
Feature-Family-Based Reliability Analysis of

Software Product Lines

André Luiz Peron Martins Lanna

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Orientador
Prof. Dr. Vander Ramos Alves

Coorientadora
Prof.a Dr.a Genaina Nunes Rodrigues

Brasília
2017

Ficha catalográfica elaborada automaticamente,
com os dados fornecidos pelo(a) autor(a)

PSO681f
Peron Martins Lanna, Andre Luiz
 Feature-Family-Based Reliability Analysis of Software
Product Lines / Andre Luiz Peron Martins Lanna; orientador
Vander Ramos Alves; co-orientador Genaina Nunes Rodrigues.
- Brasília, 2017.
 110 p.

 Tese (Doutorado - Doutorado em Informática) --
Universidade de Brasília, 2017.

 1. Software Product Lines. 2. Software Reliability. 3.
Reliability Analysis. 4. Model Checking. 5. Software
Analysis. I. Ramos Alves, Vander, orient. II. Nunes
Rodrigues, Genaina, co-orient. III. Título.

Feature-Family-Based Reliability Analysis of

Software Product Lines

André Luiz Peron Martins Lanna

Tese apresentada como requisito parcial para
conclusão do Doutorado em Informática

Prof. Dr. Vander Ramos Alves (Orientador)
CIC/UnB

Prof. Dr. Vander Ramos Alves Prof. Dr. Rodrigo Bonifácio
CIC/UnB CIC/UnB

Prof. Dr. Alexandre Cabral Mota Prof. Dr. Cecilia Mary Fischer Rubira
CIN/UFPE Unicamp

Prof. Dr. Bruno Luiggi Macchiavello Espinoza
Coordenador do Programa de Pós-graduação em Informática

Brasília, 29 de setembro de 2017

Dedicatória

À Deus e aos meus mentores espirituais,
à minha esposa Cinthia,
aos meus pais e irmãos e, por fim,
aos meus amigos que me acompanharam nessa caminhada.

iv

Agradecimentos

À minha amada esposa e sobretudo amiga, Cinthia, que me acompanhou remota e pres-
encialmente nas diversas fases de meu doutoramento. Muito obrigado, gatinha, pela
compreensão nos momentos em que tive que me ausentar, por levantar meu ânimo e
me encorajar nos momentos de desânimo, por celebrar comigo as boas notícias, enfim...
Obrigado por estar sempre ao meu lado.

Aos meus pais, irmãos e cunhadas, pela confiança e pelo apoio durante todo esse
tempo de estudos e trabalhos. Apesar de muitas vezes ter que abrir mão de estar com
todos vocês, eu sempre soube que vocês estavam ali ao lado para o que eu precisasse e
isso sempre me trouxe a confiança e o conforto necessários para seguir adiante.

Agradeço de modo muito especial ao meu orientador, Prof. Vander Alves, pelo com-
promisso, profissionalismo e pelas inestimáveis contribuições oferecidas ao longo de minha
orientação. Obrigado por sempre me oferecer as melhores condições para realizar minha
pesquisa, seja através de minha capacitação ao incentivar minha participação em valiosas
escolas de versão, seja por fornecer alunos de graduação e mestrado para auxiliar em min-
has tarefas. Mas, em especial, agradeço-lhe por entender os momentos difíceis pelos quais
passei e que tiveram impacto em minha pesquisa. Por fim, não posso deixar de agradecer
por me ensinar através da convivência o modo como um pesquisador sério conduz os seus
trabalhos de pesquisa e orientação sempre buscando a investigação de temas relevantes e
a excelência nos estudos. Esse ensinamento é, de fato, inestimável!

Agradeço à minha co-orientadora, Profa. Genaina Rodrigues, pelos valiosos comen-
tários e sugestões (técnicos e pessoais) ao longo de nossa pesquisa. Por diversas vezes ela
contribuiu com idéias a serem consideradas na execução do trabalho mas, também, ao dar
dicas de como encarar as dificuldades típicas de um Doutorado. Aproveito para estender
meus agradecimentos ao professores Pierre-Yves Schobbens e Sven Apel por disponibi-
lizarem um tempo para reunir e contribuir de modo muito significativo com meu tra-
balho. Vários outros professores também contribuiram muito para meu trabalho e minha
formação dentre eles os professores Azzedine Boukerche, Doron Peled e Tom Mens.

Aos colegas do PPGI, Thiago Castro, Eneias Xavier, Ricardo Chaves, Ulisses, Waldeyr,
Marcos Caetano, Jeremias Gomes, Daniel Souza, Ariane, Jose e Breno. Muito obrigado a

v

todos vocês pela companhia no dia-a-dia do PPGI discutindo sobre doutorado ou, simples-
mente, conversando sobre qualquer coisa que nos pudesse descontrair. Muito obrigado,
pessoal!

Por fim, agradeço de modo muito especial aos professores e amigos da Faculdade do
Gama a citar: Cristiane Soares Ramos, Ricardo Ajax, Luiz Myiadaira, Rejane Figueiredo,
Edna Canedo, Sergio Freitas e Gustavo Cuerva. Obrigado a todos vocês por me apoiarem
nessa empreitada.

vi

“Success consists of going from failure
to failure without loss of enthusiasm.”

“Never, never, never give up.”
(Winston Churchill)

Resumo

Contexto: Técnicas de verificação têm sido aplicadas para garantir que sistemas de
software atinjam níveis de qualidade desejados e atenda a requisitos funcionais e não-
funcionais. Entretanto a aplicação dessas técnicas de verificação em linhas de produto de
software é desafiador devido à explosão combinatorial do número de produtos que uma
linha de produtos pode instanciar. As técnicas atuais de verificação de linhas de pro-
dutos utilizam model checking simbólico e informações sobre variabilidade para otimizar
a análise, mas ainda apresentam limitações que as tornam onerosas ou inviáveis. Em
particular, as técnicas de verificação do estado da arte para análise de confiabilidade em
linhas de produto são enumerativas o que dificulta a aplicabilidade das mesmas devido à
explosão combinatorial do espaço de configurações.

Objetivo: Os objetivos dessa tese são os seguintes: (a) apresentar um método eficiente
para calcular a confiabilidade de todas as configurações de uma linha de produtos de
sotware composicional ou anotacional à partir de seus modelos comportamentais UML,
(b) fornecer uma ferramenta que implemente o método proposto e, (c) relatar um estudo
empírico comparando o desempenho de diferentes estratégias de análises de confiabilidade
para linhas de produto de software.

Método: Esse trabalho apresenta uma nova estratégia de análise feature-family-based
para calcular a confiabilidade de todos os produtos de uma linha de produtos de software
(composicional ou anotacional). O passo feature-based da estratégia divide os mode-
los comportamentais em unidades menores para que essas possam ser analisadas mais
eficientemente. O passo family-based realiza o cálculo de confiabilidade para todas as
configurações de uma só vez ao avaliar as expressões de confiabilidade em termos de uma
estrutura de dados variacional adequada.

Resultados: Os resulstados empíricos mostram que a estratégia feature-family-based
para análise de confiabilidade supera, em termos de tempo e espaço, quatro outras es-
tratéfias de análise do estado da arte (product-based, family-based, feature-product-based
e family-product-based) para a mesma propriedade. No contexto da avaliação e em com-
paração com as outras estratégias, a estratégia feature-family-based foi a única capaz de
escalar a um crescimento do espaço de configuração da ordem de 220.

viii

Conclusões: A estratégia feature-family-based utiliza e se beneficia das estratégias
feature- e family- ao domar o crescimento dos tamanhos dos modelos a serem analizados
e por evitar a enumeração de produtos inerentes a alguns métodos de análise do estado
da arte.

Palavras-chave: Linhas de produtos de software, análise de confiabilidade, verificação
de modelos

ix

Abstract

Context: Verification techniques are being applied to ensure that software systems
achieve desired quality levels and fulfill functional and non-functional requirements. How-
ever, applying these techniques to software product lines is challenging, given the expo-
nential blowup of the number of products. Current product-line verification techniques
leverage symbolic model checking and variability information to optimize the analysis, but
still face limitations that make them costly or infeasible. In particular, state-of-the-art
verification techniques for product-line reliability analysis are enumerative which hinders
their applicability, given the latent exponential blowup of the configuration space.

Objective: The objectives of this thesis are the following: (a) we present a method to
e�ciently compute the reliability of all configurations of a compositional or annotation-
based software product line from its UML behavioral models, (b) we provide a tool that
implements the proposed method, and (c) we report on an empirical study comparing the
performance of di�erent reliability analysis strategies for software product lines.

Method: We present a novel feature-family-based analysis strategy to compute the
reliability of all products of a (compositional or annotation-based) software product line.
The feature-based step of our strategy divides the behavioral models into smaller units
that can be analyzed more e�ciently. The family-based step performs the reliability
computation for all configurations at once by evaluating reliability expressions in terms
of a suitable variational data structure.

Results: Our empirical results show that our feature-family-based strategy for reli-
ability analysis outperforms, in terms of time and space, four state-of-the-art strategies
(product-based, family-based, feature-product-based, and family-product-based) for the
same property. In the evaluation’s context and in comparison with the other evaluation
strategies, it is the only one that could be scaled to a 220-fold increase in the size of the
configuration space.

Conclusion: Our feature-family-based strategy leverages both feature- and family-
based strategies by taming the size of the models to be analyzed and by avoiding the
products enumeration inherent to some state-of-the-art analysis methods.

x

Keywords: Software product lines, reliability analysis, model checking

xi

Summary

1 Introduction mylinkcolor!100!black1

1.1 Context: . mylinkcolor!100!black2
1.2 Solution . mylinkcolor!100!black3
1.3 Summary of Goals . mylinkcolor!100!black6
1.4 Organization . mylinkcolor!100!black6

2 Background mylinkcolor!100!black8

2.1 Software Reliability . mylinkcolor!100!black8
2.2 Reliability Analysis . mylinkcolor!100!black9

2.2.1 Parametric Probabilistic Reachability mylinkcolor!100!black12
2.3 Algebraic Decision Diagrams . mylinkcolor!100!black13
2.4 Software Product Line . mylinkcolor!100!black14

2.4.1 Software Product Line Analysis . mylinkcolor!100!black15
2.5 Running example . mylinkcolor!100!black17
2.6 Conclusion . mylinkcolor!100!black20

3 Behavioral Modeling and Reliability of Software Product Lines mylinkcolor!100!black21

3.1 Probabilistic and Variable Behavior Modeling of Software Product Lines . . mylinkcolor!100!black22
3.1.1 UML Activity Diagrams’ Elements mylinkcolor!100!black23
3.1.2 UML Sequence Diagrams . mylinkcolor!100!black25

3.2 Reliability of UML Behavioral Models . mylinkcolor!100!black30
3.2.1 Reliability of software product line mylinkcolor!100!black32
3.2.2 Reliability of activity diagram elements mylinkcolor!100!black32
3.2.3 Reliability of sequence diagram models mylinkcolor!100!black34

3.3 Transformation from UML to FDTMC . mylinkcolor!100!black37
3.3.1 Transformation Rules for Activity Diagram Elements mylinkcolor!100!black38
3.3.2 Transformation Rules for Sequence Diagram Elements mylinkcolor!100!black40

3.4 Reliability Equivalence of UML Behavioral Models and FDTMCs mylinkcolor!100!black44
3.4.1 Reliability equivalence for activity diagram mylinkcolor!100!black45

xii

3.4.2 Reliability equivalence for sequence diagram mylinkcolor!100!black48
3.5 Conclusion . mylinkcolor!100!black51

4 Feature-Family-based Reliability Analysis mylinkcolor!100!black52

4.1 Transformation . mylinkcolor!100!black52
4.1.1 Behavioral Models . mylinkcolor!100!black53

4.2 Runtime dependency graph (RDG) . mylinkcolor!100!black54
4.3 Feature-Based analysis . mylinkcolor!100!black59
4.4 Family-Based Analysis . mylinkcolor!100!black61
4.5 Conclusion . mylinkcolor!100!black64

5 Proposal Evaluation mylinkcolor!100!black66

5.1 Implementation . mylinkcolor!100!black66
5.2 Analytical Complexity . mylinkcolor!100!black68
5.3 Empirical Evaluation . mylinkcolor!100!black70

5.3.1 Subject Systems and Experiment Design mylinkcolor!100!black70
5.3.2 Experiment setup . mylinkcolor!100!black72
5.3.3 Results and analysis . mylinkcolor!100!black74
5.3.4 Discussion . mylinkcolor!100!black78

5.4 Threats to validity . mylinkcolor!100!black80

6 Conclusion mylinkcolor!100!black81

6.1 Future Work . mylinkcolor!100!black82
6.2 Related works . mylinkcolor!100!black83

6.2.1 Comparison to a Feature-Product-based Strategy mylinkcolor!100!black83
6.2.2 Other Related Work . mylinkcolor!100!black85

Referências mylinkcolor!100!black87

Appendix mylinkcolor!100!black92

A Experiment Data mylinkcolor!100!black93

B SPL Generator Tool mylinkcolor!100!black95

xiii

List of Figures

2.1 Elimination of state s in the algorithm by [mycitecolor!100!black38] mylinkcolor!100!black13
2.2 ADD Af representing the Boolean function f mylinkcolor!100!black13
2.3 BSN-SPL Feature Model . mylinkcolor!100!black17
2.4 Behavioral diagrams for BSN-SPL . mylinkcolor!100!black19

3.1 Initial node of a UML Activity Diagram mylinkcolor!100!black23
3.2 Activity node of a UML Activity Diagram mylinkcolor!100!black23
3.3 Decision node of a UML Activity Diagram mylinkcolor!100!black24
3.4 Merge node of a UML Activity Diagram mylinkcolor!100!black25
3.5 End node of a UML Activity Diagram . mylinkcolor!100!black25
3.6 Messages types of a UML sequence diagram mylinkcolor!100!black26
3.7 Alternative fragment of a UML sequence diagram mylinkcolor!100!black27
3.8 Loop fragment of a UML sequence diagram mylinkcolor!100!black28
3.9 Optional fragment of a UML sequence diagram mylinkcolor!100!black29
3.10 Associations between behavioral fragments, sequence diagrams and Optio-

nal combined fragments . mylinkcolor!100!black30
3.11 Transformation rule for an initial node of an activity diagram mylinkcolor!100!black38
3.12 Transformation rule for an activity node of an activity diagram mylinkcolor!100!black38
3.13 Transformation rule for a decision node of an activity diagram mylinkcolor!100!black39
3.14 Transformation rule for a merge node of an activity diagram mylinkcolor!100!black40
3.15 Transformation rule for an end node of an activity diagram mylinkcolor!100!black40
3.16 Transformation rule for a synchrounous, asynchronous and reply messages

of a sequence diagram . mylinkcolor!100!black41
3.17 Transformation rule for an alternative fragment of an sequence diagram . . mylinkcolor!100!black42
3.18 Transformation rule for a loop fragment of a sequence diagram mylinkcolor!100!black42
3.19 Transformation rule for an optional combined fragment of a sequence diagrammylinkcolor!100!black43
3.20 Intuition of the reliability equivalence of UML and FDTMCs models mylinkcolor!100!black44
3.21 Derivation tree and reliability formula computed for the activity diagram

of the BSN-SPL . mylinkcolor!100!black46
3.22 FDTMC of the activity diagram of the BSN-SPL mylinkcolor!100!black47

xiv

3.23 Derivation tree of reliability definitions for the Sqlite feature mylinkcolor!100!black48
3.24 FDTMC of the Sqlite feature . mylinkcolor!100!black49
3.25 Derivation tree of reliability definitions for the Oxygenation and Tempera-

ture sequence diagrams . mylinkcolor!100!black50
3.26 FDTMC of the Oxygenation and Temperature sequence diagrams mylinkcolor!100!black51

4.1 Feature-family-based approach for e�cient reliability analysis of product
lines . mylinkcolor!100!black53

4.2 Resulting FDTMCs . mylinkcolor!100!black58
4.3 RDG excerpt for the BSN product line . mylinkcolor!100!black60
4.4 ADDs for the running example . mylinkcolor!100!black63

5.1 Evolution of subject systems accomplished by the SPL-Generator tool . . . mylinkcolor!100!black73
5.2 Time and memory required by di�erent analysis strategies when evaluating

evolutions of Email System . mylinkcolor!100!black75
5.3 Time and memory required by di�erent analysis strategies when evaluating

evolutions of MinePump System . mylinkcolor!100!black75
5.4 Time and memory required by di�erent analysis strategies when evaluating

evolutions of BSN-SPL . mylinkcolor!100!black76
5.5 Time and memory required by di�erent analysis strategies when evaluating

evolutions of Lift System . mylinkcolor!100!black76
5.6 Time and memory required by di�erent analysis strategies when evaluating

evolutions of InterCloud System . mylinkcolor!100!black77
5.7 Time and memory required by di�erent analysis strategies when evaluating

evolutions of TankWar battle game . mylinkcolor!100!black77

xv

List of Tables

4.1 Reliability of rOxygenation, rTemperature and rSituation fragments . . mylinkcolor!100!black65

5.1 Initial version of product lines used for empirical evaluation mylinkcolor!100!black71
5.2 Probabilistic models statistics . mylinkcolor!100!black78

A.1 Time in milliseconds (fastest strategy in boldface). mylinkcolor!100!black94

xvi

Chapter 1

Introduction

Achieving a high quality, low costs, and a short time to market are the driving goals of
software product line engineering. It aims at developing a number of software products
sharing a common and managed set of features [1]. A software product line [2] is created to
take advantage of the commonalities and variabilities of a specific application domain, by
reusing artifacts when instantiating individual software products (a.k.a. variants or simply
products). A domain variability is expressed in terms of features, which are distinguishable
characteristics relevant to some stakeholder of the domain [3]. Nowadays software product
line engineering is widely accepted in both industry [4, 5] and academia [6, 2, 7, 1].

Quality assurance of product lines has drawn growing attention [8, 9]. Model checking
is a verification technique that systematically explores the possible states in a formal
model of the system in order to find out whether a given property is satisfied or not by
software[10].

Such an analysis is realized by an automated evaluation method that performs an
exhaustive search over the state space that represents the software’s behavior. The fulfill-
ment of the property under investigation is formally verified in each reachable state such
the model checker answers yes in case it is satisfied or no, otherwise. For the last case, the
model checker also presents a counter-example to indicate how the unexpected result can
be reached again [10]. The models considered and verified by model checkinng techniques
are usually finite-state automata. In such models, each state represents the conditions
reached by the software after each actions it takes, and such actions are associated to
every transition between two states.

In special, model checking techniques are used to evaluate probabilistic properties
of software. Markov Chain is a modeling notation usually employed for representing
such a probabilistic behavior, which considers the probability of transitioning from a
state to another depends uniquely from the current state. Discrete-Time Markov Chain
(DTMC) is a kind of Markov Chain where each transition taken represents that a time

1

unity has elapsed. Parametric Markov Chains (PMC) extend DTMCs with the ability
to represent variable transition probabilities. Whereas probabilistic choices are fixed at
modeling time and represent possible behavior that is unknown until run time, variable
transitions represent behavior that is unknown already at modeling time. These variable
transition probabilities is useful to represent probabilities in a model whose values varies
according to software or the context [11, 12].

Particularly, model checking techniques for product lines explore the space of all pro-
ducts in a product line by searching for execution states where functional [13, 14, 15] or
non-functional [16, 11, 17, 18, 12] properties are violated [19]. Nevertheless, employing
model checking techniques to verify product lines is a complex task, posing a twofold chal-
lenge [14]: (1) the number of variants whowm need to be verified may grow exponentially
with the number of features, which gives rise to an exponential blowup of the configuration
space [20, 15, 21, 6]; and (2) model checking is inherently prone to the state-explosion
problem [10, 19] given the size (often huge) of the models to be evaluated. Therefore,
model checking all products of a product line is often not feasible in practice [9].

Dependability is a non-functional software property that should be considered in a pro-
babilistic sense and which encompasses attributes such as availability and reliability [22].
The authors stress the probabilistic nature of dependability when state “the extent to
which a system possesses the attributes of dependability should be considered in a proba-
bilistic sense” [22]. From the probabilistic perspective, the reliability can be defined as
a probabilistic existence property [23] whereby the result of measuring the probability
of reaching some desired states in a stochastic model will indicate the probability of a
software successfully accomplishes its tasks.

1.1 Context:

In previous work, model checking techniques have been applied to analyze probabilistic
properties of product lines, in particular, the reliability [11, 12, 18]. These approaches
attenuate the complexity of analyzing probabilistic properties by exploiting, to some ex-
tent, reuse in modeling and analysis. On the one hand, non-compositional techniques
exploit commonalities across products resulting into a single model representing the va-
riability and the behavior of the product line as a whole (covering the behaviors of all
products), but it may not scale due to the large state space of models generated by this
modeling approach [12, 18]. On the other hand, a compositional alternative is to cre-
ate and analyze isolated models for each feature and then evaluate them jointly for each
configuration [11]. This approach is space-e�cient, but faces the exponential blowup of
the configuration space by enumerating all valid configurations, which leads to time sca-

2

lability issues. In essence, both approaches have limitations in reusing analysis e�ort in
product lines. As a result, state-of-the-art verification techniques for product-line relia-
bility analysis are enumerative (a.k.a. product-based), which hinders their applicability,
given the latent exponential blowup of the configuration space. Consequently, unwan-
ted redundant computational e�ort is wasted on modeling and analyzing product line’s
models [11].

Reduce or eliminate the redundant e�ort when verifying SPL’s models worth to be
investigated due the need of scalar model checking approaches able to evaluate SPLs
within time and space constraints in case such restrictions needs to be considered by
the model checker. For example, Real-time systems are known by having strong time
constraints to provide an answer for an event perceived by the system [24]. If such answer
is to deploy a new configuration within a specific reliability threshold value, the model
checker must be able to verify which SPL’s products can fulfill such constraint within the
deadline specified for the real-time system. A particular example is the Ambient Assisted
Living (AAL) system which monitors changes at individual’s health conditions in order
to identify emergency conditions and performing appropriate actions [25]. According to
the individual’s health conditions the AAL must ensure di�erent reliability thresholds are
reached. Thus improve the scalability of reliability verification is relevant and must be
investigated. The reuse of software models previously computed and evaluated seems to
be a promising approach for taming the SPLs evaluation’s complexity because it may
decrease the verification e�ort, in special it may extinguish the redundant verification
e�ort.

1.2 Solution

As the key contribution, it is presented a method to e�ciently compute the reliability of
all products of both compositional and annotation-based product lines, without enumera-
ting and analyzing each of these products. In a brief, the software product line’s behavior
is represented by UML behavioral diagrams (namely Activity and Sequence diagrams)
which, by their turn, are composed by di�erent behavioral fragments, each one with a
specific semantics and a guard condition denoting the software’s context that may be ob-
served to allow the execution of its behavior. The behavioral variability is represented for
both kinds of software product lines by means of optional behavioral fragments with an
associated propositional formula defined in terms of the features called presence condition.
However, they di�erentiate by the manner how features are associated to such fragments.
Meanwhile a compositional product line has its variability represented by distincts and
well-defined behavioral modules, an annotational product line has the variability defi-

3

ned in di�erent locations and, such variabilities points may also be nested (likewise the
ifdef compilation’s directives) [26]. The method employs a divide-and-conquer strategy
in which pre-computed reliabilities of individual behavioral model fragments associated
to one or more features are combined to compute the reliability of the whole product line
in a single pass. Each variability point is a behavioral fragment whose guard condition
denotes its presence condition by a propositional expression defined in terms of features.
In a nutshell, in the first step, a feature-based analysis is applied to build a variable and
probabilistic model per behavioral fragment and to analyze each such model using a pa-
rametric model checker. In such step, each behavioral fragment of the software product
line (denoting a variability or a commonanlity) is analyzed in isolation from others frag-
ments, where its UML representation is transformed into a probabilistic model able to
represent its variable behavior. Such model is, indeed, a Discrete-Time Markov Chain
(DTMC) able to represent variability. Later, in the same step, a parametric model checker
is employed in order to analyze the probability of each behavioral fragment reaches its last
state, which is understood as the reliability in the context of this work. Such parametrical
analysis returns expressions that describe the reliability of fragments, whose parameters
in a features’s reliability expression represent the reliabilities of other fragments which
it depends at runtime. In the second step, the method performs a family-based step to
evaluate each expression in terms of Algebraic Decision Diagrams [27] that are used to
encode the knowledge about valid feature combinations and the mapping to their corres-
ponding reliabilities. Such step is characterized by solving all the resulting expressions
from the feature-based step, taking into account the presence condition of each behavi-
oral fragment and the well-formedness rules defined by the Feature Model. The result
of the family-based evaluation of a behavioral fragment is the reliabilities values for each
valid-partial configuration that satisfy both fragment’s presence condition and Feature
Model’s rules. Such result is represented in a concise manner by means of Algebraic De-
cision Nodes whose structure is a tree having each level associated to a feature and each
leaf node to a reliability value. Since the method is a combination of feature-based and
family-based analyzes, it is e�ectively a feature-family-based analysis strategy [9], being
the first of its kind for reliability analysis.

In a brief, the proposed approach di�ers from prior work [14, 11] in that (1) it captures
the runtime feature dependencies from the UML behavioral models, (2) such dependencies
are enriched with variability information extracted from the FM, (3) it computes the
reliability values each feature may assume by evaluating each stochastic model considering
the (partial) variability information and (4) compute the reliability of all SPL’s products
by explicitly reusing the reuse of each feature’s evaluations.

