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Abstract
Little is known about the threat levels and impacts of habitat loss over the Cerrado Squa-

mate fauna. The region is under severe habitat loss due to mechanized agriculture, acceler-

ated by changes in the Brazilian National Forest Code. The Squamate fauna of the Cerrado

is rich in endemics and is intrinsically associated with its surrounding microhabitats, which

make up a mosaic of phitophysiognomies throughout the region. Herein we evaluate current

conservation status of Squamate biogeographic patterns in the Brazilian Cerrado, the single

savanna among global biodiversity hotspots. To do so, we first updated point locality data

on 49 endemic Squamates pertaining to seven non-random clusters of species ranges in

the Cerrado. Each cluster was assumed to be representative of different biogeographic

regions, holding its own set of species, herein mapped according to their extent of occur-

rence (EOO). We then contrasted these data in four different scenarios, according to the

presence or absence of habitat loss and the presence or absence of the current protected

area (PA) cover. We searched for non-random patterns of habitat loss and PA coverage

among these biogeographic regions throughout the Cerrado. Finally, with the species EOO

as biodiversity layers, we used Zonation to discuss contemporary PA distribution, as well as

to highlight current priority areas for conservation within the Cerrado. We ran Zonation

under all four conservation scenarios mentioned above. We observed that habitat loss and

PA coverage significantly differed between biogeographic regions. The southernmost bio-

geographic region is the least protected and the most impacted, with priority areas highly

scattered in small, disjunct fragments. The northernmost biogeographic region (Tocantins-

Serra Geral) is the most protected and least impacted, showing extensive priority areas in

all Zonation scenarios. Therefore, current and past deforestation trends are severely threat-

ening biogeographic patterns in the Cerrado. Moreover, PA distribution is spatially biased,

and does not represent biogeographic divisions of the Cerrado. Consequently, we show

that biogeographic patterns and processes are being erased at an accelerated pace, rein-

forcing the urgent need to create new reserves and to avoid the loss of the last remaining

fragments of once continuous biogeographic regions. These actions are fundamental and
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urgent for conserving biogeographic and evolutionary information in this highly imperiled

savanna hotspot.

Introduction
Biodiversity and anthropogenic threats are not randomly distributed throughout the world
[1–3]. As a response to intense habitat losses and the worldwide biodiversity crisis [4–8] a new
branch of biodiversity science gained strength in the 21st century: Conservation Biogeography
[2,3]. This new area applies biogeographic principles, theories, and analyses [9], to provide
solutions to the urgent problems related to the conservation of biodiversity [2]. Diverse meth-
ods to optimize the distribution of priority areas for biodiversity have already been suggested
[2], including the hotspot approach [1]. This approach incorporates habitat loss and species
endemism to map regions of high conservation importance [1], an idea which gained strength
in the early 2000s, mostly due to the recent alarming rates of global habitat loss [10,11].

Endemism patterns and their derived biogeographic units are central concepts in biogeogra-
phy [12], providing important information on which spatial portions of biodiversity should be
conserved [2,13]. However, conservation planning initiatives often neglect biogeographic and
endemism patterns [14]. Currently, diverse and highly threatened regions such as the Brazilian
Cerrado hotspot are still poorly studied concerning the detection and conservation of their bio-
geographic patterns and processes [15]. Nevertheless, a recent study using Biotic Element
Analysis detected significant levels of regionalization for the Cerrado Endemic Squamate
fauna, recovering seven distinct biogeographic units, through Biotic Element (BE) analysis,
based on 49 endemic Squamate species [16].

The Biotic Element (BE) analysis is a relatively recent method of biogeographic pattern
detection that tests central assumptions of the vicariant diversification model [17,18], one of
the main processes to affect the distribution of biodiversity throughout the planet [13,19,20].
According to BE analysis, if vicariant processes were important in the past, significantly co-dis-
tributed groups of species (Biotic Elements, see [18]) must exist and be detectable, as signatures
of historical processes of biotic regionalization [17,18]. In addition, phylogenetically close spe-
cies must compose distinct BEs, because of historical allopatry [17,18]. Thus, BE can be inter-
preted not only as a mere spatial pattern, but also as a consequence of historical processes of
vicariant speciation, caused by the appearance of historical biogeographic barriers [17].

The Brazilian Cerrado is a region with a particularly complex and dynamic geomorphologi-
cal history [17,21,22]. In addition, the Cerrado, due to its high levels of vascular plant ende-
mism [23,24] and high rates of habitat loss [25], it is the single savanna among the 34 global
biodiversity hotspots [1,26]. Its biodiversity and associated threats are not distributed at ran-
dom, with deforestation following a south-north trend [15,25,27]. Most habitat loss has
ocurred in open, interfluvial flatland savanna habitats [28] in the southern portion of the
region.

