

25 Dpar(i)=den(2*i);

26 Dimpar(i)=den(2*i−1);
27 end

28 else %den impar

29 Dimpar(1)=den(1);

30 for i=1:(ceil(N/2)−1)
31 Dpar(i)=den(2*i);

32 Dimpar(i+1)=den(2*i+1);

33 end

34 end

35 %Dpar

36 %Dimpar

37 %% decomposicao em fracao continuada

38

39 for i=1:N−1
40 %Dimpar

41 %Dpar

42 x(N−i)=Dimpar(1)/Dpar(1);
43 Dimpar=Dimpar(2:end)−x(N−i)*[Dpar(2:end),...
44 zeros(1,(length(Dimpar(2:end))−length(Dpar(2:end))))];
45 temp=Dimpar;

46 Dimpar=Dpar;

47 Dpar=temp;

48 %x(N−i)
49 end

50 %x

51 %% matriz A orthonormal

52

53 for i=1:N−2
54 A(i,i+1)=1/sqrt(x(i)*x(i+1));

55 A(i+1,i) = −A(i,i+1);
56 end

57 A(N−1,N−1)=−1/x(N−1);
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58 %A

59 %% matriz B orthonormal

60

61 B = zeros(N−1,1);
62 B(N−1)=sqrt(abs(A(N−1,N−1))/pi);
63 %B

64 %% matriz F auxiliar

65

66 F(1,N−1)=sqrt(x(1)/pi)*den(N);
67 F(2,N−2)=F(1,N−1)/A(1,2);
68 for i=3:N−1
69 F(i,:)=([F(i−1,2:end),0]+A(i−2,i−1)*F(i−2,:))/A(i−1,i);
70 end

71 %F

72 %% matriz C orthonormal

73

74 C=linsolve(F',(circshift(num',length(num))))';

75 %C

76 %% matriz D orthonormal

77 D = q;

78 %% Cria sistema orthonormal no espaco de estados

79

80 H = ss(A,B,C,D);
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