The evaluation method is implemented in the tool ReAna (which stands for Reliability

4

Analysis), whose source code is publicly available as a free and open-source software1. The
tool takes as input a set of UML behavioral models annotated with reliability information
and the feature model of a product line, and it outputs the reliability values for the valid
configurations (i.e., products) of this product line. To evaluate the time-space complexity,
120 experiments were performed to empirically compare the feature-family-based analy-
sis strategy with the following state-of-the-art strategies [9]: product-based, family-based,
feature-product-based, and family-product-based. In a brief, such strategies di�erentiate
by the representativeness of their models and the manner how such models are traversed
during the analyzis: at the one hand the feature-based method is an enumerative appro-
ach where a probabilistic model is built for each product, meanwhile at the other hand
the family-based approach consists of a single model representing the whole variability
of the software product line. In addition, evaluation strategies may also be comprised of
two or more steps, each one performing a di�erent analysis. The family-product-based
strategy derives a behavioral model for a specific product from the model representing the
behavior of whole software product line by solving its variability and then analyzing the
resulting model. Other two analyses are the feature-product- and feature-family-based,
which di�er only by their last step. Both strategies initially perform a feature-based
analysis where the behavioral fragments associated to one or more features are evaluated
in isolation from the others. The second step consists of evaluating the resultant models
from the first-step. In the case it is analyzed in an enumerative fashion, such an analysis
is performed for all products instantiable by composing its related behavioral fragments,
the second-step is performed by following a product-based strategy. Otherwise, in the
case all the fragments are evaluated in a single step and results into the reliabilities of the
whole configuration space, it is considered a family-based analyzis, so the whole analysis
is considered a feature-family-based strategy. All these alternative strategies were imple-
mented as variations of ReAna and used to analyze twenty variants of each of six publicly
available product-line models: a system for monitoring an individual’s health [12], control
systems for mine pumps [28] and lifts [29], an email system [30], inter-cloud configura-
tion [31], and a game [30]. These product lines have been used widely as benchmarks;
they have configuration spaces of di�erent sizes, ranging from dozens to billions of billions
of products.

The experiment consisted of progressively increasing the number of features and the
size of the behavioral models for each of the product lines, analyzing each of the evolved
product lines with all analysis strategies. The results indicate that the feature-family-
based strategy has the best performance in terms of time and space, being the only
one that could be scaled to a 220-fold increase in the size of the configuration space for

1
https://github.com/SPLMC/reana-spl/

5

https://github.com/SPLMC/reana-spl/

reliability analysis when compared to four state-of-the-art strategies for the same property:
product-based, family-based, feature-product-based, and family-product-based.

In summary, the contributions of this work are the following:

• It introduces a novel feature-family-based strategy for reliability analysis that analy-
zes each behavioral fragment (associated to one or more features) in isolation and
combines the resulting pieces of information to compute the reliability of a given
product line (Chapter 4);

• It provides a novel tool, called ReAna, implementing such feature-family-based
method, to carry out the analysis of reliability of a product line from its UML
behavioral diagrams and its feature model (Section 5.1);

• It reports on an empirical study comparing the performance of our feature-family-
based strategy to other state-of-the-art analysis strategies, implemented as an ex-
tension of our ReAna tool (Section 5.3).

Supplementary material, including the ReAna tool and its extensions (which include
all evaluation strategies considered in this work), as well as models used in the empiri-
cal evaluation and respective experimental results are publicly available for replication
purposes at http://splmc.github.io/scalabilityAnalysis/.

1.3 Summary of Goals

The research has the following key goals:

• to present how the behavior of software product lines can be modeled by usual UML
behavioral diagrams and evaluated following a divide-and-conquer strategy;

• to provide an evaluation method aimed for the reliability analysis of software product
lines;

• to empirically compare the proposed evaluation method with other state-of-the-art
evaluation strategies.

1.4 Organization

The text is organized as follows:

• Chapter 2 reviews some concepts regarding the model checking techniques and high-
lights its importance on the verification of software properties, reliability in special;

6

http://splmc.github.io/scalabilityAnalysis/

then some concepts about software product lines and a suitable probabilistic mo-
deling suitable for representing its probabilistic and variable behavior. Finally, it
presents the running example which will be used along the text, followed by the
scope refinement of this work;

• Chapter 3 presents in details how the probabilistic and variable behavior of a soft-
ware product line can be represented by means of UML behavioral diagrams and
the manner how such diagrams are interrelated. Next, the notion of reliability of
software product lines in the scope of UML behavioral models is presented, fol-
lowed by the reliability definition of each behavioral element considered in this
work. The transformation of UML behavioral diagrams into the fully probabilistic
model FDTMC and an informal equivalence notion between such models (UML and
FDTMC) are presented in the following.

• Chapter 4 presents the method proposed for the reliability evaluation of software
product lines. Initially, the transformation step to create FDTMCs from UML
models by applying the transformation rules described in Chapter 3 is presented,
followed by the data structure created to jointly represent the behavioral and pro-
babilistic information of the software product line. In the following, it is presented
the analysis of the probabilistic models by the feature-based step and the manner
how the reliability of the whole software product line is computed in a single pass
by the family-based step. Finally, the tool support that implements the method is
presented in the following.

• Chapter 5 initially presents how the evaluation method was implemented by an
open and publicly available tool. Then two evaluation methods are described such
the first one is an analytical evaluation of the method in contrast to the related
work most similar for the evaluation of probabilistic models of software product
lines. The other evaluation is an empirical evaluation that compares the evaluation
method hereby presented with other 4 state-of-the-art evaluation strategies.

• Chapter 6 presents the final remarks, the comparisons with related works and list
the topics to be investigated in the future.

7

Chapter 2

Background

This chapter provides an overview of fundamental concepts related to the work and a
running example to guide the presentation of the evaluation method in later sections.

2.1 Software Reliability

Probabilistic verification techniques have been used in the past to substitute the concept
of absolute correctness by bounds on the probability that certain behavior may occur [23].
Based on probabilistic models, it is possible to specify probabilistic system behavior due
to, e.g., intrinsically unreliable hardware components and environmental characteristics.
Reliability can be defined as a probabilistic existence property [23], in the sense that it is
given by the probability of eventually reaching some set of success states in a probabilistic
behavioral model of a system.

This means the reliability of a system is the probability that, starting from an ini-
tial state, the system reaches a set of target (also success) states. This value is called
reachability probability. To analyze this property, we first model the system’s behavior
as a DTMC—a tuple (S, s0, P, T), where S is a set of states, s0 œ S is the initial state,
P is the transition probability matrix P : S ◊ S æ [0, 1], and T ™ S is the set of tar-
get states. Moreover, each row of the transition probability matrix sums to 1, that is,
’sœS · P(s, S) = 1, where P(s, S) = q

sÕœS P(s, s
Õ).

For every state s œ S, we say that a state s
Õ is a successor of s i� P(s, s

Õ) > 0.
Accordingly, the set of successor states of s, Succ(s), is defined as Succ(s) = {s

Õ œ
S | P(s, s

Õ) > 0}. A DTMC induces an underlying digraph where states act as vertices
and edges link states to their successors. This way, we say that a state s

Õ of a DTMC
is reachable from a state s, denoted by s s

Õ, i� s
Õ is reachable from s in the DTMC’s

underlying digraph. Likewise, we write s ” s
Õ to denote that s

Õ is unreachable from s.

8

This notation is also used with respect to a set T of states: s T i� there is at least one
state s

Õ œ T such that s s
Õ, and s ” T otherwise.

The reachability probability for a DTMC can be computed using probabilistic model
checking algorithms, implemented by o�-the-shelf tools [10, 32]. An intuitive and correct
view of reachability probability, although not well-suited for e�cient implementation, is
that a target state is reached either directly or by first transitioning to a state that is able
to recursively reach it. We present a formalization of this property, adapted from Baier
and Katoen [10], that suits the purpose of this work.

Property 1 (Reachability probability for DTMCs). Given a DTMC D = (S, s0, P, T), a
state s œ S, and a set T ™ S of target states, the probability of reaching a state t œ T

from s satisfies the following property:

Pr
D(s, T) =

Y
____]

____[

1 if s œ T

0 if s ” T

q
sÕœS\T P(s, s

Õ) · Pr
D(sÕ

, T) + q
tœT P(s, t) if s /œ T · s T

Whenever T is a singleton {t}, we write Pr
D(s, t) to denote Pr

D(s, T).

In a product line, di�erent products give rise to distinct behavioral models. To handle
the behavioral variability that is inherent to product lines, we resort to Parametric Markov
Chains [33].

2.2 Reliability Analysis

Reliability analysis can be defined as a probabilistic existence property [34]. This means
the reliability of a system is the probability that, starting from an initial state, the system
reaches a set of target (also success) states. This value is called reachability probability.
To analyze this property, we first model the system’s behavior as a DTMC—a tuple
(S, s0, P, T), where S is a set of states, s0 œ S is the initial state, P is the transition
probability matrix P : S ◊ S æ [0, 1], and T ™ S is the set of target states.1 Moreover,
each row of the transition probability matrix sums to 1, that is, ’sœS · P(s, S) = 1, where
P(s, S) = q

sÕœS P(s, s
Õ).

For every state s œ S, we say that a state s
Õ is a successor of s i� P(s, s

Õ) > 0.
Accordingly, the set of successor states of s, Succ(s), is defined as Succ(s) = {s

Õ œ
S | P(s, s

Õ) > 0}. A DTMC induces an underlying digraph where states act as vertices
1This definition departs from the one by Baier and Katoen [10] in two ways: (a) we abstract the pos-

sibility of multiple initial states and the computation of other temporal properties (to focus on reliability
analysis) and (b) we incorporate target states in the model (to abbreviate model checking notation).

9

and edges link states to their successors. This way, we say that a state s
Õ of a DTMC

is reachable from a state s, denoted by s s
Õ, i� s

Õ is reachable from s in the DTMC’s
underlying digraph. Likewise, we write s ” s

Õ to denote that s
Õ is unreachable from s.

This notation is also used with respect to a set T of states: s T i� there is at least one
state s

Õ œ T such that s s
Õ, and s ” T otherwise.

The reachability probability for a DTMC can be computed using probabilistic model
checking algorithms, implemented by o�-the-shelf tools [10, 32]. An intuitive and correct
view of reachability probability, although not well-suited for e�cient implementation, is
that a target state is reached either directly or by first transitioning to a state that is able
to recursively reach it. We present a formalization of this property, adapted from Baier
and Katoen [10], that suits the purpose of this work.

Property 2 (Reachability probability for DTMCs). Given a DTMC D = (S, s0, P, T), a
state s œ S, and a set T ™ S of target states, the probability of reaching a state t œ T

from s satisfies the following property:

Pr
D(s, T) =

Y
____]

____[

1 if s œ T

0 if s ” T

q
sÕœS\T P(s, s

Õ) · Pr
D(sÕ

, T) + q
tœT P(s, t) if s /œ T · s T

Whenever T is a singleton {t}, we write Pr
D(s, t) to denote Pr

D(s, T).

In a product line, di�erent products give rise to distinct behavioral models. To handle
the behavioral variability that is inherent to product lines, we resort to Parametric Markov
Chains [33].

Parametric Markov Chains (PMC) extend DTMCs with the ability to represent va-
riable transition probabilities. Whereas probabilistic choices are fixed at modeling time
and represent possible behavior that is unknown until run time, variable transitions re-
present behavior that is unknown already at modeling time. These variable transition
probabilities can be leveraged to represent product-line variability [35, 36, 37].

Definition 1 [Parametric Markov Chain] A Parametric Markov Chain [38] is defined
as a tuple P = (S, s0, X, P, T), where S is a set of states, s0 is the initial state,
X = {x1, . . . , xn} is a finite set of parameters, P is the transition probability matrix
P : S ◊ S æ FX , and T ™ S is the set of target (or success) states. The set FX

comprises the rational expressions over R with variables in X, that is, fractions of
polynomials with Real coe�cients. This way, the semantics of a rational expression
Á is a rational function fÁ(x1, . . . , xn) = p1(x1,...,xn)

p2(x1,...,xn) from Rn to R, where p1 and p2 are

10

Real polynomials. For brevity, we hereafter refer to rational expressions simply as
expressions.

By attributing values to the variables, it is possible to obtain an ordinary (non-
parametric) DTMC. Parameters are given values by means of an evaluation, which is
a total function2

u : X æ R for a set X of variables. For an expression Á œ FX and
an evaluation u : X

Õ æ R (where X
Õ is a set of variables), we define Á[X/u] to denote

the expression obtained by replacing every occurrence of x œ X fl X
Õ in Á by u(x), also

denoted by Á[x1/u(x1), . . . , xn/u(xn)].
For instance, suppose we have sets of variables X = {x, y} and X

Õ = {x, y, z}, and an
evaluation u = {x ‘æ 2, y ‘æ 5, z ‘æ 3}. If Á œ FX is the rational expression x ≠ 2y, then
Á[X/u] = Á[x/2, y/5] = 2 ≠ 2 · 5 = ≠8. Note that, if u’s domain, X

Õ, is di�erent from the
set X of variables in Á, then Á[X/u] = Á[(X fl X

Õ)/u].
This definition can be extended to substitutions by other expressions. Given two

variable sets X and X
Õ, their respective induced sets of expressions FX and FXÕ , and

an expression Á œ FX , a generalized evaluation function u : X æ FXÕ substitutes each
variable in X for an expression in FXÕ . The generalized evaluation Á[X/u] then yields an
expression Á

Õ œ FXÕ . Moreover, successive expression evaluations can be thought of as
rational function compositions: for u : X æ FXÕ and u

Õ : X
Õ æ R,

Á[X/u][X Õ
/u

Õ] = Á[x1/u(x1)[X Õ
/u

Õ], . . . , xk/u(xk)[X Õ
/u

Õ]] (2.1)

for x1, . . . , xk œ X (since u is a total function, we do not need to consider non-evaluated
variables).

The PMC induced by an evaluation u is denoted by Pu = (S, s0, ÿ, Pu, T) (alternati-
vely, P [X/u]), where Pu(s, s

Õ) = P(s, s
Õ)[X/u] for all s, s

Õ œ S. To ensure the resulting
chain after evaluation is indeed a valid DTMC, one must use a well-defined evaluation.

Definition 2 [Well-defined evaluation] An evaluation u : X æ R is well-defined for
a PMC P = (S, s0, X, P, T) i�, for all s, s

Õ œ S, it holds that

• Pu(s, s
Õ) œ [0, 1] (all transitions evaluate to valid probabilities)

• Pu(s, S) = 1 (stochastic property—the probability of disjoint events must add
up to 1)

2Hahn et. al. [38] actually define it in a more general way as a partial function. However, for our
purpose, it su�ces to consider total functions.

11

Hereafter, we drop explicit mentions to well-definedness whenever we consider an
evaluation or a DTMC induced by one, because we are only interested in this class of
evaluations. Nonetheless, we still need to prove that specific evaluations are indeed well-
defined.

2.2.1 Parametric Probabilistic Reachability

To compute the reachability probability in a model with variable transitions, we use a
parametric probabilistic reachability algorithm. A parametric model checking algorithm
for probabilistic reachability takes a PMC P as input and outputs a corresponding ex-
pression Á representing the probability of reaching its set T of target states. Hahn et.
al [38] present such an algorithm and prove that evaluating Á with an evaluation u yields
the reachability probability for the DTMC induced in P by the same evaluation u.

Figure 2.1 [38] illustrates a single step of this parametric probabilistic reachability algo-
rithm. The main idea is that, for a given state s, the probability of one of its predecessors
(s1) reaching one of its successors (s2) is given by the sum of the probability of transi-
tioning through s and the probability of bypassing it. In this example, other states and
respective transitions are omitted. Note that, since there is a self-loop with probability pc,
there are infinite possible paths going through s, each corresponding to a number of times
the loop transition is taken before transitioning to s2. Hence, the sum of probabilities for
these paths correspond to the infinite sum qŒ

i=0 pa(pc)i
pb = pa(qŒ

i=0 p
i
c)pb = pa

1
1≠pc

pb.3

Definition 3 [State elimination step] Given a PMC P = (S, s0, X, P, T) and an
arbitrary state s œ S, a state elimination step of the algorithm by [38] updates the
transition matrix P to P

Õ, such that, for all states s1, s2 œ S \ {s},

P
Õ(s1, s2) = P(s1, s2) + P(s1, s) · 1

1 ≠ P(s, s) · P(s, s2)

The soundness of the parametric probabilistic reachability algorithm [38] is expressed
by the following lemma.

Lemma 1 (Parametric probabilistic reachability soundness). Let P = (S, s0, X, P, T)
be a PMC, u be a well-defined evaluation for P , and Á be the output of the parametric
probabilistic reachability algorithm by Hahn et. al [38] for P and T . Then, Pr

Pu(s0, T) =
Á[X/u].

3Whenever 0 < x < 1, we have the following convergent sum:
qŒ

i=0 x
i = 1

1≠x .

12

s1 s s2

s1 s2

pa pb
pc

pd

pa
1

1≠pc
pb + pd

Figure 2.1: Elimination of state s in the algorithm by [38]

Demonstração. The elimination algorithm [38] is based on eliminating states until only
the initial and the target ones remain. Its proof consists of showing that each elimination
step preserves the reachability probability. We refer the reader to the work by Hahn et.
al. [38] for more details on the algorithm itself and the proof mechanics.

2.3 Algebraic Decision Diagrams

An Algebraic Decision Diagram (ADD) [39] is a data structure that encodes k-ary Boolean
functions Bk æ R. As an example, Figure 2.2 depicts an ADD representing a binary
function f .

f(x, y) =

Y
__]

__[

0.9 if x · y

0.8 if x · ¬y

0 otherwise

x

y

0.80.9 0

Figure 2.2: ADD Af representing the Boolean function f

Each internal node in the ADD (one of the circular nodes) marks a decision over a
single parameter. Function application is achieved by walking the ADD along a path that
denotes this decision over the values of actual parameters: if the parameter represented
by the node at hand is 1 (true), we take the solid edge; otherwise, if the actual parameter
is 0 (false), we take the dashed edge. The evaluation ends when we reach a terminal node
(one of the square nodes at the bottom).

In the example, to evaluate f(1, 0), we start in the x node, take the solid edge to node
y (since the actual parameter x is 1), then take the dashed edge to the terminal 0.8. Thus,
f(1, 0) = 0.8. Henceforth, we will use a function application notation for ADDs, meaning
that, if A is an ADD that encodes function f , then A(b1, . . . , bk) denotes f(b1, . . . , bk).

13

For brevity, we also denote indexed parameters b1, . . . , bk as b̄, and the application A(b̄)
by JAKb̄.

ADDs have several applications, two of which are of direct interest to this work. The
first one is the e�cient application of arithmetics over Boolean functions. We employ Bo-
olean functions to represent mappings from product-line configurations (Boolean tuples)
to their respective reliabilities. An important aspect that motivated the use of ADDs
for this variability-aware arithmetics is that the enumeration of all configurations to per-
form Real arithmetics on the corresponding reliabilities is usually subject to exponential
blowup. ADD arithmetic operations are linear in the input size, which, in turn, can also
be exponential in the number of Boolean parameters (i.e., ADD variables), in the worst
case. However, given a suitable variable ordering, ADD sizes are often polynomial, or
even linear [39]. Thus, for most practical cases, ADD operations are more e�cient than
enumeration.

An arithmetic operation over ADDs is equivalent to performing the same operation
on corresponding terminals of the operands. Thus, we denote ADD arithmetics by corres-
ponding real arithmetics operators. Formally, given a valuation for Boolean parameters
b̄ = b1, . . . , bk œ Bk, it holds that:

1. ’§œ{+,≠,◊,÷} · (A1 § A2)(b̄) = A1(b̄) § A2(b̄)

2. ’iœN · A
i
1(b̄) = A1(b̄)i

The second application of interest is the algorithmic encoding of the result of an if-
then-else operation over ADDs again as another ADD. For the ADDs Acond , Atrue, and
Afalse, we define the ternary operator ITE (if-then-else) as

ITE(Acond , Atrue, Afalse)(c) =

Y
_]

_[

Atrue(c) if Acond(c) ”= 0

Afalse(c) if Acond(c) = 0

More details on the algorithms for ADD operations are outside the scope of this work
and can be found elsewhere [39].

2.4 Software Product Line

Software product lines have gained momentum in the software industry as they provide
a mass customization by building individual products (tailored for the customer’s requi-
rements) from a set of reusable parts. Since a software product line is defined aiming to
reuse software parts to build a product, its usage brings the benefits of improved quality of
the products it creates meanwhile it reduces the development costs and time to market.

14

A Software Product Line is defined as a set of software-intensive systems that share a
common, managed set of features satisfying the specific needs of a particular market seg-
ment or mission and that are developed from a common set of core assets in a prescribed
way [2].

The main element in the software product-line engineering is to manage the variability
which means having the ability to change or customize a system [5]. Such a variability
is usually expressed in terms of features which are used to specify and communicate
commonalities and di�erences of the products the software product line can instantiate.
They are represented graphically by a feature diagram, which is a feature model [3, 40]
depicted as a tree that captures the existing dependencies and constraints among the
features [6]. A product of a product line is specified by a valid feature selection that
fulfills all feature dependencies.

A software product line can be built using an annotation-based in case each feature is
marked accordingly in a common code base, such a product is formed by removing codes
related to features that do not comprise the product. Also, a software product lin can be
build by a compositional approach, where each feature is implemented in a distinct unit
and a product is build by composing the elements regarding its feature selection [26].

In addition, each product instantiated from a software product line has di�erent at-
tributes and characteristics which can be subject to some kind of analysis, in special its
non-functional requirements. Some analysis techniques usually employed to the analysis
of usual software are being adapted to analyze the products a software product line may
instantiate as, for example, type checking, model checking, static analysis and theorem
proving [9]. In particular, such task may not be feasible in practice [14] since the number
of products a software product line may instantiate can be huge, sometimes it is expo-
nential to the number of features (indeed a software product line may, in the worst case,
instantiate 2|F | products, where |F | denotes the number of features.

2.4.1 Software Product Line Analysis

To analyze the behavior of a product line, it is useful to embed its inherent variabi-
lity in such a probabilistic model. A possible approach is to use parametric DTMCs
(PDTMC) [41], which augment DTMCs with transition probabilities that can be expres-
sed as variables. A PDTMC is a DTMC whose probability matrix takes values from a set
X of strictly positive parameters. A PDTMC gives rise to a family of DTMCs by instan-
tiating the formal parameters to values with an instantiation function Ÿ : Q+ fiX ‘æ [0, 1].
For a parametric DTMC DX and an instantiation function Ÿ, Ÿ(Dx) denotes the DTMC
whose probability matrix is given by instantiating DX ’s formal parameters. For PDTMCs,
the reliability analysis problem can be solved by a parametric reachability algorithm [38],

15

which outputs a rational expression (a fraction of two polynomials) on the same variables
as the ones in the input parametric model. The idea behind this technique is that evalua-
ting the variables in the rational expression yields the reliability value of the DTMC that
would be obtained by an equivalent evaluation of the variables in the PDTMC. However,
this behavioral representation does not take a variability model (e.g., a feature model)
into account, and thus is not su�cient for representing possible behavior in a product line
(i.e, behavior of actual products).

Several analysis techniques have been proposed by researchers for software product
lines, each one taking a particular property into account. To help researchers and practi-
tioners understand the similarities and di�erences among such techniques, Thüm et. al [9]
propose a classification of the existing techniques, which is followed in this work. In this
context, a product-based reliability analysis operates only on derived (non-variable) UML
behavioral models, whereas the variability model may be used to generate the models.
As it is a brute-force strategy, it is only feasible for product lines with few products. In
contrast, the family-based strategy for reliability analysis operates over variant-rich UML
behavioral models and incorporates the knowledge about valid feature combinations. In
a feature-based analysis strategy, the reliability of UML behavioral models related to each
individual feature is analyzed in isolation from the others, i.e., interactions among fea-
tures and the knowledge about valid feature combinations are not incorporated into the
analysis.

Other evaluation strategies may be formed by combining two or more strategies afore-
mentioned [9]. For instance, a feature-product analysis consists of a feature-based analysis
step followed by a product-based analysis, such that the result of the feature-based analy-
sis is reused by the product-based analysis. In the context of reliability, the reliability
of UML behavioral models related to each feature is first evaluated in isolation and then
the analysis result is reused when enumerating and evaluating the reliability of each non-
variant UML behavioral model of the product line. In the opposite, the feature-family
based consists of evaluating each feature in isolation (ie. a feature-based step) followed by
the family-based evaluation step when each features evaluation’s results are reused jointly
with the knowledge about all valid configurations. Both evaluation strategies follows a
compositional strategy to face the scalability issues. The compositional analysis allows to
evaluate models’ fragments in isolation from the others and compose such partial results
in a latter step, what diminishes the evaluation e�ort in comparison to non-compositional
analysis [42].

Although other combined evaluation strategies are possible, the aforementioned stra-
tegies su�ce as contrast to the hereby proposed strategy. For more information regarding
the remaining strategies, please refer to [9].

16

Featured Discrete-time Markov Chains (FDTMC) [12] are probabilistic models that
properly handle product-line variability. They can be thought as DTMCs that, instead
of transition probabilities, have transition probability profiles. These profiles are functions
JFM K æ [0, 1] that map a configuration to a probability value, where JFM K denotes the
set of valid configurations of the feature model FM . Rodrigues et. al. [12] proposed
a method to encode an FDTMC as a PDTMC, enabling its analysis by o�-the-shelf
parametric model checkers. The present work leverages the view of Rodrigues et. al. [12]
of FDTMCs as PDTMCs for the purpose of compositional reliability analysis.

2.5 Running example

To illustrate the concepts presented throughout this thesis, it will be considered an exam-
ple of a simple product line within the medical domain, for which reliability is considered
the major requirement [43]: the Body Sensor Network (BSN) product line is a network
of connected sensors that capture vital signs from an individual and send them to a cen-
tral system to analyze the collected data and identify critical health situations [12]. This
product line has software components that interpret data provided by the sensors and
analyze an individual’s health situation, as well as components for data persistence in a
database or memory. The set of possible configurations for this product line is defined by
its feature model (Figure 2.3), in which wireless sensors are grouped by feature Sensor,
software components for interpreting health information are grouped by feature Senso-
rInformation, and the alternatives for data persistence are grouped by feature Storage.