The Cerrado harbors a rich (over 260 species) and highly endemic Squamate fauna, that
contains at least 103 endemic species (about 40% endemism), showing significantly regional-
ized ranges [16]. Endemism patterns for different Cerrado taxa have already been described
(e.g. [16,21,29]), however, spatially explicit data on Cerrado biogeographic units have never
been directly used in conservation planning analyses, which remain scarce in the Cerrado (but
see [30–33]). Moreover, the rich and highly endemic Cerrado Squamate fauna is dominated by
species tightly associated to specific microhabitats [34,35] unevenly distributed in habitat
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mosaics. The observed regionalized, significant patterns of species co-occurrence in the group
agree with the predictions of the vicariant model of diversification, indicating that current
diversity and distributional patterns are a possible result of a long history of allopatric diversifi-
cation and in situ speciation [16], enhancing the importance of biogeographic patterns as a sur-
rogate for historical processes acting to shape current biodiversity patterns [16,17,21].

Even with recent efforts to expand the coverage of threat assessments in Reptilia [8] only
twelve of the 103 Cerrado endemic Squamate species [16] have been assessed in the IUCN Red
List until January 2015 [36]. Additionally, it is expected that habitat loss, the single most
important threat to reptiles worldwide [7,8,37,38], will increase in Brazil after the recent
approval of the new National Forest Code [39], bringing harmful consequences not only for
reptiles [40] but to all vertebrate taxa [41–44]. This new Brazilian National Forest Code
removed the protection of mountaintops, formerly considered as Areas of Permanent Protec-
tion (areas that must be permanently protected, even if outside formal reserves), and reduced
the minimum protected width of gallery forests and riparian habitats [39]. Most importantly in
a biogeographical context, the new code opened the possibility of environmental compensation
in different areas of the same biome: thus, one can now extensively deforest one region and
compensate the damage by sparing the natural vegetation in a different region in the same
biome. The result is that different portions of the Cerrado will now tend to show very different
levels of deforestation, and impacts will no longer be compensated at the small, local, scale (as
required in the formed version of the code, with micro-watersheds as basic units), but in a
much wider, continental scale.

These modifications in Brazilian environmental laws will probably enhance the threats to
Cerrado biodiversity, especially in its open interfluvial plateaus, highly prone to mechanized
agriculture [26, 27]. Due to the high microhabitat specificity of Cerrado Squamates [34,35], the
severe impacts of habitat loss threatens to erase ancient and highly complex evolutionary pat-
terns and processes [16]. Consequently there is a clear need for a first approach with systematic
conservation planning [45], for Cerrado endemic squamates.

Therefore, the first aim of our study was to test the presence of non-random differences in
habitat loss and protected area distribution among different biogeographic units of the Cer-
rado, i.e. to evaluate if biogeographic patterns the and processes are well represented in conser-
vation strategies in the Cerrado. Secondarily, using a conservation planning approach, we
assessed the influence of habitat loss and current federal PA distribution in conservation priori-
tization scenarios for the Cerrado, providing a map of potential of high conservation priority
areas according to Cerrado biogeographical patterns.

Materials and Methods

Study area
The Cerrado is the second largest South American phytogeographical domain [15,24,46] cov-
ering ca. 2.03 million km2, or approximately 23% of the Brazilian territory. It is a seasonally
dry tropical savanna [47], with two major geomorphological units [21,22]: a) gently rolling or
level headwater plateaus, dominated by open grassy savannas and grasslands, and b) peripheral
depressions, that harbors a more complex matrix of savannas and semi deciduous forests,
crossed by widespread tracts of gallery forests along major drainage systems [23,48]. Detailed
data on Cerrado ecology and natural history can be found elsewhere [49].

Data sources
We obtained a total of 451 point localities for 49 endemic Squamates belonging to Endemic
Biotic Elements (BE) detected in a previous biogeographic analysis [16]. Species occurrence
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records derive from a revised database of vouchered point locality records in zoological collec-
tions and in a compilation of more recent literature records, from 2010 onwards, complement-
ing the database used in [16] (S1 Table). The georreferenced information for each vouchered
specimen was recovered using the information associated to vouchered specimens, or from the
localities provided in taxonomical studies. All data were taken from sources from the beginning
of the 20th century onwards.