Figure 2.3: BSN-SPL Feature Model

To continuously monitor an individual’s health situation, the BSN product line has
a control loop comprised of four activities: capture data coming from sensors, process

17

information about the health condition, identify health goal changes, and reconfigure
the system if necessary. This control loop represents the coarse-grained behavior of the
BSN product line and it is modeled by the activity diagram shown in Figure 2.4a, with
each activity being represented in detail by an associated sequence diagram involving the
software components and their behavior. The underlined words in the activities nodes
are the terms by each activity will be referred along this text. Every product instantiated
from the BSN product line executes this control loop and, whenever the individual’s health
condition changes and this triggers a quality-of-service (QoS) goal change, another product
is instantiated from this product line with the desired behavior to reach the desired
QoS goal. By its turn, the behavioral representation provided by sequence diagrams is
considered fine-grained since its elements are able to represent the software components
enrolled in a task execution, the manner how the interactions between such components
happens, in addition to behavioral branches, loops and variability. In special, sequence
diagrams play the role of representing the behavioral variability due the software product
line where necessary by means of guard conditions involving the presence of features (a.k.a
presence conditions [44]).

For instance, Figures 2.4b and 2.4c present an excerpt of the sequence diagram associ-
ated with the activity System identifies situation (Figure 2.4a). This activity consists of
processing and persisting data regarding the individual’s health condition, in particular
sensor information, represented by feature SensorInformation and its child features in
Figure 2.3. Figure 2.4b depicts the behavior associated with the computation and persis-
tence of the individual’s oxygenation. Such a behavior is defined by the messages exchan-
ged between five software components, whose roles are data processing (Oxygenation) and
persistence (Persistence, SQLite and Memory—Persistence dispatches calls to the con-
crete persistence engines), and components for communication and coordination (Bus).
Each message is named according to its task and has an associated probability value prob

to represent the reliability of the communication channel between the components com-
prising the interaction. The reliability is given by the product of (a) the probability that
the required message arrives at the receiver component and (b) the receiver component’s
reliability (i.e., the probability that it performs the required task without failure). For the
BSN product line, we assume that all channels have the minimal reliability 0.999. The
same understanding described above applies to the sequence diagram of Figure 2.4c since
it processes and persists data regarding the individual’s temperature.

The guard condition at the top level of the sequence diagram presented in Figure 2.4b is
the atomic proposition Oxygenation. This means that the enclosed behavior is associated
with the presence of the Oxygenation feature in a given configuration. This behavior, in
turn, has two variants, according to the chosen mechanism for data persistence. The

18

System
captures

vital signal

System
identifies
situation

Compute
new QoS goal

Was there any
QoS goal change?

System
reconfiguration

to achieve
new QoS goal

yes

no

(a) Activity Diagram representing the control loop of BSN-SPL

(b) Sequence diagram (excerpt) associated with the activity system identifies situation, for
processing and persisting Oxygenation information.

(c) Sequence diagram (excerpt) associated with the activity system identifies situation, for
processing and persisting Temperature information.

Figure 2.4: Behavioral diagrams for BSN-SPL

19

optional fragment whose guard condition is SQLite models the behavior of persisting
data in a database whenever feature SQLite is part of a configuration. Likewise, the
optional fragment associated to the presence of the feature Memory (i.e., the fragment
with the Memory guard) models persistence on secondary memory. In an analogous way the
sequence diagram represented in Figure 2.4c is associated to the presence of Oxygenation
feature, since its presence condition is defined by the atom Oxygenation. It also has two
variability points for data persistence related to SQLite and Memory features, respectively.

Note that the dynamic behavior of the BSN product line does not a�ect the method
to reliability analysis, since it only considers the execution of tasks up to reconfiguration
(Figure 2.4a). Moreover, the approach is entirely based on design-time artifacts. For a
deeper discussion of how the BSN product line is engineered for reconfiguration and of
how the reliability computation a�ects this dynamic behavior, please refer to [45]

2.6 Conclusion

This chapter presented the main topics related to the verification of probabilistic proper-
ties of software product line. The verification of such properties is indeed important to
ensure the desired quality level of the products a software product line. For such verifi-
cation the model checking techniques play a major role but it faces challenges regarding
the sizes of the configuration space and the evaluated models. Nowadays evaluation tech-
niques propose some improvements in order to reduce the evaluation e�ort, like the use
of symbolic model checkers, but there is still space for improvements.

The work hereby presented is, thus, aimed to explore the verification of probabilistic
properties in the context of software product lines, in special, the reliability property. Such
property can be evaluated on probabilistic models as the reachability measure of states
considered successfull. For such evaluation, the proposed evaluation method seeks to tame
the required e�ort by employing a feature-family strategy that divides the behavioral
models into smaller models, analyze each one in isolation and later reuse their results to
compute the reliability of the whole software product line.

20

Chapter 3

Behavioral Modeling and Reliability

of Software Product Lines

To evaluate probabilistic properties of a software product line, reliability in particular,
initially it is necessary representing the variable behavior jointly with the probabilistic
information. Briefly, such an information represents the success and failure probabilities of
executing the communications between software components. Both behavioral variability
and probabilistic information of software product lines can be represented by the UML
activity and sequence diagrams. Later, such diagrams can be transformed into their
respective fully probabilistic models (FDTMCs), which must represent the states variation
of the context comprising all products of the software product line.

The software product line’s behavior can be considered at two abstraction levels. The
high level is a coarse-grained representation that employs the UML activity diagram for
modeling the set of activities executed by all products. The low level is a fine-grained
representation whose role is to model the whole variable and probabilistic behavior of a
software product line. Since the variable behavior is defined by the interaction among
software components, such behavior is modeled by means of UML sequence diagrams. To
represent the probabilistic information of the behavior represented by both activity and
sequence diagrams, their semantics can be extended by the UML MARTE [46] profile.
Thus, the joint representation of behavioral variability and probabilistic information in
UML behavioral diagrams is the suitable notation for modeling the probabilistic behavior
of a software product line.

The evaluation of software’s probabilistic property consists of analyzing whether a
property specification is fulfilled in a probabilistic model. In the case of software product
lines such a probabilistic model must also address the inherent behavioral variability and
the Feature Discrete-Time Markov Chain (FDTMC) is a suitable modeling notation. As
previously mentioned, an FDTMC is a Discrete-Time Markov Chain (DTMC) endowed

21

with variability for representing all products’ behavior (c.f. Section 2.4.1), while the
reliability property is defined as the reachability measure that expresses the probability
of reaching a set of sucessfull states on a probabilistic model [23].

This chapter presents how the variable and probabilistic behavior of a software pro-
duct line can be modeled by UML behavioral diagrams (activity and sequence diagrams)
and later transformed into FDTMCs. The behavioral modeling of software product lines
is addressed in Section 3.1 that introduces the coarse-grained behavioral representation by
UML activity diagrams (Section 3.1.1), followed by the probabilistic and variable beha-
vioral representation provided by UML sequence diagrams (Section 3.1.2). Section 3.2
introduces the reliability notion using DTMCs for UML behavioral diagrams and how it
is considered in the context of software product lines. Section 3.3 presents a set of trans-
formation rules for creating FDTMC models from UML behavioral models. Section 3.4
demonstrates evidences that the reliability computed based on UML behavioral diagrams
and the reliability computed based on its corresponding FDTMCs are equivalent, which
supports the correctness of transformation rules. Finally, Section 3.5 presents concluding
remarks.

3.1 Probabilistic and Variable Behavior Modeling of

Software Product Lines

Representing the software’s characteristics by models is useful to preview and to analyze
its diverse properties and behavior. Among the notations for software representation
the Unified Modeling Language (UML) stands out as it provides manifold diagrams to
address the di�erent software’s characteristics. Within the range of UML diagrams the
activity diagram is a high level and coarse-grained behavioral representation that is usually
employed to represent the software’s main tasks and their execution order. The sequence
diagram is a fine-grained behavioral representation that details how software components
interact during a task execution. The UML MARTE profile augments the semantics of
activity and sequence diagrams by associating probabilistic information to their behavioral
elements.

The representation of the software product line’s behavior resembles the behavioral
representation of an usual software. The di�erences arise because the behavioral variabi-
lity inherent to software product lines must be addressed by the same UML behavioral
elements employed at ordinary software’s models. In addition, such behavioral represen-
tations must express the probabilistic information of all products a software product line
can instantiate. In the following, each UML behavioral element and its associated proba-
bilistic information will be presented in the context of software product lines modeling.

22

3.1.1 UML Activity Diagrams’ Elements

The coarse-grained behavioral model of a software product line is represented by a UML
activity diagram enriched with probabilistic information in order to represent which are
the main software product line’s activities and how they are arranged and executed by
all products. In this representation level, common flows are the tasks sequences that all
products execute, which is not referred to the software components interactions shared
by all products. The elements considered for such modeling level are the Initial, Activity,
Decision, Merge and Final nodes. Each element and its meaning in the context of software
product line’s behavioral modeling is described in the following. Additional constraints
are represented next to the element in a gray box.

1.0

Figure 3.1: Initial node of a UML Activity Diagram

Initial node: the initial node is represented only once in a UML activity diagram
by the filled circle shown by Figure 3.1. It is the execution starting point of an activity
diagram and it has only one direct successor element. Since the initial node does not have
any associated interaction between software components, it has no failure chances so its
execution flows directly to its immediate successor, that is represented by the outgoing
edge having 1.0 as probability value.

. . . Activity . . .

rActivity œ [0, 1]

rActivity

Figure 3.2: Activity node of a UML Activity Diagram

Activity: the activity node is represented by the named rounded rectangle shown by
Figure 3.2 and it is responsible to represent a stage of the whole behavior modelled by the
activity diagram. It has an incoming and outgoing edges to denote when its execution
starts and when finishes, respectively. Each activity comprises a set of communications
among several software components such the probability value of the outgoing edge repre-
sents the probability which its associated behavior is executed without errors occurrences.

23

Such a probability value is given by computing the reliability of its associated UML se-
quence diagram. Since the activity’s reliability depends on the computed reliability of its
associated sequence diagram and such diagram adresses the behavioral variability of the
software product line, the outgoing edge’s probability is represented by a variable defined
in [0, 1]. By convention, such variable is named as the activity name with the ‘r’ prefix
standing for “reliability”.

Considering the running example of Section 2.5 each activity node represented by
Figure 2.4a has its behavior detailed by its associated sequence diagram. In special
the sequence diagrams excerpts represented by Figures 2.4b and 2.4c refine the “System
identifies situation”. Thus the reliability value assumed by the activity and represented
by the variable rSituation, depends directly on the reliability computed for both sequence
diagrams of Figures 2.4b and 2.4c. The way how such a variable is defined and computed
will be shown later, by Sections 3.3 and 4.4.

.

q
pi = 1.0

p1

pn

Figure 3.3: Decision node of a UML Activity Diagram

Decision node: the decision node shown by Figure 3.3 is used to represent alternative
behaviors such an alternative is chosen based on the runtime verification of the software’s
state and context. The decision node has one incoming edge and as many outgoing edges
as needed. Albeit the alternative choice is based on the runtime software’s state the
probability indicating how often each alternative is taken is defined by the domain expert
a priori by assigning probabilities to each pi variable in Figure 3.3. Finally, as each
alternative has its execution probability the decision node has an associated constraint
that the probability values of all outgoing edges must sum up to 1.0 — so it fulfills the
basic property of DTMCs.

In the case of the running example presented by Section 2.5 the decision node “Was
there any QoS goal change?” (c.f. Figure 2.4a) has the alternatives of executing the
reconfiguration activity in case of a new QoSGoal otherwise, it simply bypasses such an
activity. In such a case the domain expert has assigned 0.5 as the probability to each
alternative.

24

1.0

Figure 3.4: Merge node of a UML Activity Diagram

Merge node: the merge node is used to represent where several behavioral branches
meet and the software execution proceeds into a single flow. As shown by Figure 3.4 a
merge node has as many incoming edges as the number of branches being unified and
an unique outgoing edge. Similar to its counterpart decision node, there is no software
components interaction associated to this element. Therefore, as soon as the alternatives
behaviors are merged, the software execution flows immediately to the next activity dia-
gram element, as it is indicated by the 1.0 probability value of the outgoing edge. In the
case of the running example the merge node represented in Figure 2.4a unifies the two
behavioral branches created by the decision node into a single flow from it.

Figure 3.5: End node of a UML Activity Diagram

End node: the end node is used only once to define when the execution of the activity
diagram is finished and it is represented by the surrounded filled circle shown by Figure 3.5.
It has as many incoming edges as the number of behavioral branches having an activity
diagram element considered final for that branch. Similar to its counterpart initial node,
there is no software components interaction associated with the end node. In the case of
the running example, the end node represented in Figure 2.4a denotes the control loop of
the BSN-SPL has reached its end and can be executed again.

The set of activity diagrams elements considered in this work is su�cient for repre-
senting how the software product line behaves in the activity level. In such level it is not
considered that a product have multiple and parallel or interleaved execution flows of its
activities. Thus, two elements commonly used for representing multiple execution flows,
namely fork and merge nodes, are not considered in this work.

3.1.2 UML Sequence Diagrams

The fine-grained behavioral modeling represents how the software’s behavior is defined
by the interactions among its software components. A software interaction comprises of

25

two components, the method call, its execution mode and reliability. By reliability in
this representation level, it is understood the probability of executing the method call
between software components without errors occurrences. In addition, the fine-grained
modeling must also represent iterative behaviors and alternative behavioral branches that
may occur at runtime.

In the context of behavioral modeling of software product lines it is necessary repre-
senting both the behavior shared and the behavior specific to a set of products. The
capability to di�erentiate in a diagram the common from the specific behaviors is what
gives power to employ the UML sequence diagram to address the kernel of a software pro-
duct line and to represent its whole behavioral variability. However, the semantics of a
sequence diagram element must be adapted to accomodate the variability representation.

The jointly use of UML sequence diagram and UML MARTE profile allows mode-
ling the variable and probabilistic behavior of a software product line by a detailed and
fine-grained representation. The probability value assigned by UML MARTE’s elements
to a message between software components is su�cient to represent the communication
channel’s reliability. The sequence diagram elements used for representing the software
product line’s behavior are the synchronous, asynchronous and reply messages, besides
the alternative, loop and optional combined fragments. Each element is described in the
following.

methodName()

prob œ [0, 1]

(a) Synchronous message

methodName()

prob œ [0, 1]

(b) Asynchronous message

methodName()

prob œ [0, 1]

(c) Reply message
Figure 3.6: Messages types of a UML sequence diagram

From the structural point-of-view the synchronous, asynchronous and reply messages
are equals. They are defined by an interaction between two software components (a.k.a.
lifelines) that represents a method call between them. The message is represented by an
arrow with its head varying as the message type, the method name placed over the arrow
and its associated probability represented by the value assigned to the prob tag. Such
value represents the communication channel’s reliability.

26

Synchronous message: it is described in a sequence diagram by a solid and closed
arrow between two lifelines as shown by Figure 3.6a. The synchronous message is used
to represent a communication between two components in which the caller halts its exe-
cution and waits for the answer to be provided by the called component. As the caller
component waits for the answer it is necessary having an associated reply message to
each synchronous message used in the model. In the running example, the register and
persist messages represented in Figure 2.4b are synchronous messages.

Asynchronous message: it is described by a solid and open arrow between two
lifelines, as shown by Figure 3.6b. The asynchronous message is used to represent a
communication in which the caller sends a signal to the called component but does not
wait for the return. Thus, the asynchronous message does not have an associated reply
message. In the running example, the sendSituation message represented in Figure 2.4b
is an asynchronous message.

Reply message: it is represented by a dashed and open arrow directed to the caller
lifeline as shown by Figure 3.6c. The reply message is used to represent the called method
finished its execution and both control and result are returned to the caller method.
The name placed over the arrow always starts with reply to reinforces the message
is associated with a synchronous call. In the running example (c.f. Figure 2.4b) the
messages replyRegister, replyPersist and replySendSituation are examples of reply
messages.

p1

p2

pn

· · ·

ALT name

[guard]

[guard]

[guard]

q
pi = 1.0

pi œ [0, 1]

Figure 3.7: Alternative fragment of a UML sequence diagram

Alternative fragment: it is represented by a rectangle with the ALT tag placed at the
top left corner, in addition to various inner rectangles called lanes as shown by Figure 3.7.

27

The alternative fragment is used to represent runtime behavioral variability whose decision
is taken based on the runtime software’s context. Each lane comprises several sequence
diagram’s elements defining its associated behavior, which is guarded by a propositional
condition placed inside square brackets. Each lane’s guard condition is verified at runtime
and, in case it is satisfied, its comprised behavior is executed. Although the lanes’ guard
condition is only verified during runtime due to its dependency to the software’s context,
the domain especialist defines a priori the execution probability for each lane. Therefore,
each lane has an associated probability pi, 1 Æ i Æ n tag whose value represents its
execution probability such that the sum of all lane’s probability must be equals to 1.0.

loop

LOOP name

[guard]

loop œ [0, 1]

Figure 3.8: Loop fragment of a UML sequence diagram

Loop fragment: it is represented by the rectangle shown by Figure 3.8 with the LOOP

tag placed at the top-left corner and the behavior depicted in its inside. The loop fragment
is used to represent some behavior that repeats a given number of times. The number
of iterations depends on the runtime evaluation of the fragment’s guard condition that
is represented by the propositional statement placed inside the square brackets. Similar
to the alternative fragment, the domain expert must define its execution probability by
assigning a value to the loop tag. Obviously, the probability of not executing the loop
fragment assumes the complement of 1 ≠ loop.

Optional fragment: it is represented by a rectangle containing the tag OPT at its top-
left corner followed by its name, as depicted in Figure 3.9. In its original semantics,
it represents the behavioral variability that occurs in runtime, e.g., it can be used to
model the behavior of an if conditional statement. However, such an element plays a
major role in the context of modeling the behavioral variability of software product lines
since such variability can happens in di�erent times – not only during runtime). The
optional fragment is the element responsible to represent, in an uniform manner, all the
possible behavioral variability of a software product line because it relates the fragment’s

28

OPT name

[formula]

Figure 3.9: Optional fragment of a UML sequence diagram

behavior to the presence or absence of features in a set of configurations. The behavior
is defined by the UML sequence diagram’s elements comprised inside the fragment and
the guard condition is expressed by a propositional formula inside square brackets whose
atoms are named as the feature’s names. Such a formula indeed represents the presence
condition that must be fulfilled by configurations so that they execute its represented
behavior. Thus, in a brief, such an element had its semantic changed in this work in order
to (a) represent all kinds of variability by (b) enclosing the variable behavior in optional
fragments (c) whose guard’s formula will denote the set of partial configurations for which
it will be considered. The configurations that do not comprise its satisfiability set will
not present its behavior.

In the case of the running example the sequence diagrams shown by Figures 2.4b
and 2.4c represent behavioral variability points related to the activity “System identifies
situation”. In Figure 2.4b the outermost optional fragment is associated to the optional
Oxygenation feature (cf. Figure 2.3) since its guard condition is the atom Oxygenation.
By its turn, such an optional fragment also has two variability points related to data
persistence. The first fragment is associated to the SQLite feature by the atom SQLite and
the second fragment is associated to the Memory feature by the atom Memory. Note that
both SQLite and Memory are alternative features, but they are represented uniformly
by optional combined fragments. As the behavior of the Temperature feature is similar
to the behavior of Oxygenation feature, the rationale above also applies to the sequence
diagram depicted by Figure 2.4c.

In summary, the UML activity and sequence diagrams can be used to represent the
behavioral characteristics of a software product line. On the one hand, activity diagrams
are used to represent the major tasks and execution flows that all instantied products
must perform. On the other hand, sequence diagrams represent the shared and variable
behavior, such a sequence diagram is a behavioral detailing of an activity. Both dia-

29

grams are enriched with the UML MARTE profile in order to allow them representing
probabilistic behavioral information.

Behavioral Fragment

Activity
Diagram

Sequence
Diagram

Optional
combined fragment

Figure 3.10: Associations between behavioral fragments, sequence diagrams and Optional
combined fragments

Finally, it worth describing the relationship among the UML behavioral diagrams
considered in this work. Such relations are represented by Figure 3.10. Any kind of
behavioral representation is considered a behavioral fragment which can be specialized
into an activity diagram, sequence diagram or an optional combined fragment. The
association from activity diagram and sequence diagram represents the refinement relation
between an activity and its associated sequence diagram. In addition, a sequence diagram
can be comprised of several optional combined fragments for representing its behavioral
variability. By its turn, an optional combined fragment has its behavior represented by
a sequence diagram which, by its turn, can have variability points described by other
optional combined fragments. Such relations are important for the evaluation method
due the steps of the evaluation method considers and explores the polymorphism between
such elements when evaluating the reliability of each behavioral fragment.

3.2 Reliability of UML Behavioral Models

Intuitively, the software reliability computed from a UML behavioral diagram is the exe-
cution probability of all its possible behaviors from the first until last element, such that
the software behavior is defined by a set of execution sequences of actions or methods
(a.k.a. paths). Thus the reliability analysis implies into identifying and computing the
probabilities of all possible executions represented in the diagram. Since each possible exe-
cution in a behavioral diagram is a sequence of UML behavioral elements, the probability
associated to each element placed along the path must be considered when computing its
probability.

A path in a behavioral diagram consists of a finite sequence of behavioral elements such
that one element is only executed just after its previous element finishes its execution.
The order which such elements are disposed is temporal and defined according to the
execution manner of the behavioral diagram. Formally, an execution path is a partial

30

order defined as:
Í = e1–1e2–2 . . . –men (3.1)

where Í is the execution path; ei, 1 Æ i Æ n is each behavioral element comprising the
path Í and –j, 1 Æ j Æ m is an action linking two behavioral elements. Since a path is
a serial execution of behavioral elements, its reliability is computed as the product of all
elements’s reliabilities. An element in a given place along the path has its accumulated
reliability that is computed by multiplying the element’s probability and the accumulated
reliability of its next element. Formally, the accumulated reliability of an element e is
given by the recursive function

R(ei) = prob(ei) ◊ R(ei+1) (3.2)

where prob(ei) is the probability associated to ei and R(ei+1) is the accumulated reliability
computed for its direct successor. Thus, considering the accumulated reliability is com-
puted in a recursive fashion, the path’s reliability is given by the accumulated reliability
of its first element, which is defined as:

R(Í) = R(e1) (3.3)

where R(Í) is the reliability of the path Í and R(e1) is the accumulated reliability of the
first path’s element. However, the reliability definition varies according to the semantics
of each behavioral element so that the reliabilities definitions of all behavioral elements
considered in this work are shown in Sections 3.2.2 and 3.2.3.

Finally, given the relations of behavioral fragments represented by Figure 3.10 a ge-
neral definition for the reliability computation of a behavioral fragment must be useful to
compute the reliability of activity diagram, sequence diagram and optional combined frag-
ment in an uniform way. According to Sections 3.1.1 and 3.1.2, both activity and sequence
diagrams have an unique starting point (the start node and the first behavioral element,
respectively). Thus, given that paths in activity and sequence diagrams are sequences of
behavioral elements (cf. Definition 3.1) and an optional combined fragment comprises a
sequence diagram in its inside, indeed the reliability definition for a behavioral fragment
can be generalized and formally defined as

R(bf) = R(Í)

= R(e1) (3.4)

where Í is the path whose first element is the unique starting element of the behavioral
fragment bf .

31

Therefore the reliability of a behavioral model is computed in an inductive fashion
based on the structure of the UML behavioral model. Considering the software product
line’s behavior is expressed by a set of UML behavioral models, its reliability is given by
each behavioral model’s reliability and the way such models are related. On the one hand
the reliability of the whole software product line is defined by the manner how the activities
are related in an activity diagram and how each activity is detailed by a sequence diagram.
At the other hand, since an activity is detailed by its associated sequence diagram its
reliability is also associated to the reliability computed for its sequence diagram. Such
reliabilities notions are explained in details next.

3.2.1 Reliability of software product line

To compute the reliability of a software product line it is necessary to consider the reli-
abilities of all behavioral diagrams and the manner how such diagrams are related. By
associating a sequence diagram to each activity it is possible to define the set of all behavi-
oral diagrams as well as how such sequence diagrams are related. Thereby, the reliability
of a whole software product line is the reliability of its UML activity diagram, which can
be formally defined as

R(SPL) = R(SPL.ad) (3.5)

where SPL is the software product line subject of the evaluation and SPL.ad is the
activity diagram representing the coarse-grained behavior of the SPL.

3.2.2 Reliability of activity diagram elements

According to Definition 3.5, the software product line’s reliability is computed based
on its activity diagram, which by Definition 3.4, is the accumulated reliability of its
first element (i.e. the product of all elements’ reliabilities along the path). Since the
reliability function R is inductive in the structure of the behavioral model it is necessary
to compute the accumulated reliability for each element along the path which is given by
the element’s probability value multiplied by the accumulated reliability of its immediately
successor. Next, the accumulated reliability definition for each activity diagram’s element
is presented. From now on it is meant by behavior any interaction between software
components.

Initial node: since the initial node does not have an associated behavior its impact
over the reliability computation is null. Thus, its accumulated reliability is equal to 1.0

32

multiplied by the accumulated reliability of its remaining path. Formally it is defined as

R(in) = 1.0 ◊ R

1
next(in)

2
(3.6)

where in is the initial node and next(in) is the singleton set of its immediately successor
and R(next(in)) is the accumulated probability of such element.

Activity: due to an activity is detailed by a sequence diagram its reliability varies
according to such diagram’s behavior and the product instantiated. Thus, it is agreed to
represent the activity’s reliability as a variable named as the activity with the ‘r’ prefix
standing for “reliability”. Formally it is defined as

R(a) = rActivity ◊ R

1
next(a)

2
(3.7)

where a is an activity named Activity; rActivity, rActivity œ [0, 1] is the variable re-
presenting the activity’s reliability, next(a) is the successor of a and R(next(a)) is the
accumulated reliability of its immediately successor.

Decision node: the decision node is the element that splits the behavior into di�erent
paths such each alternative path has an associated execution probability defined by the
domain expert (c.f. Figure 3.3). Given that each path is independently executed from
the others, the reliability of the decision node is the sum of the cummulative reliabilities
of all alternative paths. Such a reliability definition is formally given by

R(d) =
nÿ

i=1
pri ◊ R

1
next(d, i)

2
(3.8)

where n is the number of outgoing edges of the decision node d, pri is the probability
associated to the i

th edge, next(d, i) is the singleton set of the immediately successor of d

by the edge i and R(next(d, i)) is the accumulated probability of such element.

Merge node: the merge node joins di�erent behavioral branches into a single path
without any interaction between software components. Thus, its impact over the reliabil-
ity computation is null and its accumulated reliability is formally defined as

R(m) = 1.0 ◊ R

1
next(m)

2
(3.9)

where next(m) is the immediately successor of m and R(next(m)) is the accumulated
reliability computed for such an element.

33

End node: the end node determines the execution’s end of an activity diagram without
any associated behavior such that its contribution to the accumulated reliability is null.
It is also the base case of the recursive function R when computing the reliability of an
activity diagram. It is formally defined as

R(e) = 1.0 (3.10)

where e is the end node.

3.2.3 Reliability of sequence diagram models

The reliability computation of a sequence diagram resembles the reliability computation of
models described by activity diagrams. For both the reliability is given by the accumulated
reliability of the first element (as stated by Definition 3.4) and the path’s reliability is
inductively computed on the path structure by the product of all elements in its sequence
(as stated by Definition 3.2). However, the sequence diagram’s representation structure
and the need of representing the behavioral variability turn the reliability function R for
sequence diagram slightly di�erent from the reliability function of activity diagram.

The first di�erence stems from the representation structure of a sequence diagram:
di�erently of an activity diagram whose elements are linked by transitions, there is no link
between the elements comprising a sequence diagram. The unique relation between the
sequence diagram’s elements is the point where each element is represented in the diagram
which, given its top-down reading way, imposes a temporal sequence for its elements.
Therefore, to compute the accumulated reliability of a sequence diagram element it is
necessary to consider which elements may execute in the next step.

In addition, the sequence diagram is the responsible for representing the software
product line’s behavioral variability as some behavioral fragments will comprise a set of
products but will not in another set. Given the accumulated reliability of an element is a
recursive function, such function must be able to consider such variability of the software
product line in an uniform manner.

Thus the reliability function R for sequence diagrams has to deal with the temporal
link between the elements of a variable behavioral diagram. Both characteristics impose a
semantic change of a sequence diagram element for representing the inherent variability of
a software product line and also consider the sequence of the sequence diagram elements
as a partial-ordering. The definitions of reliability function R for the sequence diagram’s
elements are presented next.

34

Synchronous, asynchronous and reply messages: albeit the execution of synchro-
nous, asynchronous and reply messages have di�erent execution modes (c.f. Section 3.1.2),
they are similar from the structural and reliability points of view: all of them are a com-
munication between two software components that is accordingly performed bounded by
the communication channel’s reliability. Thus the accumulated reliability for such messa-
ges is given by the probability associated to the message multiplied by the accumulated
reliability of its next element. Such a definition is formally given by:

R(m) = prob(m) ◊ R

1
next(m)

2
(3.11)

where prob(m) is the function that returns the probability value associated to the message
m and next(m) is the function that returns its next executable element and R(next(m))
is the cummulative reliability computed for the successor of m.

Loop fragment: Since the loop fragment has a probability value defined by the loop

variable for the cases it is executed (consequently its complement represents the pro-
bability of not executing the loop), such a value must be considered for its reliability
definition. In the case the loop’s behavior is executed, its inner content’s reliability must
also be taken into account, otherwise the non-execution probability must be considered.
Such inner behavior is, indeed, represented by a sequence diagram associated to the loop
fragment. Thus, the reliability of a loop fragment is given by the accumulated probability
of both loop’s execution and non-execution. Such a reliability is formally defined as

R(l) =
3

prob(loop) ◊ R

1
SD(l)

2
+

1
1 ≠ prob(loop)

24
◊ R

1
next(l)

2
(3.12)

where prob(loop) is the fragment’s execution probability, SD(l) is the function that returns
the sequence diagram of the loop l, R(SD(l)) is the reliability computed for such diagram
(i.e. the loop’s innerbehavior), 1≠prob(loop) is the probability of not executing l, next(l) is
the directly successor of l and R(next(l)) is the accumulated reliability of the immediately
successor of l.

Alternative fragment: as the alternative fragment represents the behavior splitting
into several alternatives, in practice it creates several possible execution flows from it such
that each alternative has its execution probability defined by the domain expert. Besides,
since each alternative’s behavior is represented by a sequence diagram, its reliability is
given by the reliability computed for its associated sequence diagram. Thus, the reliability
of each alternative is given by its choice probability multiplied by the reliability computed
for its sequence diagram.

35

Whatever branch is taken, the path continues from the element just after the alterna-
tive fragment. The cummulative reliability of the alternative fragment must consider the
reliability of the path remaining after it, that is computed as the cummulative reliability
of its direct successor. Thus, the cummulative reliability of the alternative fragment is
formally defined as:

R(a) =
3 ÿ

pri ◊ R

1
SD(alti)

24
◊ R

1
next(a)

2
(3.13)

where pri is the execution probability associated to the i
th alternative, SD(alti) is the

sequence diagram of the i
th alternative, R(SD(alti)) is the reliability computed for the

sequence diagram of the i
th alternative and R(next(a)) is the cummulative reliability

computed for the successor element of the alternative fragment.

Optional fragment: the optional behavioral fragment represents the behavioral va-
riability of software product lines according to the presence or absence of features in a
configuration. An optional fragment will always be considered by the paths passing th-
rough it. But it is necessary to define when its reliability must be considered or not, such
that it will not impact the computation. The accumulated reliability for the optional frag-
ment is thus computed based on the fragments’ behavior presence or absence, in addition
to the accumulated reliability computed from its next element. Formally it is defined as:

R(o) = R

1
SD(o)

2p
◊ R

1
next(o)

2
(3.14)

where SD(o) is the sequence diagram associated to the optional combined fragment o,
R(SD(o)) is the reliability computed for the sequence diagram associated to o, p œ {0, 1}
indicates the fragment presence (1) or absence (0) and R(next(o)) is the accumulated
reliability of the fragment’s successor.

In the case of the running example, both sequence diagrams shown by Figures 2.4b
and 2.4c have their behaviors varying according to SQLite and Memory features because
they are related to the fragments SQLite and Memory, respectively. In addition both
features are alternative according to the feature model represented in Figure 2.3. Thus,
whenever one of the persistence features is present in a configuration the other one is
necessarily absent such that its behavior must not a�ect the reliability computation. In
the case of SQLite is part of the configuration the p exponent in its term assumes the
value 1, meanwhile the p exponent of the term related to Memory feature assumes the

36

value 0 to represent its absence. Thus, the reliability of the SQLite fragment is given by

R(SQLite) =R

1
SD(SQLite)

21
◊ R

1
next(SQLite)

2

R

1
SD(SQLite)

2
◊ R

1
SD(Memory)

20
◊ R

1
next(Memory)

2

R

1
SD(SQLite)

2
◊ 1 ◊ R

1
next(Memory)

2

which, indeed, only considers the reliability of the fragment associated to SQLite feature.
Conversely, the same rationale holds for the cases where Memory is present and SQLite
is absent in the configuration.

3.3 Transformation from UML to FDTMC

Once the whole behavior of a software product line is represented by a set of UML
behavioral diagrams it can be transformed into fully probabilistic models that later will
be subject to reliability analysis. However, given the expressiveness of UML behavioral
diagrams (messages execution modes in addition to alternative, iterable and optional
behaviors) such characteristics must also be considered by the probabilistic models. In
this context, the FDTMC is a suitable modeling notation as it is able to represent the
variable and probabilistic behavior of a software product line.

The UML behavioral models present an action-based view of the software product
line’s behavior because they represent how the variable behavior is defined by the beha-
vioral elements and executed by the software components. Meanwhile, FDTMC provides
the corresponding state-based view since it represents the behavioral characteristics by
expressing how the software product line’s states vary as long as its behavior is execu-
ted. In an FDTMC, each state represents the observable characteristics reached by the
software after executing its respective UML element.

Given the dependency between the action- and state-based views, a set of translation
rules T to an FDTMC sub-structure is defined for each UML behavioral element. A trans-
formation rule is defined by two parts: the left-hand side shows the UML element being
transformed and the right-hand side shows its resulting FDTMC sub-structure. From
now on assume that elements depicted by solid lines at the right-hand side are the new
FDTMC’s states or edges created by the transformation rule, while the elements repre-
sented in dashed lines already exist. Assume also that the name current state is the state
from which the FDTMC substructure will be built. Thereby, a whole UML behavioral
model can be translated into its respective FDTMC by applying the transformation rule
of each behavioral element in a stepwise fashion. Next the translation rule and the resul-

37

ting FDTMC for each UML behavioral element is presented jointly with the description
of its state-based view.

3.3.1 Transformation Rules for Activity Diagram Elements

(init)

(error)

1.0

0.0

Figure 3.11: Transformation rule for an initial node of an activity diagram

Initial node: the resulting FDTMC shown by Figure 3.11 is comprised of three states
and two edges. The labeled states init and error represent, respectively, the state where
the execution begins and the state representing some error occurred during the diagram
execution. The edge from init to the unlabeled state has the associated probability value
1.0 and, due to the basic FDTMC’s property, its complement edge has 0.0 as probability
value.

The state-based view provided by the resulting FDTMC means the execution starts
(init state) and proceeds with probability equals to 1.0 to the next state. Such a value
follows from the fact that there is no software behavior associated to the initial node, so
its failure probability is equal to 0.0.

. . . Activity . . .

(error)

rActivity œ [0, 1]

rActivity

1-rActivity

Figure 3.12: Transformation rule for an activity node of an activity diagram

38

Activity: intuitively, the reliability of an activity is the reliability computed by its as-
sociated sequence diagram. The activity’s transformation rule represented by Figure 3.12
comprises a new state and two new edges. The edge directed from the current to the newly
created state has its probability represented by the rActivity variable, rActivity œ [0, 1],
whereas the edge directed to the error state assumes its complement (1 ≠ rActivity).

The current state represents the moment just before the activity execution. With a
probability equals to the value assumed by rActivity, its associated behavior is performed
without errors and such a condition is represented by the newly created state. Following
the naming convention adopted by the UML behavioral modeling (c.f. Section 3.1.1) the
edge’s parameter is named as the activity’s name with the prefix ‘r’ standing out for
“reliability”. In case of an error occurred anywhere of the sequence diagram associated
to the activity, such a condition is represented by the error state that is reached with the
probability given by 1 ≠ rActivity.

.

q
pi = 1.0

p1

pn

p1

pn

Figure 3.13: Transformation rule for a decision node of an activity diagram

Decision node: the translation rule shown by Figure 3.13 results into an FDTMC
comprised of as many newly edges and states leaving the FDTMC’s current state as the
alternatives of the decision node.

The state-based view provided by the FDTMC means the software execution may
proceed from the current state to the first state of each alternative with the probability
associated to its respective edge. The current state represents the software state just
before the decision is taken and each newly created state represents the software state
just before its behavioral branch starts its execution. As each decision of a decision node
has a probability value assigned by the domain expert, such probabilities are considered
when creating each edge leaving the current state of the FDTMC. Given the basic property
of FDTMCs the probabilities of all edges leaving the current state must sum 1.0. Finally,
as there is no software behavior associated to the UML decision node, there is no edge
from current to the error state.

Merge node: the resulting FDTMC shown by Figure 3.14 is comprised of several
newly created elements namely: two states, an edge between both states with probability

39

1.0
1.0
1.0

1.0

Figure 3.14: Transformation rule for a merge node of an activity diagram

equals to 1.0 and as many edges as the number of existing states to be merged. Such
edges also have 1.0 as transition’s probability.

The FDTMC’s state-based view represents by each current state the execution’s end
of an alternative behavioral branch while the first newly created state represents the
merging state, ie., the software’s state where all alternatives are ready to merge. From
the merging state, the execution proceeds to the merged state (the second state created
by the transformation rule) with probability equal to 1.0 because there is no software
components interaction enrolled in this task.

(success) 1.0

Figure 3.15: Transformation rule for an end node of an activity diagram

End node: the transformation rule shown by Figure 3.15 results into an FDTMC
comprised of a newly created self-edge with probability equals to 1.0 and a new label
placed at the current state.

The state-based view of the resulting FDTMC represents the activity diagram execu-
tion has ended successfully due the execution has reached the final “success” labeled state.
As the success state has no associated components interaction the self-edge assumes the
1.0 probability value that transforms it into an absorbing state.

3.3.2 Transformation Rules for Sequence Diagram Elements

The UML sequence diagram’s elements represent the small constituents parts of a software
and the way they are arranged defines the software’s behavior. The transformations
from sequence diagram elements into FDTMC structures resemble the activity diagram’s
transformations and a transformation rule is defined for each sequence diagram element.
Again, each transformation rule represents the newly created edge and states by solid
lines meanwhile the already existing states and edges are represented by dashed lines. In

40

the sequence, the transformation of each sequence diagram element is described with its
state-based view.

methodName()

prob œ [0, 1]

methodName()

prob œ [0, 1]

methodName()

prob œ [0, 1]
(error)

p œ [0, 1]

prob

1 ≠ prob

Figure 3.16: Transformation rule for a synchrounous, asynchronous and reply messages
of a sequence diagram

Synchronous, asynchronous and reply messages: albeit each kind of message has
its meaning well defined in the context of software modeling by UML sequence diagrams,
the resulting FDTMC from their transformations are the same in terms of number of
nodes and edges. The di�erences are centered in the meaning of some states. Thus, the
resulting structure for such messages and such di�erences are explained below.

The transformation rule for all messages (synchronous, asynchronous and reply) results
into an FDTMC comprised of two already existing states, and newly created edges and
state, as shown by Figure 3.16. The edge from the current to the newly created state
has the probability p, p œ [0, 1] while the complement edge directed to the error-labeled
state has the 1 ≠ p probability.

For all kinds of messages, the FDTMC’s state-based view represents by the current
state that the caller component is ready to place the method call. Also for all kinds
of messages the error state represents an error occurred during the method call whose
probability is given by the value of the complement edge (1 ≠ p). The edge from the
current to the newly created state represents for all messages types the probability p of
sending the message without any error occurrence. However, the meaning of the newly
created state varies according to the message type. In the case of a synchronous message it
represents the caller component is halted meanwhile the called component is executing. In
the case of an asynchronous message, it represents that both caller and called components
are executing their behavior just after placing the method call. Finally, for the case of
reply message, it represents the called method ended its execution and the control is back
to the caller component.

Alternative fragment the transformation rule shown by Figure 3.17 considers the
probabilities assigned by the domain expert to each lane comprising the activity diagram.

41

p1

p2

pn

· · ·

· · ·

ALT name

[guard]

[guard]

[guard] q
pi = 1.0

pi œ [0, 1]

p1

pn

Figure 3.17: Transformation rule for an alternative fragment of an sequence diagram

The resulting FDTMC is comprised of the current state with as many newly created
outgoing edges and states as the number of lanes. Each edge assumes its probability
value according to its respective lane represented in the alternative fragment, such that
pi œ [0, 1], qn

i=1 pi = 1.0.
The FDTMC’s state-based view represents the moments just before and after the

choice of the behavioral branch. The current state represents the software’s context at the
choice moment while each of its imediately successor states represent the software context
just before starting the execution of the behavior of the choosen branch. The edge’s
probabilities of the FDTMC assume its respective probabilities given by the domain expert
at the alternative fragment. Due the alternative choice does not involve any interaction
between software components, ie. a single component makes the decision about which
branch must be taken according to the software’s context, there is no failure probability
so there is no edge from the current to the error state at the FDTMC.

loop

· · · (exit)
loop

1 ≠ loop

loop

1 ≠ loop

LOOP name

[guard]

loop œ [0, 1]

Figure 3.18: Transformation rule for a loop fragment of a sequence diagram

Loop fragment: the FDTMC resulting from the transformation rule shown by Fi-
gure 3.18 is comprised of 3 and 4 newly created states and edges respectively, in addition
to the current state. The current state transits to the second state with the probability
given by the parameter loop defined by the domain expert, or it transits to the exit la-
beled state with the complementary probability 1-loop. The analogous reasoning applies

42

to the third state. The ellipsis between the second and third states abstracts the resulting
FDTMC from the transformation of loop’s content.

The current state represents the software’s context whose runtime evaluation will
decide whether the loop fragment will be executed. The first inner state represents the
initial state of the loop’s content. The second inner state indicates the loop’s content had
executed and another decision about the iteration must be taken. In case it has to be
executed again, the execution proceeds to the first inner state. Otherwise, it leaves the
loop and proceeds to the first state after the loop content, ie. the exit labeled state.
Such state represents the software is ready to execute the first action just after the loop
fragment.

OPT name

[formula]

(error)

rName œ [0, 1]

rName

1-rName

Figure 3.19: Transformation rule for an optional combined fragment of a sequence diagram

Optional fragment the transformation rule results into the FDTMC shown by Fi-
gure 3.19 that is comprised of three states and two edges, such a state and the edges are
newly created by the rule. The current state transits to the new state with the probability
rName, rName œ [0, 1] while its complement edge assumes the probability 1 ≠ rName.

The current and the newly created states represent, respectively, the software’s context
just before and after the optional fragment execution. Due to the resulting FDTMC re-
presents the optional fragment’s reliability, it is agreed the edge’s variable is named as the
fragment’s name with the ‘r’ prefix standing for reliability. The rName variable represents
the reliability computed for the entire optional combined fragment in case its behavior is
present (ie., for the cases its guard condition is satisfied). Hence the complement edge
represents the failure probability for executing the optional fragment. In particular, when
the guard condition is not fulfilled by a configuration, the optional fragment’s behavior
is not considered part of the product and the rName parameter assumes the value 1.0.
By assuming such value the complement edge assumes the probability value 0.0 that re-
presents there is no failure probability. Indeed, when the rName assumes the probability
value 1.0 it means there is no software behavior associated to the edge, thus the optional
combined fragment has no e�ect at the reliability analysis.

43

3.4 Reliability Equivalence of UML Behavioral Mo-

dels and FDTMCs

Given a set of UML activity and sequence diagrams representing the software product
line’s behavior, it is possible to compute its reliability by two distinct manners: a) it can
be computed by transforming the UML models into their respective FDTMCs and then
employing state-of-the-art probabilistic model checkers or b) by applying the reliability
functions of each behavioral element (cf. Section 3.2) in a stepwise fashion and then tra-
versing the resulting derivation tree solving for a given configuration. However, the later
evaluation alternative lacks of tools implementing it whereas, in theory, any parametric
and probabilistic model checker is able to evaluate FDTMCs. Thus, in order to allow
the reuse of existing and state-of-the-art parametric model checkers, it is necessary to
demonstrate some evidence for the equivalence between reliabilities computed from both
UML and FDTMC models.

Figure 3.20: Intuition of the reliability equivalence of UML and FDTMCs models

Providing a formal proof of the equivalence for reliabilities computed for both UML
and FDTMCs is out of the scope of this work. However some evidences and arguments
presented in the following show the reliability formulae computed from both models are
equivalent. The intuition for such a demonstration is depicted by Figure 3.20. The ele-
ments in boxes represent behavioral models of a software product line. Given a UML
behavioral model it is possible to create its respective FDTMC by applying the set of
transformation rules T presented in Section 3.3 that are represented by the leftmost ar-
row. Both dashed arrows leaving the behavioral models represent a possible reliability
evaluation for the software product line. The top arrow represents the reliability evalua-
tion of UML behavioral models by the stepwise application of the reliabilities definitions
of Section 3.2. Such an evaluation results into a derivation tree whose terminal nodes
denote constants and terms of the reliability formula such that the variables represent
the reliabilities of optional combined fragments. The bottom edge represents the reliabil-
ity evaluation of the FDTMCs resulting from the translation rules applied at the UML
behavioral models. Such an evaluation employs algorithms defined for parametric model

44

checkers[41] resulting into a parametric formula whose parameters represent the reliabili-
ties values its respective FDTMC may assume. Thus, to evidence the equivalence of both
reliability evaluations it is necessary demonstrate that the computed reliabilities must be
the same when evaluating both formulae from their first to their last element (state in
the case of FDTMCs and element in the case of the UML behavioral models).

In the next subsections the reliability equivalence of both UML and FDTMCs models
will be demonstrated, using the behavioral models of BSN-SPL represented by Figu-
res 2.4a and 2.4b.

3.4.1 Reliability equivalence for activity diagram

Intuitively, the reliability of a UML behavioral model is given by the probability of exe-
cuting all its behavior from the first until the last element without any error occurrence.
According to Definition 3.4 it is given by the accumulated reliability of its first element
which, as stated by Definition 3.2, is a recursive function that considers the accumulated
reliability of all elements along the path. Since each element has its own reliability defini-
tion (cf. Section 3.2.2), the reliability computation for a UML activity diagram consists
into the stepwise application of the elements’ reliability definitions. Such a computation
results into a derivation tree that, when traversed in a pre-order fashion considering only
terminal nodes and operators, results into its reliability formula.

Thus, for the case of the activity diagram of the BSN-SPL (represented by Figure 2.4a),
its reliability can be computed by applying the reliability definitions presented in Sec-
tion 3.2.2 until there is no more node to be expanded by a reliability definition rule, so
the derivation tree is complete. For the sake of space, the stepwise application rule is not
shown, but the whole derivation tree is represented in Figure 3.21. Each derivation step is
represented by an edge linking two nodes containing the reliability definitions for activity
diagram elements with the number of the applied definition rule placed aside. Finally,
the element whose reliability will be computed in the next step (i.e. the element returned
by the next auxiliary function) is shown as a comment in gray boxes.

At this point two remarks worth to be addressed regarding the derivation tree presen-
ted by Figure 3.21. Initially, it is known the activity diagram of the BSN-SPL (c.f.
Figure 2.4a) has a common flow of activities until its decision node. Such a node
splits the behavior into two execution flows for the cases a reconfiguration is or is not
necessary. Such a split is indeed considered in the derivation tree by the reliability
Definition 3.8 for decision nodes, such that from that point the derivation tree also
splits in two branches. The second remark regards to the formula resulting from the
tree traversal in a pre-order fashion. By considering the terms and operators of each
node the reliability for such activity diagram is given by the formula R(BSN.AD) =

45

R(BSN.AD) = R(e1) e1 = initialnode

1.0 ◊ R(a1) a1 = capture

(3.6)

rCapture ◊ R(a2) a2 = situation

(3.7)

rSituation ◊ R(a3) a3 = qosgoal

(3.7)

rQosGoal ◊ R(d1) d1 = decision node

(3.7)

q

(3.8)

0.5 ◊ R(m1)m1 = merge node

i=1

1.0 ◊ R(en1)en1 = end node

(3.9)

1.0

(3.10)

0.5 ◊ R(a4) a4 = reconfiguration

i=2

rReconfiguration ◊ R(m1) m1 = merge node

(3.7)

1.0 ◊ R(en1) en1 = end node

(3.9)

1.0

(3.10)

R(BSN.AD) = 1.0 ◊ rCapture ◊ rSituation ◊ rQosgoal◊
(0.5 ◊ 1.0 ◊ 1.0 + 0.5 ◊ rReconfiguration ◊ 1.0 ◊ 1.0)

R(BSN.AD) = rCapture ◊ rSituation ◊ rQosgoal ◊ (rReconfiguration + 1)

Figure 3.21: Derivation tree and reliability formula computed for the activity diagram of
the BSN-SPL

46

1.0 ◊ rCapture ◊ rSituation ◊ rQosgoal◊
(0.5 ◊ 1.0 ◊ 1.0 + 0.5 ◊ rReconfiguration ◊ 1.0 ◊ 1.0) that, in its simplified form, is equal
to R(BSN.AD) = 0.5 ◊ rCapture ◊ rSituation ◊ rQosgoal ◊ (rReconfiguration + 1).
In such a formula, the common flow of activities reflects into the multiplication of the
four initial terms, meanwhile the decision node is the responsible for generating the sum
of (rReconfiguration + 1). As the decision node is part of the execution flow, its sum is
multiplied by the multiplication related to the common flow (i.e. the three initial activities
and the decision’s node probability).

(init) (success)

(error)

1.0
rC

ap
tu

re

rS
itu

at
io

n

rQ
os

G
oa

l

0.5 rR
ec

on
fig

ura
tio

n

1.0 1.0

0.5

1.0

0.0

1 ≠
rC

a
pt

u
re

1 ≠
rC

a
pt

u
re

1 ≠
rS

it
u
a
ti
on

1 ≠
rQ

os
G
oa

l

1 ≠
rR

ec
on

f
ig

u
ra

ti
on

0.0 0.0

Figure 3.22: FDTMC of the activity diagram of the BSN-SPL
The other manner to compute the reliability of the activity diagram is to apply the

transformations from UML to FDTMC substructures defined for activity diagram ele-
ments in Section 3.3.1 in stepwise fashion and then evaluate the resulting FDTMC by
means of a parametric model checker. Since the reliability is the property of interest,
it can defined as the probability of reaching the FDTMC’s final state labeled as “suc-
cess”by the PCTL statement P=?(⌃ÕÕ

success
ÕÕ). Again, for the sake of space the stepwise

construction of the FDTMC is not shown, but the resulting FDTMC is shown by Fi-
gure 3.22. In such a FDTMC, it is possible to infer that only two possible paths lead to
the success state. Both paths have the initial four transitions and, from the fifth state,
the execution splits into two possible paths. Such splitting stems from the transformation
rule 3.13 defined for decision nodes of activity diagrams. Later, such paths merge into
a common flow at the 8th state, as defined by the transformation rule 3.14. Albeit the
transition from the init to the error state never occurs (since its probability is 0.0) it is
represented at the Figure 3.22 to demonstrate the basic property of FDTMCs is fulfilled.
According to the reliability definition provided by [23], the reliability can be computed
by a rechability measure in a probabilistic model that, intuitively, is defined as the sum
of probabilities computed for each possible execution path of a probabilistic model [10].