Prior to building each species distribution, we used the official map of Brazilian biomes [50]
to define approximate limits of the Brazilian Cerrado. We restricted all projections of land
cover changes and species ranges to these boundaries. We obtained land coverage modifica-
tions for the Cerrado (2002 and 2010) from the Project of Satellite Deforestation Monitoring of
Brazilian Biomes (Programa de Monitoramento dos Biomas Brasileiros—PMDBBS) [51]. We
used IUCN categories I-IV in [52] to define strictly protection areas in the current Brazilian
protected area (PA) system [53]. To maintain consistency we represented all variables at 10 x
10 km spatial resolution, and processed species distribution data and habitat loss in a geo-
graphical information system. All georeferencing and mapping procedures were developed in
ArcMap 10.2.2 [54].

Estimating species extent of occurrence and biotic element range
We determined the extent of occurrence (EOO) [55,56] for each species pertaining to each one
of the seven BE identified in [16], as well as its respective habitat loss and PA coverage. We cal-
culated each species range as extent of occurrence (EOO) [55,56]. The EOO is defined as “the
area contained within the shortest continuous imaginary boundary which can be drawn to
encompass all the known, inferred or projected sites of present occurrence of a taxon, exclud-
ing cases of vagrancy” [55,56]. Following the IUCN guidelines [55,56], for species with 3 or
more different localities (see S1 Table) we built each species extent of occurrence using the
MCP approach. This approach consists in the smallest polygon in which no internal angle
exceeds 180° degrees and which contains all the sites of occurrence [55,56]. When a species
had only one or two different localities we built a buffer with a 10km radius around its refer-
enced capture point (for a similar approach, see [57]). Although methods such as MCP have
received considerable attention, resulting in positive [55] and negative [58] conceptions about
their utilization, we stress that we are not looking for fine scale, refined species distribution
data. Instead, we investigate macroscale spatial patterns of habitat loss and PA coverage of the
biogeographic regions across the Cerrado region. Thus, simply mapping ranges as EOO for
each species following IUCN guidelines [54,55], instead of species distribution models [59], is
sufficient for our analytical needs.

Since every BE has its own set of species, we built the BE ranges by merging its species distri-
butions (Fig 1). We assumed that BE ranges serve as area surrogates of the different biogeo-
graphic units. Therefore, detected and quantified patterns of anthropic influences over each
BE, such as deforestation or PA coverage, are assumed to be also happening at the level of the
biogeographic region each BE represents. We built two sets of EOO for each species: the origi-
nal EOO, which did not account for habitat loss; and the current EOO, which takes into
account only the remaining natural vegetation cover within the species ranges. To obtain the
species current EOO we clipped each species original EOO with a land coverage modifications
map provided by the PMDBBS [51] (Fig 1D, 1E and 1F). For calculating original and current
habitat loss within BEs, we merged all ranges from a BE into a single shape file. This was done
in order to avoid counting the same area twice when different species distributions overlapped.
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Biogeographic patterns and habitat loss
We analyzed the conservation status of the biogeographic regions by comparing species habitat
loss and PA coverage both within and among biotic elements (BEs) [17]. The seven proposed
BEs (see [16]), located in different portions of the Cerrado (Fig 1), are: 1) Tocantins-Serra
Geral; 2) Paraguay-Guaporé; 3) Paraná-Paraguay; 4) Guimarães-Roncador; 5) Espinhaço; 6)
Araguaia; 7) Central Plateau. Due to differences in area between biogeographic units, we chose
to compare the proportion of habitat loss among BEs, instead of absolute values.

We calculated the expected habitat loss for each species as the proportion of each species
original EOO, under the average habitat loss of all species belonging to its BE, as in previous
studies [60]. Observed and expected habitat loss values were then logit transformed [61] for all
analysis in R’s package car [62]. To calculate differences between expected and observed habitat
loss for each species within each BE we used Kolmogorov-Smirnoff tests (see [63]). We com-
pared the differences between observed habitat loss, and PA coverage among different BEs
using Kruskal-Wallis tests [64] and multiple comparison tests (see [65]), in package pgirmess
in R [62].

Systematic conservation planning
We used Zonation [66,67] software in order to maximize conservation benefits through a sys-
tematic conservation approach. Zonation is one of the most widely used decision–support
tools in conservation planning [68]. The algorithm generates a hierarchy of priority areas [66],
by iteratively removing all cells in a landscape, using a marginal loss criterion to decide which
cell is removed after each step (see [69]). In our setup we chose to run Zonation v. 4.0 with
core-area zonation, to prioritize areas with unique species records [70]. Zonation demands a
set of biodiversity features as basic input (see [70]), such as species extent of occurrence, in ras-
ter format. We used the Core-Area Zonation (CAZ) [71] as our cell-removal rule. This method
aims to minimize biological loss across the study area.