47

When a parametric model checker’s algorithm[41] is employed to verify the aforementio-
ned PCTL statement at the FDTMC shown by Figure 3.22 the resulting formula for its
reliability is equal to 1.0◊rCapture◊rSituation◊rQosgoal◊0.5◊1.0+1.0◊rCapture◊
rSituation ◊ rQosgoal ◊ 0.5 ◊ rReconfiguration ◊ 1.0 ◊ 1.0, where the variables starting
with ’r’ denotes the reliability of its related activity. Such a formula, in its simplified
form, is equal to 0.5 ◊ rCapture ◊ rSituation ◊ rQosgoal ◊ (rReconfiguration + 1).

Albeit the UML activity diagram and its related FDTMC describes di�erent charac-
teristics of the BSN-SPL (the activity diagram provides the action-based view meanwhile
the FDTMC the state-based view), the reliability formulae computed from both models
are equals. Despite it is not a formal demonstration of reliability equivalence between such
models, the equality of such formulae provides evidences that the reliability of a UML
behavioral model can be computed by employing algorithms of parametric model checkers
into its related FDTMC. In addition, such a demonstration also provides evidences that
the transformation rules for activity diagram elements (cf. Section 3.3.1 are correct in the
sense they preserve the reliability notion of the considered elements.

3.4.2 Reliability equivalence for sequence diagram

Once the demonstration presented in Section 3.4.1 provides evidences that there is equi-
valence of reliabilities computed from UML activity diagram and its related FDTMC, it
is necessary obtain similar evidences for UML sequence diagram and its FDTMC. Thus,
the demonstration’s intuition represented in Figure 3.20 still holds and the notation used
to represent the derivation tree will also be used for the reliability definitions of sequence
diagrams.

R(SQLite) = R(m1) m1 = persist

0.999◊R(m2) m2 = replyPersist

(3.11)

0.999

(3.11)

R(SQLite) = 0.999 ◊ 0.999

R(SQLite) = 0.999
2

Figure 3.23: Derivation tree of reliability definitions for the Sqlite feature

48

Figure 3.23 presents the derivation tree of the fragment rSqlite presented in the
Figure 2.4b. Since the behavior of such a fragment is represented by its inner sequence
diagram and such a diagram does not have any variability point, the demonstration related
in the following also holds for all sequence diagrams that does not have variability points.
Such a fragment comprises a synchronous and its reply message for the data persistence.
Thus, the reliability Definition 3.11 is applied twice resulting into the derivation tree
(Figure 3.23. Since the sequence diagram does not have variability points its resulting
reliability formula is given in terms of constants. Thus, the reliability computed for such
a fragment is R(SQLite) = 0.9992.

(init) (success)

(error)

0.999 0.999

0.001 0.001

Figure 3.24: FDTMC of the Sqlite feature
In the case of the reliability analysis by means of a model checker, the FDTMC for

the fragment is built by applying the transformation rule 3.16 twice, then resulting the
structure shown in Figure 3.24. When the property P?=(⌃ÕÕ

success
ÕÕ) is evaluated by

a parametric model checker, its resulting formula is 0.999 ◊ 0.999, thus equals to the
reliability formula computed from its respective sequence diagram.

Finally, it is necessary to demonstrate that the reliability equivalence holds for the
optional combined fragment whose semantics was changed in order to allow representing
the variability of software product lines. Such an element is used twice in the sequence di-
agram presented in Figure 2.4b to represent the variability points rSQlite and rMemory.
All other elements in such a diagram are messages (of all kinds), so its derivation tree
is comprised of nodes created by applying Definitions 3.11 and 3.14, as shown in Fi-
gure 3.25. Note that the terms of the optional combined fragments will always be part of
the path created by traversing the tree. Thus, the resulting formula for the reliability is
R(rOxygenation) = 0.9996 ◊ rSqlite ◊ rMemory, such that the variables rSqlite and
rMemory assume their values when the fragment is present or 1.0 when it is absent from
the configuration. Such values, indeed, can be obtained by the reliability Definition 3.14
since the exponent p varies into the set {0, 1}.

In the case of the reliability analysis by employing a parametric model checker, the
transformation rules represented by Figures 3.16 and 3.19 were applied to build the
FDTMC related to the rOxygenation fragment. The resulting FDTMC is show by Fi-

49

R(Oxygenation) = R(m1) m1 = register

0.999◊R(m2) m2 = replyRegister

(3.11)

0.999 ◊ R(m3) m3 = sendSituation

(3.11)

0.999 ◊ R(m4) m4 = persist

(3.11)

0.999 ◊ R(opt1) opt1 = SQLite

(3.11)

rSqlite
p1 ◊ R(opt2)

opt2 = Memory

p1 œ 0, 1

(3.14)

rMemory
p2 ◊ R(m5)

m5 = replyPersist

p2 œ 0, 1

(3.14)

0.999 ◊ R(m6) m6 = replySendSituation

(3.11)

0.999

(3.11)

R(Oxygenation) = 0.999 ◊ 0.999 ◊ 0.999 ◊ 0.999 ◊ rSqlite ◊ rMemory ◊ 0.999 ◊ 0.999

R(Oxygenation) = 0.999
6 ◊ rSqlite ◊ rMemory

Figure 3.25: Derivation tree of reliability definitions for the Oxygenation and Temperature
sequence diagrams

50

(init) (success)

(error)

0.999 0.999 0.999 0.999 rSqlite rMemory
0.999 0.999

0.001 0.001 0.001 0.001
1-rSqlite 1-rMemory

0.001 0.001

Figure 3.26: FDTMC of the Oxygenation and Temperature sequence diagrams

gure 3.26 where the unique path leading to the success stated is represented in bold. When
the property P=?(⌃ÕÕ

success
ÕÕ) is evaluated by a parametric model checker’s algorithm, it

results into the formula 0.9996 ◊ rSqlite ◊ rMemory, where rSqlite and rMemory vari-
ables represent the reliabilities its related fragments may assume. Thus, both reliability
formulae computed from the UML behavioral diagram and from the FDTMC are equal
which brings evidences that reliability equivalence also holds for sequence diagrams. Such
evidences are important to demonstrate that the semantics of UML sequence diagrams
were preserved by their transformation rules to FDTMC sub-structures, in special, the
transformation rule for the optional combined fragment (cf. Figure 3.19) that was adapted
to address the variability of software product lines.

3.5 Conclusion

In short, this chapter presented how the probabilistic and variable behavior of a software
product line can be represented by UML behavioral diagrams endowed with probabilities
on its elements. For each behavioral element used to represent the software product line
behavior a translation rule was defined in order to allow creating the FDTMC for activity
or sequence diagrams. The chapter also defined the reliability notion of UML behavioral
models for software product lines which, to the best of our knowledge, was not defined
yet. Finally, some evidences for the reliability equivalence of both UML behavioral models
and their respective FDTMCs.

Overall, the reliability function defined for UML behavioral diagrams operate over
the scope of the behavioral diagram under analysis. So each element defined in a beha-
vioral diagram will be considered as a term of the reliability function, not mattering if
the element comprises another behavioral element. Such characteristic is plain when the
reliability function operates over activities comprising an activity diagram and combi-
ned fragments of sequence diagrams (except the loop). In both cases the reliability is
represented by an variable representing the reliability of its associated sequence diagram.

51

Chapter 4

Feature-Family-based Reliability

Analysis

This chapter presents the method to evaluate the reliability property of product lines
following a feature-family-based strategy [9]. It consists of three key steps, as shown in
Figure 4.1.

First, the transformation step maps UML behavioral diagrams with variability into
a graph structure called Runtime Dependency Graph (RDG), whose nodes represent the
behavioral fragments and store corresponding FDTMCs (i.e. the probabilistic behavioral
model), meanwhile the edges represent the runtime dependencies between such models.
Next, the feature-based evaluation step leverages parametric model checking to analyze
each FDTMC in isolation against a reliability property, by abstracting the existing runtime
dependencies between them. This results in rational expressions [38] (hereafter referred
to simply as expressions), each giving the reliability of an FDTMC as a function of the
reliabilities of the FDTMCs on which it depends. Lastly, the family-based evaluation step
follows a topological sorting of the runtime dependency graph, computing the reliability
value of each configuration by evaluating the expression in each node and reusing the
evaluation results previously computed for the nodes on which it depends. This step also
considers the variability model of the product line in question to prune invalid configura-
tions. The following subsections describe these steps in detail, guided by the example of
Section 2.5.

4.1 Transformation

To perform the reliability analysis of a given product line, the proposed method first
composes its inherent variability and probabilistic behavior into a data structure named
Runtime Dependency Graph (RDG), which is then used for analysis in further steps.

52

Figure 4.1: Feature-family-based approach for e�cient reliability analysis of product lines

The probabilistic behavior can be derived from UML behavioral models, representing the
runtime interactions between software components, enriched with reliability information
for such interactions. Details on the behavioral models, the RDG, and the transformation
from beahvioral models into RDG is provided next.

4.1.1 Behavioral Models

The evaluation approach that considers the coarse-grained behavior of a product line is
represented by a UML activity diagram, with each activity being refined into a sequence
diagram [12]. The activity diagram is useful for representing whether the activities are
performed in a sequential or parallel manner, whereas sequence diagrams represent how
the probabilistic behavior of the interactions between software components varies accor-
ding to the configuration space of the product line. To represent probabilistic behavior,
each message in a sequence diagram is annotated with a probability value that represents
the reliability of the communication channel—i.e., the probability that the interaction
succeeds—by using the UML MARTE profile [46] (e.g., prob tags in Figure 2.4b).

53

Without loss of generality, behavior variability is defined by behavioral fragments,
each of which can be an activity diagram (that has an associated sequence diagram),
a sequence diagram, or an optional combined fragment within a sequence diagram such
that this fragment has a guard condition denoting its presence condition [44]. These
conditions are propositional logical statements defined over features, that denote the set
of configurations for which the guarded behavior is present. Optional combined behavioral
fragments can be nested, which allows representing behavioral variability at several levels.

Note that the behavioral variability expressed by optional fragments may be imple-
mented in two distinct ways: 1) in case the fragment’s guard condition is expressed by
an atomic proposition (i.e., a single feature), the feature may be implemented in its own
module, which characterizes a compositional product line; 2) if the guard condition is a
propositional formula comprising two or more features, such a tangled behavior can be
implemented in an annotation-based style by using, for example, the #ifdef and #endif

macros of the C preprocessor. Therefore, the hereby presented method can be applied to
analyze both compositional and annotation-based software product lines.

As an example, Figure 2.4a shows a UML activity diagram describing, at a high level,
the behavior of all products of the BSN product line. The behavior corresponding to
the activity system identifies situation is modeled by an associated sequence diagram,
partially depicted in Figures 2.4b and 2.4c.

The sequence diagram shown in Figure 2.4b presents three behavioral fragments whose
presence conditions are the atoms oxygenation, memory, and sqlite. The outermost
behavioral fragment represents the optional behavior for processing the oxygenation in-
formation in the BSN product line, and it varies according to two nested behavioral
fragments. These latter are optional combined fragments related to Sqlite and Memory
features of the feature model in Figure 2.3 and, jointly with this model’s constraints,
ultimately represent alternative behavior for data persistence. Analogously, the sequence
diagram shown in Figure 2.4c has its behavior varying in terms of Temperature, SQLite
and Memory features due the optional combined fragments also has the guards defined
by the atoms temperature, sqlite and memory, respectively.

4.2 Runtime dependency graph (RDG)

A Runtime Dependency Graph (RDG) is a behavioral representation for variable systems,
which combines the configurability view of a product line (expressed by presence conditi-
ons) with its probabilistic behavior (expressed by FDTMCs). Formally, it can be defined

54

as follows.

Definition 4 [RDG] A Runtime Dependency Graph R is a directed acyclic graph
R = (N , E , x0), where N is a set of nodes, E : N · N is a set of directed edges
that denote a dependency relation, and x0 œ N is the root node with in-degree 0.
An RDG node x œ N is a pair x = (m, p), where m is an FDTMC representing
a probabilistic behavior and p is a propositional logic formula that represents the
presence condition associated with m.

To build an RDG for a software product line, the method extracts the configurabi-
lity and probabilistic information only from the UML behavioral diagrams, such that
each RDG node is associated with an FDTMC derived from a behavioral fragment (c.f.
Figure 3.10) and its presence condition. Since it is considered that the UML activity
diagram represents the product line’s coarse-grained behavior executed by all products
and each activity is further refined (detailed) into its respective sequence diagram, two
aspects of the method deccurs. First, the behavioral variability is not considered at the
representation at system level, which implies its related RDG nodes have true as presence
condition (i.e., it is satisfied for all products). Finally, as an activity has as an association
with its refining sequence diagram, such association is represented in the RDG by an edge.
Therefore, edges represent dependencies between nodes, which are due to refinement or
nesting relations between the respective behavioral fragments. The RDG nodes that do
not depend on any other node are called basic. The ones with dependencies are called
variant nodes, which are represented with outgoing edges directed to the RDG nodes on
which they depend.

The structure of UML sequence diagrams is tree-like, which suggests a tree could be
a better model of their dependencies. Nonetheless, applications sometimes have beha-
vioral fragments replicated throughout UML models. For instance, the data persistence
behavior in Figure 2.4b is present in all fragments that denote sensor information pro-
cessing including the temperature information processing represented by Figure 2.4c. In
this approach, redundant fragments are represented by a single RDG node, with as many
incoming edges as its number of replications. When performing this reuse, the resulting
graph will be acyclic, because the original UML model is a finite hierarchy.

Figure 4.3a illustrates an excerpt of the BSN product line’s RDG that represents
the behavioral fragments of figures 2.4b and 2.4c. As the fragments related to Sqlite
and Memory features are nested inside the fragments related to the Oxygenation and
Temperature features, the RDG for these fragments represents the dependencies between
their respective nodes. The behavioral fragments related to Oxygenation and Temperature
are part of the sequence diagram representing the behavior of the activity system identifies

55

1 RDGNode transformAD(ActivityDiagram ad) {

2 RDGNode root = new RDGNode(ad.id);

3 root.model = adToFDTMC(ad);

4 root.presenceCondition = true;

5 for (Activity act : ad.activities) {

6 root.addDependency(transformSD(act.sequenceDiagram));

7 }

8 return root;

9 }

Listing 4.1: Activity diagram transformation

situation. Therefore, these relations are also represented by the edges from the node
rSituation to the nodes rOxygenation and rTemperature, respectively. For brevity,
it is not represented the internal structure of the nodes and the remaining RDG nodes
(indicated by suspension points in Figure 4.3a).

From Behavioral Models to RDG

The transformation from behavioral models to an RDG can be described at two abstrac-
tion levels: the RDG topology and the generation of probabilistic models. Listings 4.1
and 4.2 both depict the transformation process from the topological point of view. Note
that this step relies on uniquely generated identifiers for the behavioral models(line 2),
which are then used as identifiers for the respective RDG nodes.

The process starts by calling the transformAD method (Listing 4.1), passing as argu-
ment the single activity diagram that embodies the coarse-grained behavior of the product
line. This method creates the root node (Line 2), setting its presence condition to true

(i.e., the overall behavior must always be present; Line 4). The root’s probabilistic model
is then generated by processing the input diagram with the adToFDTMC method (Line 3),
which will be presented later. Then the approach creates an RDG node for each sequence
diagram that refines an activity (denoted by the property act.sequenceDiagram), sub-
sequently creating edges that mark them as dependencies of the root node (Line 6). Note
that the root node is the only RDG node created by the transformAD method, so the
root’s FDTMC models the behavior represented by the activity diagram.

The creation of RDG nodes for sequence diagrams is similar: the method trans-

formSD (Listing 4.2) takes a behavioral fragment as input and then creates a new RDG
node whose FDTMC is derived by the sdToFDTMC method (Line 4). In this case, since
behavioral fragments encode variability, their guard is assigned as the presence condition
of the newly created node (Line 3). As with refined activities, the approach creates RDG

56

1 RDGNode transformSD(BehavioralFragment sd) {

2 RDGNode thisNode = new RDGNode(sd.id);

3 thisNode.presenceCondition = sd.guard;

4 thisNode.model = sdToFDTMC(sd);

5 for (BehavioralFragment frag : sd.optFragments) {

6 thisNode.addDependency(transformSD(frag));

7 }

8 return RDGNode.reuse(thisNode);

9 }

Listing 4.2: Sequence Diagram transformation

nodes for nested behavioral fragments and set them as dependencies of the node at hand
(Line 6).

The reuse of behavior briefly and previously mentioned in this section is performed by
calling the static method RDGNode.reuse (Listing 4.2, Line 8). This function maintains
a registry of all RDG nodes created, and then searches among them for one that is
considered equivalent to the one just created. This notion of equivalence is comprised of
three conditions: (a) equality of presence conditions; (b) equality of FDTMCs; and (c)
recursively computed equivalence of dependencies.

The sequence diagrams of figures 2.4b and 2.4c illustrate such result opportunity. The
optional fragments related to the SQLite feature on both sequence diagrams fulfill the th-
ree conditions aforementioned for behavioral reuse: both fragments have the same guard
condition (SQLite), are comprised of the same messages sequence ([persist,replyPersist])
and have the same set of dependencies (in this specific case, the ÿ set as they are basic
nodes). The same rationale holds for the fragment related to the Memory feature. Such
behavioral reuse allows reusing both models and evaluations for such fragments, fact that
is represented by the incoming edges to its respective nodes in Figure 4.3a.

At the abstraction level of generating probabilistic models, the transformation of acti-
vity and sequence diagram elements into FDTMCs consists of applying the transformation
templates for each considered behavioral element represented on such diagrams. These
transformation templates are those addressed by Sections 3.3.1 and 3.3.2 for activity and
sequence diagrams’ elements, respectively.

As an example, Figure 4.3a shows an excerpt of the RDG corresponding to the UML
activity and sequence diagrams depicted in figures 2.4a, 2.4b and 2.4c such there is an
RDG node for each kind of behavioral fragment found on all figures. Note that whenever a
behavioral fragment (activity or sequence diagrams and optional combined fragment) has
to be transformed, its RDG node and an edge are created to accommodate its FDTMC
and represent the behavioral dependency, respectively. The node labeled rRoot is the root

57

(init) (success)
rC

ap
tu

re

rS
itu

at
io

n

rQ
os

G
oa

l

0.5 rR
ec

on
fig

ura
tio

n

1.0 1.0

0.5

1.0

(a) FDTMC of the control loop of BSN-SPL

(init) (success)
rO

xy
ge

n
a
ti
o
n

rP
u
ls
eR

a
te

rT
em

pe
ra

tu
re

rP
o
si
ti
o
n

rF
a
ll

1.0

(b) FDTMC of situation sequence diagram

(init) (success)
0.9

99
0.9

99
0.9

99
0.9

99
rS

ql
it
e

rM
em

or
y

0.9
99

0.9
99

0.9
99

1.0

(c) FDTMC of oxygenation sequence diagram

(init) (success)
0.9

99
0.9

99

1.0

(d) FDTMC of SQLite/Memory sequence dia-
gram

Figure 4.2: Resulting FDTMCs

node of this RDG. The FDTMC assigned to this node (Figure 4.2a) is built by applying
the transformation rules presented by Section 3.3.1 to the activity diagram in Figure 2.4a.
The decision node in this activity diagram gives rise to the bold and dashed transitions
in Figure 4.2a, representing the yes and no branches.

The RDG node rSituation represents the sequence diagrams depicted in figures 2.4b
and 2.4c, corresponding to the activity System identifies situation of BSN’s control loop
(Figure 2.4a). Since this activity is performed by all products, its presence condition is
true. The node’s FDTMC, depicted in Figure 4.2b, is obtained from the sequence diagram
according to the transformation templates presented by Section 3.3.2. The outgoing edges

58

of the node rSituation in Figure 4.3a correspond to its dependency on the availability
of sensor information—one RDG node per optional behavioral fragment. (Most of such
RDG nodes corresponding to such behavioral fragments are omitted for brevity).

The node labeled rOxygenation in Figure 4.3a represents the behavior in the behavi-
oral fragment whose presence condition is oxygenation (Figure 2.4b). The corresponding
FDTMC is presented in Figure 4.2c. The node rOxygenation depends on two basic RDG
nodes, rSqlite and rMemory, corresponding to the nested behavioral fragments whose
presence conditions are sqlite and memory, respectively. Since both fragments have si-
milar behavior (two sequential messages, each with reliability 0.999) their corresponding
FDTMCs are equal (Figure 4.2d).

Finally, the approach relies on the divide-and-conquer strategy to decompose beha-
vioral models. During the transformation of a behavioral fragment into an FDTMC,
whenever another behavioral fragment is found, an RDG node is created with a parent-
child dependency relation with the parent’s RDG node. The way a software product line
is decomposed results into a tree-like RDG if there is no behavioral fragment being reu-
sed. Otherwise, an RDG node representing a reused behavior fragment will have as many
incoming edges as the times the fragment is reused. In this specific case, the structure of
the resulting RDG will not be tree-like (that is why the RDG is a directed acyclic graph,
in general).

4.3 Feature-Based analysis

The role of the feature-based analysis step is to analyze the FDTMC for each RDG node
in isolation, abstracting from the dependencies of other RDG nodes. That is, instead of
evaluating a potentially intractable FDTMC for the product line as a whole, the approach
performs this analysis as the first step of a compositional analysis by employing multiple
evaluations of smaller models, one per behavioral fragment.

For each RDG node x œ N , its FDTMC is subject to parametric model checking [47,
48]. This feature-based analysis yields x’s reliability as an expression over the reliabilities
of the n RDG nodes x1, . . . , xn, on which it depends. This expression is denoted by a
function [0, 1]n æ [0, 1], that is, the computation of a reliability value takes n reliability
values as input. Therefore, there is a function Á : N æ ([0, 1]n æ [0, 1]) that yields
the semantics of the reliability expression for a given RDG node. To remove possible
ambiguities, the order of the formal parameters is determined by a total order relation
over the corresponding RDG nodes xi. In the case of the running example, the since
the Oxygenation fragment depends on both Sqlite and Memory nodes such fragments
are evaluated before Oxygenation. When analyzing RDG nodes, the same reliability

59

rRoot

rSituation

rOxygenation

rSqlite rMemory

. rTemperature

.

(a) RDG nodes

Á(rRoot) =0.5 · rCapture · rSituation · rQosGoal
+0.5 · rCapture · rSituation · rQosGoal · rReconfiguration

Á(rSituation) = . . .

Á(rOxygenation) =
0.9997 · rSqlite · rMemory

Á(rSqlite) = 0.9992
Á(rMemory) = 0.9992

.
Á(rTemperature) =
0.9997 · rSqlite · rMemory

.

(b) Dependencies between expressions

Figure 4.3: RDG excerpt for the BSN product line

property of eventually reaching the success final state (expressed by the model checker
query expression P=?[˚“success”]—see Section 2.2) is used for all FDTMCs.

Performing feature-based analysis over the RDG, as depicted in Figure 4.3a, yields
the expressions shown in Figure 4.3b. These expressions illustrate that basic nodes have
their reliabilities defined in terms of constants, whereas the reliabilities of variant nodes
ultimately depend on the ones of basic RDG nodes. For the sake of simplicity, we overload
the names of RDG nodes in Figure 4.3a as variables in the expressions in Figure 4.3b.
This way, we map each variable to the RDG node whose reliability it represents.

60

4.4 Family-Based Analysis

The possible next step would be to evaluate the obtained expressions once for each valid
configuration, so that the reliability of every product would be computed. This enume-
rative approach would be, in fact, a product-based analysis, yielding an overall feature-
product-based analysis, similar to the one described by [11]. However, evaluating all
products using this approach would be still prone to an exponential blowup, which would
harm scalability.

To avoid this problem, the method hereby presented leverages a family-based analysis
strategy to lift each expression to perform arithmetic operations over variational data,
with the help of an appropriate variational data structure [49]. This way, it is able
to represent all possible values under variation and e�ciently evaluate results, sharing
computations whenever possible. The data structure of choice is the Algebraic Decision
Diagram (ADD)1 [50], because it e�ciently encodes a Boolean function Bn æ R and
also by the usual algebraic operations are well defined for such data structure. This way,
when the variables of a formula resulting from the feature-based step is substituted by an
ADD, the formula evaluation is straightforward. This is the same type as a mapping from
configurations to reliability values would have, provided the Boolean values b1, . . . , bn œ
B = {0, 1} are taken to denote the presence (or absence) of the corresponding features
f1, . . . , fn œ F (where F is the set of features in the feature model).

Given an expression Á(x), obtained for an RDG node x in the feature-based step
of the analysis (Section 4.3), the reliability ADD –(x) is obtained by first valuating
the parameters x1, . . . , xk of the lifted expression with the ADDs for the reliabilities
–(x1), . . . , –(xk) of the corresponding nodes upon which x depends. Then, arithmetic
operations are performed using ADD semantics: for ADDs A1 and A2 over k Boolean
variables and a binary operation § œ {+, ≠, ·, ÷}, (A1 §A2)(b1, . . . , bk) = A1(b1, . . . , bk)§
A2(b1, . . . , bk).

However, the computation of –(x) must take presence conditions into account. To
accomplish this, the method constrains the valuation of a variable xi with an ADD px :
JFM K æ B encoding its presence condition, with x ranging over x1 to xn, such n is the
number of features. This ADD has the property that all configurations c œ JFM K that
satisfy xi’s presence condition evaluate to 1, while all others evaluate to 0. The resulting
constrained decision diagram Ïxi is given by:

1(MTBDD), generalize Binary Decision Diagrams (BDD) to Real-valued Boolean functions.

61

Ïxi(c) =

Y
_]

_[

–(xi)(c) if pxi(c) = 1

1 otherwise

Notice the attribution of 1 to the reliability of a behavior that is absent in a given
configuration. The intuition is that, for those configurations that do not satisfy the
fragment’s guard conditions (i.e., pxi(c) = 0), the behavior represented by the optional
fragment will not be part of the resulting product’s behavior. Since an absent behavioral
fragment has no influence on the reliability of the overall system, in practice it can be
assumed 1.0 as its reliability value (i.e., it cannot fail). The ADD Ïxi is obtained by
means of the if-then-else operator for decision diagrams, and the operational details of
this construction are presented in Section 5.1.

This method of evaluating the expressions is inherently recursive, since the resul-
ting value of computing the expression for a given RDG node depends on the results
of computing the expressions for the nodes on which it depends. For example, Fi-
gure 4.3b shows that the expression Á(rOxygenation) is defined in terms of the varia-
bles rSqlite and rMemory. Thus, before computing the lifted counterpart of expres-
sion Á(rOxygenation), it is necessary to compute the lifted counterparts of expressions
Á(rSqlite) and Á(rMemory). The same rationale holds for the rTemperature node, howe-
ver the –(rSqlite) and –(rMemory) are already computed and thus they can be reused.
In a brief, the family-based step computes the reliabilities values each RDG node may
assume by solving its Á expression using reliabilities values encoded by – for the nodes it
depends on. Thus, it follows that the reliability of the product line as a whole is given
by the ADD resulting from the computation of –(rRoot), where rRoot is the root RDG
node.

Naturally, basic nodes are the base case of this recursion, since, by definition, they
depend on no other node. Figure 4.4a depicts the ADDs representing the reliability encon-
ding of the RDG nodes rSqlite and rMemory, respectively. Each ADD node represents
a feature whose continuous edge denotes the feature’s presence at the configuration, me-
anwhile the dashed edge means the feature is absent. Thus, –(rSqlite) encodes the RDG
node assumes the reliability value 0.9992 when the feature Sqlite is part of the configura-
tion, otherwise 1.0. In an analogous way, the ADD for the rMemory RDG node represent
its reliabilities values.

Figure 4.4b shows the reliability encoding computed for the rOxygenation RDG node.
Since Á(rOxygenation) is defined in terms of the variables representing the reliabilities of
the nodes which it depends, –(rOxygenation) is computed by assigning the ADDs previ-
ously computed to rSqlite and rMemory to its respective variables in Á(rOxygenation),

62

–(rSQLite) = SQLite

0.9992 1.0

Memory–(rMemory) =

0.9992 1.0
(a) ADDs for rSQlite and rMemory nodes, respectively

–(rOxygenation) = Oxygenation

SQLite

Memory Memory

0.9995 ◊ 0.9992

= 0.9997 0.0 1.0

(b) ADDs for rOxygenation node

–(rTemperature) = Temperature

SQLite

Memory Memory

0.9995 ◊ 0.9992

= 0.9997 0.0 1.0

(c) ADDs for rTemperature node

–(rSituation) = Oxygenation

Temperature Temperature

SQLite SQLite

Memory Memory Memory Memory

0.98607 0.0 0.99301 1.0

(d) ADDs for rSituation node
Figure 4.4: ADDs for the running example

63

which is solved by employing the ADD’s arithmetic. The resulting ADD is constrained
to represent only the reliabilities of valid configurations when it is multiplied by the ADD
representing the feature model’s rules. In fact, all paths leading to non-zero terminal re-
presents a valid configuration. In the case the feature Oxygenation is absent, its influence
on the configuration’s reliability is null, thus –(rOxygenation) assumes 1.0. Otherwise,
for configurations containing Oxygenation and only one persistence feature (SQLite or
Memory), its respective path in the ADD leads to the reliability value 0.9997. Finally, the
paths leading to the reliability value 0 represent an ill-formed configuration. For example,
since SQLite and Memory are alternative features, the paths representing that both fea-
tures are present or absent will lead to 0. The same rationale holds for the rTemperature

node whose ADD is represented by Figure 4.4c. All these cases are also represented by the
Table 4.1. Note that when the feature Oxygenation is absent for –(rOxygenation) (or the
feature Temperature is absent for –(rTemperature)), the presence or absence of SQLite
and Memory are not considered. Such e�ect is expected because, intuitively, since the
fragment they are comprised is not part of the configuration, the presence of such features
have no e�ect at the reliability computation.

Finally, in the case of the rSituation node, the Á(rSituation) is a formula expressed
in terms of its dependent nodes which rOxygenation and rTemperature comprise. Thus,
to solve –(rSituation) it is necessary assign the ADDs computed for rOxygenation and
rTemperature to its respective variables. The resulting ADD is obtained by employing
the ADD’s arithmetic and it is represented by the Figure 4.4d. Such diagram is also cons-
trained by the rules of the feature model expressed in its own ADD. Thus, all paths leading
to non-zero terminals are valid partial configurations, otherwise, paths leading to the zero
terminal represent ill-formed products. All these possible cases are also represented by
the Table 4.1.

4.5 Conclusion

This chapter presented the evaluation method proposed for the reliability analysis of
software product lines. Such method is comprised of three steps that initially, as shown
by Listings4.1 and 4.2, is responsible for creating a runtime dependency graph from the
behavioral models. Such step (ie. the transformation step) creates a node in the RDG
for each behavioral fragment it founds while parsing the UML behavioral models.

Meanwhile the transformation step, each RDG node receives its FDTMC created
according to the transformation rules afore presented. Such transformations considers the
behavioral elements in the scope of the behavioral fragment in such a manner the resulting
FDTMC is comprised of constants and variables that abstract the nodes which it depends

64

Table 4.1: Reliability of rOxygenation, rTemperature and rSituation fragments

Configuration (c) –(rOxygenation)(c)
{Oxygenation, Sqlite, ¬Memory} 995*(998/1000)*1/1000 = 0,99301
{Oxygenation, ¬Sqlite, Memory} 995*1*(998/1000)/1000 = 0,99301

{¬Oxygenation, ___, ___} 1,0
{Oxygenation, Sqlite, Memory} –

{Oxygenation, ¬Sqlite, ¬Memory} –
Configuration (c) –(rTemperature)(c)

{Temperature, Sqlite, ¬Memory} 995*(998/1000)*1/1000 = 0,99301
{Temperature, ¬Sqlite, Memory} 995*1*(998/1000)/1000 = 0,99301

{¬Temperature, ___, ___} 1,0
{Temperature, Sqlite, Memory} –

{Temperature, ¬Sqlite, ¬Memory} –
Configuration (c) –(rSituation)(c)

{Oxygenation, ¬Temperature, Sqlite, ¬Memory} (99301/10000)*1 = 0,99301
{Oxygenation, ¬Temperature, ¬Sqlite, Memory} (99301/10000)*1 = 0,99301
{Oxygenation, ¬Temperature, Sqlite, Memory} –

{Oxygenation, ¬Temperature, ¬Sqlite, ¬Memory} –
{¬Oxygenation, Temperature, Sqlite, ¬Memory} 1*(99301/10000) = 0,99301
{¬Oxygenation, Temperature, ¬Sqlite, Memory} 1*(99301/10000) = 0,99301
{¬Oxygenation, Temperature, Sqlite, Memory} –

{¬Oxygenation, Temperature, ¬Sqlite, ¬Memory} –
{Oxygenation, Temperature, Sqlite, ¬Memory} (99301/10000)*(99301/10000) = 0,98607
{Oxygenation, Temperature, ¬Sqlite, Memory} (99301/10000)*(99301/10000) = 0,98607
{Oxygenation, Temperature, Sqlite, Memory} –

{Oxygenation, Temperature, ¬Sqlite, ¬Memory} –
{¬Oxygenation, ¬Temperature, ___, ___} 1,0*1,0 = 1,0
{¬Oxygenation, ¬Temperature, ___, ___} 1,0*1,0 = 1,0

on. Then, the feature-based step employs the parametrical model checker’s algorithm in
order to obtain the formula Á representing the reliability of each node. Thus, this jointly
use of transformation and feature-based steps walk through the behavioral modeling in a
top-down fashion, in order to discover and transform the behavioral fragments as soon as
their dependencies are revealed.

When the RDG structure is finished, the family-based step takes place and runs back
all the runtime dependency graph in order to solve the reliability expressions Á taking into
account the presence conditions associated to each RDG node and the feature model’s
rules. The result is represented in the suitable variational data structure named ADD
such that, for each RDG node, all valid partial configurations and their reliabilities are
represented by means of the – function (such function is represented by the ADD). Thus,
the family-based step follows a bottom-up strategy to solve all the expressions stored in
RDG nodes, in such a manner that the –(root) stores the reliabilities of all full and valid
configurations of the software product line.

65

Chapter 5

Proposal Evaluation

To assess the merits of the feature-family-based strategy, initially the key aspects of its
implementation (Section 5.1) are highlighted, followed by its complexity analysis (Sec-
tion 5.2). Finally an empirical evaluation (Section 5.3), the threats to its validity (Sec-
tion 5.4) are presented.

5.1 Implementation

The evaluation method presented hereby is implemented as a new tool named ReAna
(Reliability Analysis), whose source code is open and publicly available1. ReAna takes
as input a UML behavioral model, for example, built using the MagicDraw tool2, and
a feature model described in conjunctive normal form (CNF), for example, as exported
by FeatureIDE [51]. It then outputs the ADD representing the reliability of all products
of the product line to a file in DOT format, and it prints a list of configurations and
respective reliabilities. The latter can be suppressed or filtered to a subset of possible
configurations of interest.

ReAna uses PARAM 2.3 [47] to perform parametric model checking and the CUDD
2.5.1 library3 for ADD manipulation. However, any other tool or library providing the
same functionality (e.g., the parametric model checker from [48]) could be used, too.

ReAna’s main evaluation routine is depicted in Listing 5.1. After parsing and trans-
forming the input models into an RDG structure (see Section 4.1), the method evalReliability

is invoked on the RDG’s root node. Its first task is to perform a topological sort of the
RDG nodes, so that it obtains a list in which every node comes after all the nodes on which

1https://github.com/SPLMC/reana-spl
2http://www.nomagic.com/products/magicdraw.html
3ftp://vlsi.colorado.edu/pub/cudd-2.5.1.tar.gz

66

1 ADD evalReliability(RDGNode root) {

2 List<RDGNode> deps = root.topoSortTransitiveDeps();

3 LinkedHashMap<RDGNode, String> expressionsByNode =

getReliabilityExpressions(deps);

4 Map<RDGNode, ADD> reliabilities = evalReliabilities(expressionsByNode);

5 return reliabilities.get(root);

6 }

Listing 5.1: ReAna’s main evaluation routine

1 ADD evalNodeReliability(RDGNode node,

2 String reliabilityExpression,

3 Map<RDGNode, ADD> relCache) {

4 Map<String, ADD> depsReliabilities = new HashMap();

5 for (RDGNode dep: node.getDependencies()) {

6 ADD depReliability = relCache.get(dep);

7 ADD presCond = dep.getPresenceCondition();

8 ADD phi = presCond.ifThenElse(depReliability,

9 constantAdd(1));

10 depsReliabilities.put(dep.getId(), phi);

11 }

12 ADD reliability = solve(reliabilityExpression,

13 depsReliabilities);

14 return FM.times(reliability);

15 }

Listing 5.2: Evaluation of the reliability function for a single node

it (transitively) depends (Line 2). This implements the recursion described in Section 4.4
in an iterative fashion.

Then, it proceeds to parametric model checking of the reliability property in the
FDTMC corresponding to each of the nodes (Line 3). Although this step does not depend
on the ordering of nodes (because it handles dependencies as variables), it is useful that its
output respects this order. This way, the resulting reliability expressions (Á in Section 4.3)
can be evaluated in an order that allows every variable to be immediately resolved to a
previously computed value, thus eliminating the need for recursion and null checking.

The third step is to evaluate each reliability expression, which yields an ADD repre-
senting the reliability function (– in Section 4.4) for each of the nodes. The evaluation
of such reliability ADDs (method evalReliabilities in Line 4, Listing 5.1) invokes, for
each node, method evalNodeReliability, which we present in Listing 5.2. It computes
the Ï functions of a node’s dependencies (as in Section 4.4), encoding satisfaction of their
presence conditions by means of conditionals in ADD ITE (if-then-else) operations (Line 8,
Listing 5.2). The reliability function of each dependency is looked up in a reliability cache

67

(relCache, in Line 6, Listing 5.2) and is then used as the consequent argument of the ITE

operator, with the alternative argument being the constant ADD corresponding to 1.
After all these functions are computed, they are used to evaluate the lifted reliability

expression (Line 12, Listing 5.2). Whenever a variable appears in this expression, function
Ï of the corresponding RDG node (on which the current one depends) is looked up in a
variable–value mapping, indexed by the node id (depsReliabilities).

When this evaluation of – is done, it is necessary to consider only the valid configura-
tions for the node at hand by discarding the reliability values of ill-formed products. The
feature model’s rules are represented by an ADD where all paths leading to terminal 1
represent a valid configuration, otherwise the path leads to terminal 0. Thus, for the node
under evaluation the invalid configurations are pruned by multiplying its reliability ADD
by the one representing the feature-model’s rules (Line 14, Listing 5.2), so the resulting
ADD yields the value 0, for ill-formed products and the actual reliability for the valid
ones.

All reliabilities computed in this way are progressively added to the reliability cache
relCache. At the end of this loop inside evalReliabilities, the cache contains the
reliability function for every node and is then returned (Line 4, Listing 5.1). The reliability
of interest is then the one of the root RDG node (the one argument to evalReliability,
Listing 5.1), so it is queried in constant time because of the underlying data structure.

5.2 Analytical Complexity

The overall analysis time is the sum of the time taken by each of the sequential steps in
Listing 5.1. First, the computation of an ordering that respects the transitive closure of
the dependency relation in an RDG (Line 2) is an instance of the classical topological
sorting problem for directed acyclic graphs, which is linear in the sum of nodes and
edges [52].

Second, the computation of the reliability expression for an RDG node consists of a
call to the PARAM parametric model checker, which requires n calls to cover all nodes
(Line 3). The parametric model checking problem for a model of s states consists of O(s3)
operations over polynomials, each of which depends on the number of monomials in each
operand [38]. This number of monomials is, in the worst case, exponential in the number
of existing variables. The number of variables for a given node is, in turn, dependent
on its number of child nodes and on the modeled behavior (e.g., if there are loops or
alternative paths). Thus, the time complexity of computing all the reliability expressions
is linear in the number of RDG nodes, but depends on the topologies of the RDG and of

68

the models represented by each of its nodes (such dependencies are addressed with more
details later on).

Last, method evalReliabilities calls method evalNodeReliability, which corres-
ponds to the reliability function – in Section 4.4, once for each node. evalNodeReliability’s
complexity is dominated by that of ADD operations, which are polynomial in the size of
the operands [50]. Indeed, for ADDs f , g, and h, the if-then-else operation ITE(f, g, h)
is O(|f | · |g| · |h|). Likewise, APPLY(f, g, §), where § is a binary ADD operator (e.g.,
multiplication), is O(|f | · |g|). Here, |f | denotes the size of the ADD f , that is, its number
of nodes. Because of configuration pruning (Section 4.4), all ADD sizes in our approach
are bound by |FMADD| (i.e., the size of the ADD that encodes the rules in the feature
model).

Since the evaluation of – for a given node comprises a number of operations on the
reliability ADDs of the nodes on which it depends (Listing 5.2, Line 12), an upper bound
estimate for polynomial arithmetics must be provide. If a node identified by x has c

children (nodes on which it depends), Á(x) is a polynomial in c variables and it has,
at most, e

c
max

monomials of c variables each, where emax is the maximum exponent for
any variable. Each monomial has in turn, at most, 2c operations: c exponentiations
and c multiplications among variables and the coe�cient. Also, no variable can have an
exponent greater than the maximum number of transitions between the initial and the
success states of the original FDTMC, and this number is itself bound by the number
m of messages in the corresponding behavioral model fragment. Thus, the number of
ADD operations needed to compute this reliability ADD is O(c · m

c). This leads to an
evaluation time of O(c · m

c · |FMADD|2).
Since the reliability of each RDG node needs to be evaluated exactly once (due to ca-

ching), there are n computations of –(xi), one for each of the n RDG nodes xi. Hence, the
cumulative time spent on reliability functions computation is O(n · cmax · m

cmax
max

· |FMADD|2),
where cmax is the maximum number of children per node, and mmax is the maximum num-
ber of messages per model fragment.

Although this complexity bound is quadratic in the number of features, the number
of nodes in an ADD is, in the worst case, exponential in the number of variables. As
the variables in FMADD represent features, this means |FMADD| can be exponential in the
number F of features. Hence, the worst-case complexity is O(n · cmax · m

cmax
max

· 22·F). This
worst-case exponential blowup cannot be avoided theoretically, but, in practice, e�cient
heuristics can be applied for defining an ordering of variables that can cause the ADD’s
size to grow linearly or polynomially, depending on the functions being represented [10].
Thus, as the growth in the sizes of ADDs varies with the product line being analyzed [53]
and is, at least, linear in the number of features, it can also state the best-case time

69

complexity is O(n · cmax · m
cmax
max

· F
2).

In summary, the time complexity of the feature-family-based analysis strategy lies
between O(n · cmax · m

cmax
max

· F
2) and O(n · cmax · m

cmax
max

· 22·F), where n is the number of
RDG nodes, cmax is the maximum number of child nodes in an RDG node, mmax is
the maximum number of messages in a behavioral fragment, and F is the number of
features of the product line.

5.3 Empirical Evaluation

The empirical evaluation aims at comparing the feature-family-based analysis strategy
(c.f. Chapter 4) with other state-of-the-art strategies for product-line reliability analysis,
as identified by [9]: product-based, family-based, feature-product-based, and family-prod-
uct-based. It is expected that the feature-family-based approach performs better than the
others, since it (a) decomposes behavioral models into smaller ones and (b) prevents an
exponential blowup by computing the reliabilities of all products at once using ADDs.
The comparison focuses on the practical complexity of the selected strategies and is guided
by the following research question:

• RQ1: How do product-line reliability analysis strategies compare to one another in
terms of time and space?

To address RQ1, it was measured the time and space demanded by each strategy for
the analysis of six available software product lines and augmented versions thereof. For
the time measure, the wall-clock time spent during analysis after model transformation
was considered, including the recording of reliability values for all configurations of a
given product line. Transformation time was excluded from this measurement, because
all the implementations of the analysis strategies employ the same transformation routines
(using the rules presented in Section 4.2). From the transformation step on, the analysis
strategies start to di�er as each one traverses the resulting FDTMC in its specific fashion.
For the space measure, the peak memory usage for each strategy during the evaluation of
each product line was considered. This empirical assessment is described in detail in the
following subsections.

5.3.1 Subject Systems and Experiment Design

To empirically compare the complexity of the di�erent analysis strategies, the experiment
started with the models of six available product lines. Table 5.1 shows the number of

70

features, the size, and the characteristics of the solution space of each one of these product
lines. The solution space is described in terms of the number of activities in the activity
diagram and of the total number of behavioral fragments present in the sequence diagrams.
The general criterion for choosing these systems was the availability of their variability
model. EMail, MinePump, BSN, and Lift were chose due to the fact that they had been
commonly used in previous work studying model checking of product lines [13, 14, 12].
InterCloud and TankWar product lines were selected due to the significant size of their
configuration spaces.

Table 5.1: Initial version of product lines used for empirical evaluation

Solution Space’s Characteristics

Features # Products # Activities # Behavioral fragments

EMail [30] 10 40 4 11
MinePump [28] 11 128 7 23
BSN [12] 16 298 4 15
Lift [29] 10 512 1 10
InterCloud [31] 54 110592 5 51
TankWar [30] 144 4.21◊1018 7 81

Each of the six original systems was evolved 20 times, with each evolution step adding
one optional feature and a corresponding behavioral fragment with random messages
defining its probabilistic behavior. According to Section 4.1.1, the name of the newly
introduced feature was assigned as the guard condition of each new behavioral fragment,
and each message in a fragment received a probability value. Thus, each evolution step
doubles the size of the configuration space of the subject product line, with an optional
behavior for the added feature.

The independent variable of the experiment is the evaluation strategy employed to
perform the reliability analysis. The dependent variables are the metrics for time and
space complexity. Each subject system was evaluated by all treatments.

The outcomes were analyzed using statistical tests, to properly address outlying beha-
vior and spurious results. This way, it is more likely to overrule factors that a�ect perfor-
mance but are di�cult to control (e.g., JVM warm-up time and OS process scheduling).
Ideally (i.e., disregarding uncontrollable factors), it is expected all runs of a given analy-
sis strategy over the same subject product line to yield the same result. Thus, instead
of comparing isolated runs of di�erent strategies, the inferred distribution of results of
all runs of a strategy were compared to the corresponding distribution for another stra-
tegy. Since there were multiple analysis strategies to compare with, the comparison was
accomplished pairwise with the feature-family strategy, for example, feature-based with
feature-family-based or family-based with feature-family-based.

71

Standard statistical tests for equality of the pairs of samples were applied. The null
hypothesis was that both samples come from the same distribution, while the alternative
hypothesis was that one comes from a distribution with larger mean value than the other.
The specific statistical test was the Mann-Whitney U test whenever one of the samples,
at least, was not normally distributed. Otherwise, the t test for independent samples was
applied in the case the variances were equal, or Welch’s t test in case of di�erent variances.
The significance level for all tests was 0.01.

5.3.2 Experiment setup

Modeling We implemented each strategy as a variant of ReAna, thus relying on
the same tools and libraries for model checking, ADD manipulation, and expression par-
sing (see Section 5.1). These ReAna extensions are also publicly available at its GitHub’s
repository4. Graduate students created the input UML behavioral models using Magic-
Draw 18.3 with Marte UML profile. All models were validated by the research group
which the author comprises.

Instrumentation For this experiment a tool called SPL-Generator was implemen-
ted in order to create valid feature and behavioral models of a product line, according to
a set of parameters (more details in Appendix B). This tool was used to create evolution
scenarios, in order to assess how each evaluation strategy behaves with the growth of
the configuration space. To obtain data regarding analysis time, Java’s standard library
method System.nanoTime() was used to get the time (with nanoseconds precision) re-
ported by the Java Virtual Machine immediately before and right after ReAna’s main
analysis routine (Listing 5.1). The di�erence between these two time measures is taken
to be the elapsed analysis time. Space usage was measured using the maximum resident
set size reported by the Linux /usr/bin/time tool. This value represents the peak RAM
usage throughout ReAna’s execution.

Evolution Scenarios the SPL-Generator tool was used to evolve each software
product line chose as a subject system of the empirical evaluation, according to the re-
presentation provided in Figure 5.1. This evolution was accomplished stepwise, and it
started with the original feature model FM0 (created by FeatureIDE) and behavioral mo-
dels BM0 (created by MagicDraw)—this set of models is hereafter refered to as original
seed or seed0. At each evolution step evi, the generator tool doubled the configuration
space of the subject system by adding an optional feature in order to generate a new fe-
ature model FM i(no cross-tree constraint was added, to avoid constraining configuration

4
http://github.com/SPLMC/reana-spl

72

http://github.com/SPLMC/reana-spl

seed0
FM0
BM0

seed1
FM1
BM1

seed2
FM2
BM2

. . .

seed20
FM20
BM20

ev1 ev2 ev3 ev20

Figure 5.1: Evolution of subject systems accomplished by the SPL-Generator tool

space growth). For the newly created feature, the generator tool also creates an optio-
nal behavioral fragment comprising 10 messages randomly generated between 2 lifelines
randomly chosen from a set of 10 lifelines. To establish a relation between the new fea-
ture and the corresponding new behavioral fragment, the fragment’s guard condition is
defined as being the atomic proposition containing the new feature’s name, which charac-
terizes the evolutions as being compositional. However, it is worth mentioning that the
evaluation method also applies to the analysis of annotation-based software product lines
since it was able to evaluate the original version of the EMail subject system (seed0 that
contains optional fragments expressed by a conjunction of two features thus, following
an annotation-based implementation) and its evolutions. Each lifeline received a random
reliability value from the range [0.999, 0.99999]. The guard condition of the behavioral
fragment received an atomic proposition named after the feature, to relate the newly cre-
ated items. The topological allocation method was used by the generator tool to create
the new behavioral model BMi, so the nesting of sequence diagrams follows the feature
relations in the feature model. The end of an evolution step results into a new version
of the product line (seedi), which will be considered as a new seed for the next evolution
step. Each subject system was evolved 20 times, as shown in Figure 5.1, and all artifacts
are available at the supplementary site5 created for a paper’s submission.

Measurement Setup The experiment was executed by using twelve Intel i5-4570TE,
2.70GHz, 4 hyper-threaded cores, 8 GB RAM and 1 GB swap space, running 64-bit Cen-
tOs Linux 7. The experiment environment (i.e., the set of tools, product line models, and
automation running scripts) was defined as a Docker6 container7 running 64-bit Ubuntu
Linux 16.10, with access to 4 cores and 6 GB of main memory of the host machine. Each
subject system was evaluated 8 times by each analysis strategy in each machine, thus
summing up 96 evaluations for each pair of subject system and strategy. Because of the
number of evaluations, it was defined a limit of 60 minutes for analysis execution time,
after which the analysis at hand would be canceled. The results were then grouped to

5
https://splmc.github.io/scalabilityAnalysis/

6https://www.docker.com/
7
https://hub.docker.com/r/andrelanna/reana-spl/

73

https://splmc.github.io/scalabilityAnalysis/
https://hub.docker.com/r/andrelanna/reana-spl/

perform the time and memory consumption analysis. The evaluations that exceeded the
time limit were discarded from the statistical analysis.