The Zonation analysis works as follows: as a consequence of the overlay of the distinct bio-
diversity features, each pixel receives a set of values. These values are independent among
them, and refer to each species distribution that occurs on that pixel. The algorithm picks as
the next cell to be excluded, the cell that has the smallest value of the most valuable occurrence.
The most valuable occurrence is the highest value of occurrence of any species in the pixel, and
varies as the algorithm ‘runs over’ the input maps. It always changes because the program basi-
cally recalculates the proportion of the remaining distribution of every species in the set of the
remaining cells every time any cell is withdrawn. Thus, when a part of the distribution of a spe-
cies is removed, the value of the remaining distribution areas located in each remaining cell (its
value of occurrence) goes up, i.e. the value of this species in all of its remaining pixels increases.
CAZ, therefore, tries to retain core areas of all species until the end of cell removal [70].

It is advisable [70] to calibrate a set of different Zonation parameters heuristically before
running final models. Therefore, to determine whether or not to add edge points in Zonation,
we made a set of preliminary runs comparing the resultant outputs. The standard Zonation
configuration does not apply the ‘add edge points’ parameter and, therefore, Zonation runs
over the input biodiversity features contiguously, starting from the borders [70] and moving

Fig 1. Biotic Elements extent under original and current natural vegetation cover. Biotic Elements (BE) distribution under the Cerrado vegetation
original extent (left), and considering current levels of habitat loss (right) (until 2010). Each BE is represented by shades of a single color. The darker the
shade, the more projected species distributions for that BE are overlapping at that area. Shades of black: Tocantins-Serra Geral BE I (a and b). Shades of
purple: Paraguay-Guaporé BE II (a and b). Shades of blue: Paraná-Paraguay BE III (c and d). Shades of Green: Guimarães-Roncador BE IV (c and d).
Shades of red: Espinhaço BE V (e and f). Shades of yellow: Araguaia BE VI (e and f). Shades of orange: Central Plateau BE VII (e and f).

doi:10.1371/journal.pone.0133995.g001
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onwards from this point. As for boundary penalty method (BLP), we chose the boundary
length penalty [70]. The BLP value is a penalty associated with the extent of a pixel which is
‘exposed’ to ‘non habitat’ areas, e.g. areas that have already been withdrawn from the landscape
by the program. Therefore, as the BLP value—which is manually provided—gets higher, so
does the penalty of having boundaries with removed pixels. After preliminary tests, we chose
the boundary length penalty (BLP) of 0.001, that empirically avoided pixel aggregations [71].

From this preliminary calibration procedure, we used a warp factor of 1 and a boundary
length penalty of 0.01, for all runs, indicated in Zonation user`s manual [70]. The warp factor
[70] defines how many cells are removed at a time; therefore, we chose to remove one pixel at a
time, which results in a more refined solution. When defining which parameters to run the
program, we chose to use the Zonation feature to add edge points [70] throughout the Cerrado.
We thus added hypothetical borders to the landscape, so that the program could perceive
islands of poor habitat margined by “shores” of good habitat, without risking valuable cells
[70]. This allowed Zonation to highlight the very top pixels for conservation, irrespective of
fragmentation or current PA coverage. This was considered to be the best alternative to our
ambitions since we are looking to conserve biogeographic patterns, i.e. we are looking to retain
as much of original ranges as possible, not only the pixels with the highest overall richness.
When testing hypothesis (iii) and (iv) we added current protected area (IUCN categories I-IV)
distribution as a mask layer.

To investigate the effects of habitat loss and protection scenario on Cerrado conservation
priority areas, we ran Zonation software under four scenarios: (a) no habitat loss (i.e. original
potential ranges), and no PA coverage; (b) no habitat loss, and current PA coverage (strict pro-
tection areas IUCN categories I-IV as permanently PA in the analysis mask layer); (c) habitat
loss until 2010, and no PA coverage; and (d) habitat loss until 2010, and current PA coverage.
We chose to run Zonation both with and without habitat loss to look for differences among
potential complementary regions for current protection area distribution (i.e. with current PA
coverage) [72,73], and areas that would be prioritized when not taking in account such current
protection areas [74]. We presented all resulting maps emphasizing the top 25% priority areas,
and a map with the original values for the scenario with current PAs and habitat loss is pro-
vided in S1 Fig.