5.3.3 Results and analysis

Figures 5.2, 5.3, 5.4, 5.5, 5.6 and 5.7 show plots with the mean time and memory demanded
to analyze the Email, MinePump, BSN, Lift, InterCloud, and TankWar product lines (and
corresponding evolutions), respectively. The horizontal axes represent the number of
added features (with respect to the original product line) in the analyzed models. Thus,
they range from 0 (the original model) to 20 (last evolution step). The vertical axes
represent either the time in milliseconds (in logarithmic scale) or the space in megabytes.

The values of the plots are available in Tables 1 and 2 of Appendix A. Statistical tests
over both time and space data rejected the null hypothesis for all pairs of strategies. Thus,
within a significance level of 0.01, we can assume no two samples come from distributions
with equal means.

Overall, the experiments show with statistical significance that the feature-family-
based strategy is faster than all other analysis strategies (as shown in Figures 5.2a, 5.3a,
5.4a, 5.5a, 5.6a, and 5.7a). Regarding execution time, in the worst case, the feature-
family-based strategy performed 60% faster than the family-product-based strategy, when
analyzing the original models of the Email product line (Figure 5.2a); in the best case,
it outperformed the family-product-based analysis of the BSN product line with 4 opti-
onal features added (i.e., its 5th evolution step—Figure 5.4a) by 4 orders of magnitude.
Such cases are highlighted in yellow in Table A1. Regarding memory consumption (Fi-
gures 5.2b, 5.3b, 5.4b, 5.5b, 5.6b, and 5.7b), the experiment also shows with statistical
significance that, in the worst case, the feature-family-based strategy demanded 2% less
memory than the family-based strategy when analyzing the original model of the Lift
product line; in the best case, it saved around 4,757 megabytes when analyzing the 3rd

evolution step of the InterCloud product line. Such cases are highlighted in yellow in
Table A2.

The feature-family-based strategy also scaled better in response to configuration space
growth in comparison with other strategies. In the worst case, this strategy scaled up to
a configuration space one order of magnitude larger than the limit of the nearest scalable
strategy (the feature-product-based analysis of the Email, MinePump, BSN, and Lift
systems). In the best case, the feature-family-based strategy supported a configuration
space 5 orders of magnitude larger than supported by the feature-product-based strategy
(when analyzing the InterCloud product line). Finally, it worths highlighting that only
feature-family-based strategy was able to analyze the TankWar product line, from its

74

(a) Analysis time (b) Demanded memory
Figure 5.2: Time and memory required by di�erent analysis strategies when evaluating
evolutions of Email System

(a) Analysis time (b) Demanded memory
Figure 5.3: Time and memory required by di�erent analysis strategies when evaluating
evolutions of MinePump System

75

(a) Analysis time (b) Demanded memory
Figure 5.4: Time and memory required by di�erent analysis strategies when evaluating
evolutions of BSN-SPL

(a) Analysis time (b) Demanded memory
Figure 5.5: Time and memory required by di�erent analysis strategies when evaluating
evolutions of Lift System

76

(a) Analysis time (b) Demanded memory
Figure 5.6: Time and memory required by di�erent analysis strategies when evaluating
evolutions of InterCloud System

(a) Analysis time (b) Demanded memory
Figure 5.7: Time and memory required by di�erent analysis strategies when evaluating
evolutions of TankWar battle game

77

original model up to its 9th evolution step. That is, the feature-family-based strategy was
able to analyze the reliability of up to 1021 products within 60 minutes.

Table 5.2: Probabilistic models statistics

SPL
Feature-* Family-* Product

states # variables # models # states # variables # states # models
EMail 12 0.93 14 182 9 115.8 40
MinePump 7.26 0.95 23 289 10 155.5 128
BSN 11.37 1.44 16 238 12 136.56 298
Lift 12.91 0.91 11 153 10 114 512
InterCloud 7.4 0.98 52 437 47 352.25 110592
TankWar 8.30 0.99 79 735 69 ¥500 4.21◊1018

5.3.4 Discussion

One reason for the feature-family-based strategy being faster than the alternatives is that
it computes the reliability values of a product line by model checking a small number of
comparatively simple models. In contrast, family-based and family-product-based strate-
gies yield more complex probabilistic models than the others, trading space for time. The
complementary explanation for the performance boost is that the family-based analysis
step leverages ADDs to compute reliability values, which leads to fewer operations than
necessary if these values were to be calculated by enumeration of all valid product line
configurations (cf. Section 5.2).

Table 5.2 shows the average number of states and variables present in the models crea-
ted by each analysis strategy8, with feature-family-based and feature-product-based stra-
tegies grouped under Feature-*, and family-based and family-product-based ones grouped
under Family-*. Some values are omitted, because the number of models is always 1 for
family-based approaches, and the number of variables is always 0 for product-based ones.
In this table, all probabilistic models created by Feature-* analyses have, indeed, fewer
states than the ones generated during Family-* and product-based approaches. Feature-
based models also have fewer variables than the corresponding family-based ones.

The plots of the experiment results reveal some characteristics that depart from the
expected behavior, which is addressed next. First, there is a single data point for the
family-based analysis of the BSN product line (Figure 5.4), despite its analysis time being
in the order of seconds (far from reaching the time limit). In fact, the family-based
strategy was able to analyze BSN’s models up to the 6th evolution step. However, the
resulting expression representing the family’s reliability contained numbers that exceeded
Java’s floating-point representation capabilities. Thus, converting these numbers to the

8For TankWar, the average number of states in the product-based case is an estimate, because it is
impractical to generate all models.

78

double data type yielded not a number (NaN). To the best of our knowledge, the over-
flow of floating-point representation was not reported yet by previous studies addressing
reliability analysis of software product lines.

The second remarkable characteristic are the plateaus for feature-product-based analy-
sis at the memory plots in Figures 5.2b, 5.3b, 5.4b, and 5.5b. The hypothesis is that this
behavior is related to the memory management of the Java Virtual Machine (JVM), but
a detailed investigation was out of scope.

It is also evident that the plots for feature-family-based analysis are monotonically
increasing, with two exceptions: a single decrease at the 14th evolution step of the Inter-
cloud product line (Figure 5.6) and a “valley” from TankWar’s original model to its 4th

evolution step (Figure 5.7). These outliers result from di�erent ordering of variables in
ADDs. The inclusion of new variables for the mentioned cases led to a variable ordering
that caused a decrease in the number of internal nodes of the resulting ADDs. Thus, the
space needed by such data structures was reduced, and so was the time needed to perform
ADD operations (which are linear in the number of internal nodes).

Moreover, the approach does not constrain the relation between the feature model’s
structure and the UML behavioral models implementing the SPL. For instance, the se-
quence diagram depicted in Figure 2.4b represents optional behavioral fragments that do
not follow the structure of the feature model presented by Figure 2.3. The Oxygenation
feature and the Persistence features (SQLite and Memory) are defined in di�erent bran-
ches of the feature model, but the behavioral fragments related to them are nested. In
general, the guard condition of an optional behavioral fragment is a propositional formula
defined over features and can be defined arbitrarily, with no regard to the structure of the
feature model.

Finally, the e�ect of having (many) cross-tree constraints in a feature model may a�ect
the evaluation method in a twofold manner. First, by adding cross-tree constraints, the
structure of the ADD representing the feature model’s rules and the reliabilities values of
each node is changed. However, it is not possible to foresee if the number of internal nodes
will increase, decrease or stay the same, since this number also depends on the variable
ordering. In the implementation, such ordering is defined by an internal heuristic defined
by the CUDD library, on which the tool relies (namely, symmetric sifting). The second
e�ect regards to the growth of the configuration space. In the experiments, the growth
in the configuration space at each evolution step will be less than it is now, which will
probably have a positive e�ect in the scalability of the strategies relying on a product-
based step. However, since cross-tree constraints would have a random e�ect on the
assessment, it is decided to not add them, so as to have more control over the dependent
variables.

79

5.4 Threats to validity

A threat to internal validity is the creation of UML behavioral models of the product lines
by graduate students. To mitigate this threat, the students received an initial training
on modeling variable behavior of product lines. To validate the accuracy of the produced
models, these were inspected by the research group in which the author is comprised.

A possible threat to construct validity would be an inadequate definition of metrics for
the experiment. To address this, it was tried to rule out implementation issues such as the
influence of parallelism and reporting of results. Thus, the measure comprises the total
elapsed time between the parsing of behavioral models and the instant the reliabilities
were ready to be reported, with all analysis steps taking place sequentially. In terms of
memory usage, the peak memory usage during execution was measured in order to try to
reduce the influence of garbage collection.

Finally, a threat to external validity arises from the selection of subject systems.
To mitigate this threat, it were selected systems commonly used by the community as
benchmarks to evaluate work on model checking of product lines. To mitigate the risk of
the approach not being generalizable, we applied it to further product lines (InterCloud
and TankWar) whose configuration spaces resemble ones of real-world applications.

80

Chapter 6

Conclusion

A feature-family-based method and its corresponding tool for e�cient reliability analy-
sis of software product lines were presented. Albeit the reliability evaluation is usually
considered in terms of rate of failures, in the context of this work the reliability pro-
perty is understood in a probabilistic sense. This way, the probability is given by the
reachability measure of of a set of successfull states in a probabilistic model enriched with
variability (FDTMC). The approach limits the e�ort needed to compute the reliability
of a product line by initially employing a feature-based analysis to divide its behavioral
models into smaller units, which can be verified more e�ciently. For this purpose, the
method arranges probabilistic models in an RDG, which is a directed acyclic graph with
variability information. This strategy facilitates reuse of reliability computations for re-
dundant behaviors. The family-based step comes next when it is performed the reliability
computation for all configurations at once by evaluating reliability expressions in terms
of ADDs. These decision diagrams encode presence conditions and the rules from the
feature model, so that computation is inherently restricted to valid configurations.

The empirical evaluation was accomplished by conducting an experiment to com-
pare the feature-family-based approach with the following evaluation strategies: feature-
product-based, family-based, family-product-based, and product-based. Overall, the re-
sults show the product-based had the worst time and space performance among all stra-
tegies, as expected. The family- and family-product-based strategies yield more complex
probabilistic models than the other strategies, due to variability encoding in their mo-
dels. The product, family-product and feature-product-based approaches were sensitive
to the size of the configuration space of the software product line, given their inherent
enumerative characteristic. Overall, the experiments show that the feature-family-based
strategy is faster than all other analysis strategies and demanded less memory in most
cases, being the only one that could be scaled to a 220-fold increase in the configuration
space. Such results suggest that the feature-family-based strategy outperformed the alter-

81

native strategies due to the following: (a) the feature-based step explores a lower number
of simpler models having fewer variables in comparison to family-based models; and (b)
as the family-based step leverages ADD to compute reliability values, fewer operations
are necessary to compute reliability values in comparison to the enumerative strategies.

The presented evaluation method is proposed to analyze the software reliability consi-
dering such property in a probabilistic manner such the software’s behavior depends only
on the current state. In this context, the probabilistic software behavior is represented
by a Discrete-Time Markov Chain endowed with variability in order to allow representing
the behavioral variability of software product lines. However, such evaluation method
may also be useful to evaluate other software properties, in special those whose can be
represented and evaluated considering probabilistic models. The assumptions for exten-
ding the evaluation method for other properties are twofold: a) the software behavioral
models must be decomposable into smaller behavioral models (ie. fragments) such there is
a runtime dependency between them and b) the same property statemente must be used
to evaluate all behavioral fragments. In this sense, it is expected the evaluation method
may be adapted to evaluate other software properties, as performance and throughput.

6.1 Future Work

Some investigations are planned to a nearby future. Taking into account the scope of the
work hereby presented, it is planned to promptly continue its empirical evaluation. The
extension of such evaluation seeks to apply the evaluation method in a larger number of
subject systems whom are known to be real world applications (or having much resem-
blances to real world applications). The intent for such extension is to corroborate the
results gathered so far but mainly to investigate the adoption feasibility of the evaluation
method by the industry.

Still in the scope of this work it is envisioned the investigation of the evaluation’s
sensitiveness in terms of the characteristics of the software product line. Such investigation
may establish a correlation between the elements of the problem and solution spaces and
the e�ort required by the evaluation. Regarding the problem space, the investigation of
each kind of features (mandatory, optional, alternative and exclusive) as well the cross-tree
constraints may be useful to define which state-of-the-art evaluation strategy should be
employed in order to shorten the evalution e�ort. Taking the solution space into account,
the correlation between the UML behavioral elements and the time and space required
for the evaluation may also be bring insights about the their impact over the time and
space required by the evaluation. In special, it is known the ADD’s size is defined by the
number of its internal and terminal nodes and also the number of terminal nodes is directly

82

related to the precision considered for representing the probabilities values. However an
investigation addressing the tradeo� between precision and performance (regarding the
ADD’s size) is still lacking. The impact of other solution space’s elements – like number of
loop fragments, decision nodes, among others – over the evaluation method’s performance
must also unveils new opportunities for improving the analysis of software product lines.

Finally, the investigation about adapting the evaluation method to other software’s
properties may be fruitful. Since the work hereby presented consider the software’s reli-
ability in a probabilistic sense by variable Discrete-Time Markov Chains, the immediate
investigation to be performed is to evaluate the reliability of software product lines con-
sidering the failure’s rate of each software component. In this case the variable and
probabilistic behavior must be represented by Continuous-Time Markov Chains and the
reliability property has to be specified by a CTL statement. Thus, such investigation may
bring insights and answers to the characteristics that must be present at the behavioral
models that allows performing a feature-family-based analysis. Some assumptions for
such characteristics – like the models composability and the presence of runtime depen-
dencies – were addressed throughout the text but an empirical evaluation must refute or
corrobate them.

6.2 Related works

This section discusses related work to the hereby presented method, and it is highlighted
the significant di�erences. For this purpose the classification of [9] is considered. The
approach di�ers from prior work [14, 11, 12] in that (a) it captures the runtime feature
dependencies from the UML behavioral models, (b) which are enriched with variability
information extracted from the feature model, and (c) it leverages ADDs to compute the
reliability of all products of a product line with fewer operations than an enumeration
would require.

6.2.1 Comparison to a Feature-Product-based Strategy

The evaluation method proposed by [11] is the closest to the work and, to the best
of our knowledge, it represents the state-of-the-art for reliability evaluation of software
product lines. The whole behavior of a product line is modeled by a set of small sequence
diagrams arranged in a tree, where each node has an associated expression resulting from
the analysis performed by a parametric model checker. To compute the reliability of
a product, the tree is traversed in a bottom-up fashion, when each node’s expression
is solved considering the configuration under analysis. The resulting value for the root
node denotes the product’s reliability. This method reduces time and e�ort required

83

for evaluation by employing parametric in place of classic model checking, but it faces
scalability issues as it is inherently enumerative (i.e., the decomposition tree is traversed
for each product). The analysis strategy followed by the method is Feature-Product-
based, as it decomposes the behavioral models into smaller units (feature-based step) and
later composes the evaluation results of each unit to obtain the reliability of a product
(product-based step).

Despite the resemblances with this method, the approach presents some distinguishing
characteristics. While [11] must explore their decomposition tree each time a configuration
is evaluated (thus employing a product-based analysis as an evaluation step), the approach
employs a family-based evaluation for each RDG node, such that all reliability values it
may assume are computed in a single step. Another di�erence refers to the usage of
UML sequence diagram elements for representing behavioral variability. [11] establish a
direct relation from the feature model’s semantics of optional and alternative features and
the semantics of optional (OPT) and alternative (ALT) combined fragments, respectively.
Although such relation is straightforward, it constrains the approach’s expressiveness,
as only single features can be associated to a combined fragment (i.e., the combined
fragment’s guard condition assumes only atomic propositions). In contrast, the approach
represents behavioral variability uniformly by the optional combined fragment, with an
arbitrary presence condition as a guard statement. This construct is simpler, because it
does not leverage alternative fragments, but more expressive, as guards can be defined by
propositional statements.

Another major di�erence concerns the underlying data structure for representing the
dependencies between behavioral fragments. [11] use a decomposition tree while the
approach uses a directed acyclic graph that allows to represent a group of replicated
behavioral fragments by a single node. This avoids the e�ort of performing redundant
modeling and evaluation of the replicated model, which is not possible to accomplish in
a tree structure.

A precise comparison of the tool implementing the method proposed by Ghezzi and
Sharifloo [11] and ReAna was not possible, since the former is not publicly available.
Nonetheless, the feature-product-based variant of ReAna created for the experiment clo-
sely resembles Ghezzi and Sharifloo’s approach, the only exception being the parametric
model checker of choice. Empirical results (Section 5.3) show with statistical significance
that the feature-family-based approach performs faster and demands less memory than
ReAna’s feature-product-based variant. For the evaluation time, the feature-family stra-
tegy outperformed the feature-product-based strategy from 2 times (for the original seed
of EMail system) up to 4 orders of magnitude (for the 3rd evolution of Intercloud product
line). Regarding space, the feature-family-based strategy required from 2.6% (original

84

seed of Email system) up to 97% (3rd evolution of InterCloud) less memory. Moreover,
the feature-product-based strategy was not able to analyze the subject system with the
largest configuration space (Tankwar), whereas the feature-family-based strategy succee-
ded up to Tankwar’s 9th evolution.

Ghezzi and Sharifloo’s work [11] presents a theoretical analysis of time complexity, in
which the authors devise a formula for computing the time needed to verify a number of
properties for a product line with their approach. Their model transformation time is not
comparable to this work, mainly because Ghezzi and Sharifloo’s[11] do not handle activity
diagrams in their work, and this work does not handle reward models in ours. Also,
both approaches use external tools with similar capabilities to perform parametric model
checking. In fact, the authors argue their tool [48] is actually faster than PARAM, which
is used by ReAna. Nonetheless, both model checkers could be used interchangeably, so
the parametric model checking time is omitted.

Because of that, it is assumed the output expressions from the model checking phase to
be correspondingly equal in both approaches. This way, the di�erence between the stra-
tegies is isolated in the way they solve each expression. While Ghezzi and Sharifloo’s [11]
perform a number k of floating-point operations for each configuration, the approach
performs the same number k of ADD operations, but only once. Since the number of con-
figurations is O(2F), the feature-product-based approach performs O(k · 2F) computing
steps. As no lowest number of steps is possible if one is to compute the reliability of all
possible configurations, the number of computations in the best case is also O(k · 2F). In
contrast, an operation over ADDs in the approach comprises O(22·F) steps in the worst
case, but is O(F 2) in the best case (see Section 5.2). Thus, the feature-family-based
approach performs between O(k · F

2) and O(k · 22·F) computing steps.
Hence, in the worst case, the upper bound for the method’s asymptotic complexity is

worse than that of [11]’s, but its best-case complexity is better, which is consistent with
the empirical findings from the previous chapter.

6.2.2 Other Related Work

[12] present and compare three family-based strategies to analyze probabilistic properties
of product lines. Two of them leverage PARAM as model checker; the third one relies on
FDTMCs representing the behavior of a whole product line by encoding its variability,
resulting in an ADD expressing the reliability values of all configurations. The feature-
family-based strategy benefits even more from further breaking down probabilistic models.
Indeed, the methods by Rodrigues et. al.[12] show a time-space tradeo�, but all of them
presented scalability issues even for small product lines (around 12 features), whereas the

85

approach is able to analyze a product line with 144 features and about 1018 products
within reasonable time.

Further research has addressed e�cient verification of other non-functional properties
of product lines by exploiting family-based analysis strategies [54, 17, 16, 55, 56, 57, 14, 58].
[54] propose an approach for performance evaluation by simulating the behavior of all
variants at runtime from the variability encoded in compile-time. Such simulator is cre-
ated from the log of method calls traced by features. [17] create a model representing
the whole performance variability of a product line from UML activity diagrams anno-
tated with performance-related annotations. [16, 55] present an approach for modeling
dynamic product lines and performing quantitative analysis of systems endowed of non-
deterministic choices. Given the non-deterministic characteristic of the systems evaluated
by this approach, the authors consider Markov Decision Processes as the suitable model
for representing the model behavior. Similarly, [56] introduce a mathematical model na-
med Markov Decision Process Family for representing the behavior of a product line as a
whole, as well as a model checking algorithm to verify properties expressed in probabilis-
tic computation tree logic. [14] establish the foundations of Featured Transition Systems
(FTS) to create a model endowed with features expressions to represent the states vari-
ation of the whole software product line. The authors also present a family-based model
checker [57] that is able to analyze Linear Temporal Logic (LTL) properties of the whole
software product line by employing semi-symbolic algorithms to verify FTSs. All these
pieces of work exploit symbolic computation on a model representing the whole variability
of a product line as a better alternative to product-based strategies. The study supports
this conclusion, especially if a suitable variational data structure (e.g., ADD) is used for
such analysis. However, the results indicate that feature-family-based analysis further
improves performance.

[58] also present an e�cient family-based technique to verify LTL properties of a
software family. The authors leverage abstract interpretation to reduce the configuration
space of an FTS, so that it can be verified by o�-the-shelf model checkers (i.e., aimed and
optimized to analyze single systems). The method employs a divide-and-conquer strategy
to reduce model size, without changing the configuration space. Moreover, the analysis
method also employs o�-the-shelf model checkers, but to analyze probabilistic properties
of software product lines. Therefore, it is worth investigating the extent to which the
technique proposed by [58] can be applied to the verification of PCTL properties. If
that is the case, we conjecture that both strategies could be combined to further reduce
verification e�ort.

86

Referências

[1] Pohl, Klaus, Günter Böckle e Frank van der Linden: Software product line engineer-
ing: foundations, principles, and techniques. Springer, New York, NY, 2010. 1

[2] Clements, Paul e Linda Northrop: Software product lines: practices and pat-
terns. The SEI series in software engineering. Addison-Wesley, Boston, 2002,
ISBN 978-0-201-70332-0. 1, 15

[3] Czarnecki, Krzysztof e Ulrich Eisenecker: Generative programming: methods, tools,
and applications. Addison Wesley, Boston, 2000, ISBN 978-0-201-30977-5. 1, 15

[4] Weiss, David M.: The product line hall of fame. Em Proceedings of the 12th Inter-
national Software Product Line Conference (SPLC), página 395, Washington, DC,
USA, 2008. IEEE Computer Society, ISBN 978-0-7695-3303-2. 1

[5] Linden, Frank van der, Klaus Schmid e Eelco Rommes: Software product lines in
action: the best industrial practice in product line engineering. Springer, Berlin ;
New York, 2007. 1, 15

[6] Apel, Sven, Don Batory, Christian Kästner e Gunter Saake (editores): Feature-
oriented software product lines: concepts and implementation. Springer, Berlin, 2013,
ISBN 978-3-642-37521-7 978-3-642-37520-0. 1, 2, 15

[7] Heradio, Ruben, Hector Perez-Morago, David Fernandez-Amoros, Francisco
Javier Cabrerizo e Enrique Herrera-Viedma: A bibliometric analysis of 20 years of
research on software product lines. Information and Software Technology, 72:1–15,
abril 2016. 1

[8] Machado, Ivan do Carmo, John D. McGregor, Yguaratã Cerqueira Cavalcanti e Ed-
uardo Santana de Almeida: On strategies for testing software product lines: A sys-
tematic literature review. Information and Software Technology, 56(10):1183–1199,
outubro 2014. 1

[9] Thüm, Thomas, Sven Apel, Christian Kästner, Ina Schaefer e Gunter Saake: A Clas-
sification and Survey of Analysis Strategies for Software Product Lines. ACM Com-
put. Surv., 47(1):6:1–6:45, junho 2014. 1, 2, 4, 5, 15, 16, 52, 70, 83

[10] Baier, Christel e Joost Pieter Katoen: Principles of Model Checking (Representation
and Mind Series). The MIT Press, 2008, ISBN 026202649X, 9780262026499. 1, 2, 9,
10, 47, 69

87

[11] Ghezzi, Carlo e Amir Molzam Sharifloo: Model-based verification of quantitative non-
functional properties for software product lines. Information and Software Technology,
55(3):508–524, março 2013. 2, 3, 4, 61, 83, 84, 85

[12] Rodrigues, Genaina Nunes, Vander Alves, Vinicius Nunes, Andre Lanna, Maxime
Cordy, Pierre Yves Schobbens, Amir Molzam Sharifloo e Axel Legay: Modeling and
Verification for Probabilistic Properties in Software Product Lines. Em 2015 IEEE
16th International Symposium on High Assurance Systems Engineering (HASE), pá-
ginas 173–180, janeiro 2015. 2, 5, 17, 53, 71, 83, 85

[13] Classen, Andreas, Maxime Cordy, Patrick Heymans, Axel Legay e Pierre Yves
Schobbens: Formal semantics, modular specification, and symbolic verification of
product-line behaviour. Science of Computer Programming, 80, Part B:416–439, fe-
vereiro 2014, ISSN 0167-6423. 2, 71

[14] Classen, A., M. Cordy, P. Y. Schobbens, P. Heymans, A. Legay e J. F. Raskin:
Featured Transition Systems: Foundations for Verifying Variability-Intensive Sys-
tems and Their Application to LTL Model Checking. IEEE Transactions on Software
Engineering, 39(8):1069–1089, 2013, ISSN 0098-5589. 2, 4, 15, 71, 83, 86

[15] Classen, A., P. Heymans, P. Schobbens e A. Legay: Symbolic model checking of soft-
ware product lines. Em 2011 33rd International Conference on Software Engineering
(ICSE), páginas 321–330, 2011. 2

[16] Dubsla�, Clemens, Christel Baier e Sascha Kluppelholz: Probabilistic Model Check-
ing for Feature-Oriented Systems. Em Chiba, Shigeru, Eric Tanter, Erik Ernst e
Robert Hirschfeld (editores): Transactions on Aspect-Oriented Software Develop-
ment XII, número 8989 em Lecture Notes in Computer Science, páginas 180–220.
Springer Berlin Heidelberg, 2015, ISBN 978-3-662-46733-6 978-3-662-46734-3. DOI:
10.1007/978-3-662-46734-3_5. 2, 86

[17] Kowal, Matthias, Max Tschaikowski, Mirco Tribastone e Ina Schaefer: Scaling Size
and Parameter Spaces in Variability-Aware Software Performance Models (T). Em
2015 30th IEEE/ACM International Conference on Automated Software Engineering
(ASE), páginas 407–417, novembro 2015. 2, 86

[18] Nunes, V., P. Fernandes, V. Alves e G. Rodrigues: Variability Management of Reli-
ability Models in Software Product Lines: An Expressiveness and Scalability Analy-
sis. Em 2012 Sixth Brazilian Symposium on Software Components Architectures and
Reuse (SBCARS), páginas 51–60, setembro 2012. 2

[19] Clarke, E. M., Orna Grumberg e Doron A. Peled: Model checking. MIT Press, Cam-
bridge, Mass, 1999, ISBN 978-0-262-03270-4. 2

[20] Classen, Andreas, Patrick Heymans, Pierre Yves Schobbens, Axel Legay e Jean
François Raskin: Model Checking Lots of Systems: E�cient Verification of Tem-
poral Properties in Software Product Lines. Em Proceedings of the 32Nd ACM/IEEE
International Conference on Software Engineering - Volume 1, ICSE ’10, páginas
335–344, New York, NY, USA, 2010. ACM, ISBN 978-1-60558-719-6. 2

88

[21] Bodden, Eric, Társis Tolêdo, Márcio Ribeiro, Claus Brabrand, Paulo Borba e Mira
Mezini: SPLLIFT: Statically Analyzing Software Product Lines in Minutes Instead
of Years. Em Proceedings of the 34th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’13, páginas 355–364, New York, NY,
USA, 2013. ACM, ISBN 978-1-4503-2014-6. 2

[22] Avizienis, A., J. C. Laprie, B. Randell e C. Landwehr: Basic concepts and taxonomy
of dependable and secure computing. IEEE Transactions on Dependable and Secure
Computing, 1(1):11–33, janeiro 2004, ISSN 1545-5971. 2

[23] Grunske, Lars: Specification patterns for probabilistic quality properties. Em ICSE
’08, páginas 31–40, New York, NY, USA, 2008. ACM. 2, 8, 22, 47

[24] Shin, K.G. e P. Ramanathan: Real-time computing: a new discipline of com-
puter science and engineering. Proceedings of the IEEE, 82(1):6–24, janeiro 1994,
ISSN 0018-9219. 3

[25] Rodrigues, Genaína Nunes, Vander Alves, Renato Silveira e Luiz A. Laranjeira: De-
pendability analysis in the Ambient Assisted Living Domain: An exploratory case
study. Journal of Systems and Software, 85(1):112–131, janeiro 2012, ISSN 0164-1212.
3

[26] Kästner, Christian, Sven Apel e Martin Kuhlemann: Granularity in software prod-
uct lines. Em 30th International Conference on Software Engineering (ICSE 2008),
Leipzig, Germany, May 10-18, 2008, páginas 311–320, 2008. http://doi.acm.org/

10.1145/1368088.1368131. 4, 15

[27] Bahar, R.I., E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo e F.
Somenzi: Algebric decision diagrams and their applications. Formal Methods in Sys-
tem Design, 10(2):171–206, 1997, ISSN 1572-8102. 4

[28] Kramer, J., J. Magee, M. Sloman e A. Lister: CONIC: an integrated approach to
distributed computer control systems. Computers and Digital Techniques, IEE Pro-
ceedings E, 130(1):1–, janeiro 1983. 5, 71

[29] Plath, Malte e Mark Ryan: Feature integration using a feature construct. Science of
Computer Programming, 41(1):53–84, setembro 2001. 5, 71

[30] University of Magdeburg, Otto von Guericke: SPL2go. Available at http://spl2go.

cs.ovgu.de/, 2011. Accessed: 2016-01-27. 5, 71

[31] Ferreira Leite, A., V. Alves, G. Nunes Rodrigues, C. Tadonki, C. Eisenbeis e A.C.
Magalhaes Alves de Melo: Automating Resource Selection and Configuration in Inter-
clouds through a Software Product Line Method. Em 2015 IEEE 8th International
Conference on Cloud Computing (CLOUD), páginas 726–733, junho 2015. 5, 71

[32] Kwiatkowska, M., G. Norman e D. Parker: PRISM 4.0: Verification of probabilistic
real-time systems. Em Proceedings of the 23rd International Conference on Com-
puter Aided Verification (CAV), volume 6806 de Lecture Notes in Computer Science,
páginas 585–591. Springer, 2011. 9, 10

89

http://doi.acm.org/10.1145/1368088.1368131
http://doi.acm.org/10.1145/1368088.1368131
http://spl2go.cs.ovgu.de/
http://spl2go.cs.ovgu.de/

[33] Daws, Conrado: Symbolic and parametric model checking of discrete-time Markov
chains. Em Proceedings of the First International Conference on Theoretical Aspects
of Computing (ICTAC), volume 3407 de Lecture Notes in Computer Science, páginas
280–294. Springer, sep 2005, ISBN 978-3-540-25304-4. 9, 10

[34] Grunske, Lars: Specification patterns for probabilistic quality properties. Em Proceed-
ings of the International Conference on Software Engineering (ICSE), páginas 31–40.
ACM, 2008. 9

[35] Rodrigues, Genaína Nunes, Vander Alves, Vinicius Nunes, André Lanna, Maxime
Cordy, Pierre-Yves Schobbens, Amir Molzam Sharifloo e Axel Legay: Modeling and
verification for probabilistic properties in software product lines. Em Proceedings of
the 16th IEEE International Symposium on High Assurance Systems Engineering
(HASE), páginas 173–180. IEEE Computer Society, 2015. 10

[36] Ghezzi, Carlo e Amir Molzam Sharifloo: Model-based verification of quantitative non-
functional properties for software product lines. Information and Software Technology,
55(3):508–524, março 2013, ISSN 09505849. 10

[37] Chrszon, Philipp, Clemens Dubsla�, Sascha Klüppelholz e Christel Baier: Family-
based modeling and analysis for probabilistic systems - featuring ProFeat. Em Proceed-
ings of the 19th International Conference on Fundamental Approaches to Software
Engineering (FASE), volume 9633 de Lecture Notes in Computer Science, páginas
287–304. Springer, 2016. 10

[38] Hahn, Ernst Moritz, Holger Hermanns, Björn Wachter e Lijun Zhang: Probabilistic
reachability for parametric markov models. STTT, páginas 1–17, 2010. 10, 11, 12,
13, 15, 52, 68

[39] Bahar, R. Iris, Erica A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico Macii,
Abelardo Pardo e Fabio Somenzi: Algebraic decision diagrams and their applications.
Formal Methods in System Design, 10(2/3):171–206, 1997. 13, 14

[40] Kang, K., S. Cohen, J. Hess, W. Novak e S. Peterson: Feature-oriented domain
analysis (FODA) feasibility study. Relatório Técnico CMU/SEI-90-TR-21, Carneggie
Mellon University, 1990. 15

[41] Daws, Conrado: Symbolic and Parametric Model Checking of Discrete-time Markov
Chains. Em Liu, Zhiming e Keijiro Araki (editores): Proceedings of the First Inter-
national Conference on Theoretical Aspects of Computing, volume 3407 de Lecture
Notes in Computer Science, páginas 280–294, Berlin, Heidelberg, sep 2005. Springer
Berlin Heidelberg, ISBN 978-3-540-25304-4. 15, 45, 48

[42] Kwiatkowska, M., G. Norman, D. Parker e H. Qu: Compositional probabilistic verifi-
cation through multi-objective model checking. Information and Computation, 232:38–
65, 2013. 16

[43] Hao, Yang e Robert Foster: Wireless body sensor networks for health-monitoring
applications. Physiological Measurement, 29(11):27–56, 2008. 17

90

[44] Czarnecki, Krzysztof e Krzysztof Pietroszek: Verifying feature-based model templates
against well-formedness OCL constraints. Em Proceedings of the 5th International
Conference on Generative Programming and Component Engineering, página 211.
ACM Press, 2006, ISBN 978-1-59593-237-2. 18, 54

[45] Pessoa, Leonardo, Paula Fernandes, Thiago Castro, Vander Alves, Genaína N. Ro-
drigues e Hervaldo Carvalho: Building reliable and maintainable dynamic software
product lines: An investigation in the body sensor network domain. Information and
Software Technology, 86:54 – 70, 2017, ISSN 0950-5849. 20

[46] Object Management Group: The UML profile for MARTE: Modeling and analysis
of real-time and embedded systems. http://www.omg.org/omgmarte/, 2011. Version
1.1. 21, 53

[47] Hahn, Ernst Moritz, Holger Hermanns, Björn Wachter e Lijun Zhang: Param: A
model checker for parametric markov models. Em CAV, páginas 660–664, 2010. 59,
66

[48] Filieri, Antonio e Carlo Ghezzi: Further steps towards e�cient runtime verifica-
tion: Handling probabilistic cost models. Em Proceedings of the First International
Workshop on Formal Methods in Software Engineering: Rigorous and Agile Ap-
proaches, FormSERA ’12, páginas 2–8, Piscataway, NJ, USA, 2012. IEEE Press,
ISBN 978-1-4673-1906-5. 59, 66, 85

[49] Walkingshaw, Eric, Christian Kästner, Martin Erwig, Sven Apel e Eric Bodden: Vari-
ational Data Structures: Exploring Tradeo�s in Computing with Variability. Em Pro-
ceedings of the 2014 ACM International Symposium on New Ideas, New Paradigms,
and Reflections on Programming & Software, Onward! 2014, páginas 213–226, New
York, NY, USA, 2014. ACM. 61

[50] Iris, R., Bahar Erica, A. Frohm, Charles M. Gaona, Gary D. Hachtel, Enrico
Macii, Abelardo Pardo e Fabio Somenzi: Algebraic Decision Diagrams and Their
Applications. Em Proceedings of the 1993 IEEE/ACM International Conference
on Computer-aided Design (ICCAD ’93), páginas 188–191, Santa Clara, California,
USA, 1993. IEEE Computer Society Press. 61, 69

[51] Thüm, Thomas, Christian Kästner, Fabian Benduhn, Jens Meinicke, Gunter Saake
e Thomas Leich: Featureide: An extensible framework for feature-oriented software
development. Sci. Comput. Program., 79:70–85, janeiro 2014, ISSN 0167-6423. 66

[52] Cormen, Thomas H., Cli�ord Stein, Ronald L. Rivest e Charles E. Leiserson:
Introduction to Algorithms. McGraw-Hill Higher Education, 2nd edição, 2001,
ISBN 0070131511. 68

[53] Liang, Jia Hui, Vijay Ganesh, Krzysztof Czarnecki e Venkatesh Raman: SAT-based
Analysis of Large Real-world Feature Models is Easy. Em Proceedings of the 19th
International Conference on Software Product Line, SPLC ’15, páginas 91–100, New
York, NY, USA, 2015. ACM, ISBN 978-1-4503-3613-0. 69

91

[54] Siegmund, Norbert, Alexander von Rhein e Sven Apel: Family-based Performance
Measurement. Em Proceedings of the 12th International Conference on Generative
Programming: Concepts & Experiences, GPCE ’13, páginas 95–104, New York, NY,
USA, 2013. ACM, ISBN 978-1-4503-2373-4. 86

[55] Dubsla�, Clemens, Sascha Klüppelholz e Christel Baier: Probabilistic Model Checking
for Energy Analysis in Software Product Lines. Em Proceedings of the 13th Interna-
tional Conference on Modularity, MODULARITY ’14, páginas 169–180, New York,
NY, USA, 2014. ACM, ISBN 978-1-4503-2772-5. 86

[56] Varshosaz, M. e R. Khosravi: Model Checking of Software Product Lines in Pres-
ence of Nondeterminism and Probabilities. Em Software Engineering Conference
(APSEC), 2014 21st Asia-Pacific, volume 1, páginas 63–70, dezembro 2014. 86

[57] Classen, Andreas, Maxime Cordy, Patrick Heymans, Axel Legay e Pierre Yves
Schobbens: Model checking software product lines with SNIP. International Journal
on Software Tools for Technology Transfer, 14(5):589–612, Oct 2012, ISSN 1433-2787.
86

[58] Dimovski, Aleksandar S., Ahmad Salim Al-Sibahi, Claus Brabrand e An-
drzej Wπsowski: Family-Based Model Checking Without a Family-Based Model
Checker, páginas 282–299. Springer International Publishing, Cham, 2015,
ISBN 978-3-319-23404-5. 86

[59] Mendonca, Marcilio, Moises Branco e Donald Cowan: S.p.l.o.t.: Software product
lines online tools. Em Proceedings of the 24th ACM SIGPLAN Conference Compan-
ion on Object Oriented Programming Systems Languages and Applications, OOPSLA
’09, páginas 761–762, New York, NY, USA, 2009. ACM, ISBN 978-1-60558-768-4. 95

92

Appendix A

Experiment Data

The following tables present the mean values for analysis time and memory consumption
obtained in our experiment. Values typeset in boldface are the best values (i.e., the
lowest) gathered from the experiments. Cells containing dashes represent unavailable
data, meaning that the corresponding analysis violated the time limit of 60 minutes.

93

Table 1: Time in milliseconds (fastest strategy in boldface).

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Email

Configuration space’s order 101 101 102 102 102 103 103 103 104 104

Feature-family 183.04 223.78 233.69 259.65 267.32 285.79 341.65 348.46 366.73 433.30
Feature-product 370.63 517.67 742.91 1108.95 1659.31 2358.51 3829.95 6919.98 12803.15 25110.63
Family 319.72 1167.27 13944.18 154067.34 – – – – – –
Family-product 293.26 558.77 1095.75 2850.86 9451.57 34704.42 137866.42 562117.02 1607837.42 –
Product 2424.77 7387.35 14349.32 29137.45 57575.0 114084.61 275598.17 – – –

Configuration space’s order 104 104 105 105 105 106 106 106 107 107 107

Feature-family 970.69 1613.76 2833.40 5425.14 10838.39 21719.17 44171.89 90015.26 187645.77 667138.0 –
Feature-product 50748.90 103510.61 215932.90 456329.22 945445.46 1966865.48 – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

Minepump

Configuration space’s order 102 102 102 103 103 103 103 104 104 104

Feature-family 261.18 287.24 298.10 330.88 358.81 408.45 485.06 621.01 877.52 1375.22
Feature-product 895.80 1226.97 1844.15 2624.96 4204.27 8952.61 14037.50 25989.10 51495.22 104090.89
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –

Configuration space’s order 105 105 105 106 106 106 106 107 107 107 108

Feature-family 2390.78 4445.44 8790.54 17995.17 36593.45 76513.51 168694.38 354887.72 – – –
Feature-product 211806.42 439411.29 905878.46 1876640.52 – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

BSN

Configuration space’s order 102 102 103 103 103 103 104 104 104 105

Feature-family 237.14 253.65 273.01 305.48 321.69 377.40 389.41 462.66 651.84 1032.05
Feature-product 991.30 1487.19 2404.18 4312.01 7875.91 14788.91 28881.71 57887.92 117630.81 241553.61
Family 1604.07 – – – – – – – – –
Family-product 3288.70 11543.38 46273.48 187134.89 672512.22 2109118.92 – – – –
Product 6696.06 20259.05 43489.98 97280.21 241249.72 519495.92 1217404.53 – – –

Configuration space’s order 105 105 106 106 106 106 107 107 107 108 108

Feature-family 1713.19 3443.81 7332.75 15090.83 31208.01 83984.25 197660.21 528948.31 – – –
Feature-product 495594.45 1022294.56 2145986.30 – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

continued in the next page

8
5

continued from last page

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Lift

Configuration space’s order 102 103 103 103 103 104 104 104 105 105

Feature-family 140.32 169.51 188.56 199.95 223.20 266.20 339.85 472.01 601.46 1021.76
Feature-product 1160.78 1786.75 1289.76 4281.11 7739.10 14769.15 29418.50 60785.39 127344.46 266609.58
Family 358.06 625.16 2606.86 18223.06 – – – – – –
Family-product 1413.96 3462.52 10777.60 42156.47 167837.42 453830.76 1870142.24 – – –
Product – – – – – – – – – –

Configuration space’s order 105 106 106 106 106 107 107 107 108 108 109

Feature-family 3114.06 5728.56 10895.96 21081.40 48194.05 100755.69 215756.37 – – – –
Feature-product 555525.51 1136506.33 2457317.34 – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

InterCloud

Configuration space’s order 105 105 105 105 106 106 106 107 107 107

Feature-family 671.54 717.7 794.95 880.11 922.98 994.65 1126.91 1315.89 1742 2544.49
Feature-product 407702.34 861181.31 1752682.98 3394277.78 – – – – – –
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –

Configuration space’s order 108 108 108 108 109 109 109 1010 1010 1010 1011

Feature-family 4074.43 4280.4 4568.7 5344.4 3936.76 6719.68 12829.35 25588.69 67156.86 – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

TankWar

Configuration space’s order 1018 1018 1019 1019 1019 1020 1020 1020 1021 1021

Feature-family 6643.88 3588.49 2734.86 2966.2 2902.18 3079.4 4221.14 8012. 17096.88 160259.19
Feature-product – – – – – – – – – –
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –

Configuration space’s order 1021 1021 1022 1022 1022 1023 1023 1023 1024 1024 1024

Feature-family – – – – – – – – – – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

8
6

Table 2: Space in megabytes (smallest footprint in boldface).

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Email

Configuration space’s order 101 101 102 102 102 103 103 103 104 104

Feature-family 113.70 113.84 113.93 114.30 114.45 114.33 114.52 114.91 115.86 117.64
Feature-product 117.22 144.30 186.59 269.67 475.61 738.99 1136.73 2359.24 2839.02 2842.46
Family 116.97 125.48 136.57 196.99 – – – – – –
Family-product 120.25 157.90 235.41 510.41 827.79 722.88 1037.62 1501.80 3231.31 –
Product 122.65 231.84 272.04 277.98 310.59 309.06 327.65 – – –

Configuration space’s order 104 104 105 105 105 106 106 106 107 107 107

Feature-family 130.65 146.25 174.93 287.00 489.00 839.80 1523.88 3041.86 5807.80 7223.00 –
Feature-product 2849.01 2878.10 2927.46 3158.43 3367.68 4181.64 – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

MinePump

Configuration space’s order 102 102 102 103 103 103 103 104 104 104

Feature-family 113.51 114.05 114.41 114.34 114.8 115.61 116.47 118.48 129.12 133.96
Feature-product 210.97 333.42 504.98 743.93 1319.2 2400.89 2841.77 2844.10 2851.49 2879.39
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –

Configuration space’s order 105 105 105 106 106 106 106 107 107 107 108

Feature-family 162.48 265.31 390.03 705.39 1165.72 2224.17 4011.27 6921.67 – – –
Feature-product 2914.44 2971.55 3378.84 3789.31 – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

BSN

Configuration space’s order 102 102 103 103 103 103 104 104 104 105

Feature-family 114.05 114.30 114.52 114.56 114.83 115.37 115.32 116.97 120.09 134.23
Feature-product 339.91 490.76 737.50 1716.41 2379.06 2837.60 2843.36 2850.78 2874.49 2923.93
Family 156.54 – – – – – – – – –
Family-product 493.99 841.31 1171.71 1153.13 2189.89 3263.80 – – – –
Product 320.43 335.18 339.40 352.72 327.95 440.60 446.75 – – –

Configuration space’s order 105 105 106 106 106 106 107 107 107 108 108

Feature-family 148.34 186.03 348.58 588.99 1043.94 2225.13 4640.35 7130.79 – – –
Feature-product 3005.12 3234.19 3821.39 – – – – – – – –
Family 156.54 – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

continued in the next page

8
7

continued from last page

SPL’s evolutions steps
0 1 2 3 4 5 6 7 8 9
10 11 12 13 14 15 16 17 18 19 20

Lift

Configuration space’s order 102 103 103 103 103 104 104 104 105 105

Feature-family 113.77 113.85 114.37 114.27 114.56 115.23 116.87 119.88 120.72 134.41
Feature-product 292.23 507.43 757.52 1539.24 2399.04 2838.97 2840.51 2859.23 2907.41 2993.05
Family 116.54 122.63 136.83 177.02 – – – – – –
Family-product 272.85 506.39 1277.44 1296.95 1551.49 2440.83 2669.75 – – –
Product – – – – – – – – – –

Configuration space’s order 105 106 106 106 106 107 107 107 108 108 107

Feature-family 203.42 319.45 539.66 826.57 1791.86 3230.47 6324.48 – – – –
Feature-product 3199.10 3489.45 4644.73 – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

Configuration space’s order 105 105 105 105 106 106 106 107 107 107

InterCloud

Feature-family 119.44 119.87 127.68 127.79 136.03 132.63 136.3 143.96 152.61 175.78
Feature-product 3071.58 3158.59 3602.16 4884.81 – – – – – –
Family – – – – – – – – – –
Family-product – – – – – – – – – –
Product – – – – – – – – – –

Configuration space’s order 108 108 108 108 109 109 109 1010 1010 1010 1011

Feature-family 224.06 223.7 251.48 275.81 237.67 378.87 635.76 1102.48 2628.21 – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

TankWar

Configuration space’s order 1018 1018 1019 1019 1019 1020 1020 1020 1021 1021

Feature-family 286.99 258.64 246.91 256.09 253.42 271.44 295.76 407.85 622.82 4104.61
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

Configuration space’s order 1021 1021 1022 1022 1022 1023 1023 1023 1024 1024 1024

Feature-family – – – – – – – – – – –
Feature-product – – – – – – – – – – –
Family – – – – – – – – – – –
Family-product – – – – – – – – – – –
Product – – – – – – – – – – –

8
8

Appendix B

SPL Generator Tool

To increase the number of subject systems and inspect how each evaluation strategy
behaves with the growth of the configuration space, we implemented a product-line gen-
erator tool called SPL–Generator1, which is able to create a software product line from
scratch or modify an existing one by incrementally adding features and behavior to its
models. For the feature model generation (i.e., to create a new feature model or change
an existing one), the tool relies on the SPLAR tool [59]. The desired characteristics of the
resulting feature model are obtained by defining accordingly the set of parameters pro-
vided by SPLAR. Examples of such parameters are the number of features to be created,
the amount in percentage for each kind of feature (mandatory, optional, OR-inclusive
and OR-exclusive), and the number of cross-tree constraints. As our SPL-Generator tool
intends to create product lines that resemble real-world product lines, it produces only
consistent feature-models (i.e., the SPLAR’s parameter for creating consistent feature-
models is always set to true).

To create behavioral models, the SPL-Generator tool considers the UML behavioral
diagrams and follows the refinement of activity diagrams into sequence diagrams presented
in Section 2.5. For creating activity and sequence diagrams, the generator tool is also
guided by a set of parameters for each kind of behavioral diagram. For an activity
diagram, it is possible to define how many activities it will comprise, the number of
decision nodes, and how many sequence diagrams will refine each created activity. For
a sequence diagram, it is possible to define its size in terms of numbers of behavioral
fragments, the size of each behavioral fragment in terms of the number of messages, the
number of lifelines, the number of di�erent reliability values (such that each lifeline will
randomly assume only one value) and the range for them. Thus, one possibly generated
sequence diagram would have 5 behavioral fragments, each one containing 8 messages
between 3 lifelines, whose reliability values are within the range [0.99, 0.999].

1
https://github.com/SPLMC/spl-generator/

95

https://github.com/SPLMC/spl-generator/

Finally, the SPL-Generator tool also provides a parameter to define how the feature
model and the behavioral models will be related. The allocation of a behavioral fragment
(implementing a feature’s behavior) can be fully randomized within the set of created
sequence diagrams, or it can be topological, which means the relations between the be-
havioral fragments mimic the relations between the corresponding features. In the latter,
we assume a child feature refines its parent, so its behavioral fragment is nested into its
parent’s behavioral fragment.

96

	Introduction
	Context:
	Solution
	Summary of Goals
	Organization

	Background
	Software Reliability
	Reliability Analysis
	Parametric Probabilistic Reachability

	Algebraic Decision Diagrams
	Software Product Line
	 Software Product Line Analysis

	Running example
	Conclusion

	Behavioral Modeling and Reliability of Software Product Lines
	Probabilistic and Variable Behavior Modeling of Software Product Lines
	UML Activity Diagrams' Elements
	UML Sequence Diagrams

	Reliability of UML Behavioral Models
	Reliability of software product line
	Reliability of activity diagram elements
	Reliability of sequence diagram models

	Transformation from UML to FDTMC
	Transformation Rules for Activity Diagram Elements
	Transformation Rules for Sequence Diagram Elements

	Reliability Equivalence of UML Behavioral Models and FDTMCs
	Reliability equivalence for activity diagram
	Reliability equivalence for sequence diagram

	Conclusion

	Feature-Family-based Reliability Analysis
	Transformation
	Behavioral Models

	Runtime dependency graph (RDG)
	Feature-Based analysis
	Family-Based Analysis
	Conclusion

	Proposal Evaluation
	Implementation
	Analytical Complexity
	Empirical Evaluation
	Subject Systems and Experiment Design
	Experiment setup
	Results and analysis
	Discussion

	Threats to validity

	Conclusion
	Future Work
	Related works
	Comparison to a Feature-Product-based Strategy
	Other Related Work

	Referências
	Appendix
	Experiment Data
	SPL Generator Tool