Results

Biogeographic patterns and habitat loss
We estimated ranges for all 49 endemic Squamate species forming biotic elements (see Fig 1).
We found no significant differences between observed and expected habitat loss among species
within each BE (S1 Table). Current habitat loss, however, was significantly different among
BEs (Kruskall-Wallis = 28.1858, df = 6, P<0.005), with losses in BE 3 (Paraná-Paraguay) sig-
nificantly higher than those in BE 1 (Tocantins-Serra Geral, obs. dif. = 31.28, critical dif. =
19.76) and BE 5 (Espinhaço, obs. dif = 29.30, critical dif = 22.01) (Fig 2A, see also Fig b and d).

Protected area cover and systematic conservation planning
In general, species in BEs were poorly covered by protected areas (PA), with an average of 2%
PA coverage (Fig 2; S2 Table). We could not detect significant differences of PA coverage
among BEs (Kruskall-Wallis = 7.6359, df = 6, P = 0.266). Priority areas detected with Zonation
were generally similar across all scenarios (Fig 3). There are basically eight different regions
pointed out as priorities, represented by different numbers in Fig 3 and named after nearby
PA, if there is any. For all scenarios, larger priority area clusters are located in the northern por-
tions of the Cerrado (Fig 3), overlapping the range of species in BE 1 (Tocantins-Serra Geral,
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shown with brown borders, see Fig 3). Analyzing each scenario separately, when habitat loss is
not considered (Fig 3A and 3B), priority areas are segregated in small patches throughout the
Cerrado. However, when habitat loss is accounted for (Fig 3C and 3D), priority areas in the
southern and southwestern portions of the Cerrado become highly scattered in small, disjunct
fragments. These highly impacted priority areas overlap with ranges from species in BE 3
(Paraná-Paraguay, shown with red borders, see Fig 3).

Current PAs were partially embedded in priority areas (see Fig 3B and 3D), but only priority
region V (Serra Geral do Tocantins) (Fig 3A) is significantly represented by the current PA net-
work. Larger PAs are found mainly at the northern portion of the Cerrado region, coinciding
with priority areas within the Tocantins-Serra Geral BE range (outlined with brown borders,
see Fig 3B and 3D). However, there is a clear lack protection in the south-southwestern portion

Fig 2. Habitat loss and protected area (PA) cover per Biotic Element (BE). Boxplots indicating: (a) The
recorded percentage of habitat loss, per BE (1–7) until 2010; (b) The percentage of overlap of each BE
natural cover with Cerrado federal PAs e. Horizontal bars = median; box = first and third quartiles;
whiskers = minimum and maximum values. Percentages in the Y axes are logit transformed. Biotic elements
sharing common letters (A or B) had non-significant differences.

doi:10.1371/journal.pone.0133995.g002
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Fig 3. Priority regions for Cerrado squamate conservation. High priority regions for conserving endemic Squamates in the Cerrado, under four
scenarios: (a) without habitat loss and protected area coverage; (b) without habitat loss but including current protected area coverage; (c) considering habitat
loss, but without protected area coverage (d) considering both habitat loss and current protected area coverage. Numbered priority regions in letter (a): I–São
Paulo; II–Serra do Cipó; III–Brasília; IV–Chapada dos Veadeiros; V—Serra Geral do Tocantins; VI–Chapada dos Guimarães; VII–Três Lagoas; VIII–Serra
da Bodoquena. Gradient colors are as follows: dark red, the best 2% of the landscape; orange, the best 2–5%; yellow, the best 5–10%; light yellow, the best
10–25%. Protected areas (IUCN categories I-IV) are represented in dark green.

doi:10.1371/journal.pone.0133995.g003
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of the Cerrado, regions I (São Paulo), VI (Chapada dos Guimarães) and VIII (Serra da Bodo-
quena), which overlap with ranges of the highly deforested BE 3 (Paraná-Paraguay). The entire
extension of this southern Cerrado region is protected by only three very scattered relatively
large PAs: Emas National Park located between regions VI and VII, Serra da Bodoquena
National Park, west of priority region VIII, and Serra da Canastra National Park, located
between priority regions I and II.

Discussion

Current protection of endemic Cerrado Squamates
Conservation biogeography should provide solutions that incorporate different conservation
scenarios (cf. [75,76]). Thus, when we built two scenarios with PAs as mask layers, and two sce-
narios without mask layers, we expected to obtain different sets of potential priority areas for
conservation. As previously stated, we expected that if important areas were not represented in
current PA distribution, Zonation would point these areas as conservation priorities. On the
other hand, if such important areas were part of the current protected areas distribution, then
different areas would be signaled as conservation targets.

Contrary to our assumption that PAs would bias the representativeness of the original
regional species diversity and distribution data set [70], they had no significant influence on
the prioritization results in our study (Fig 3). Furthermore, Zonation did not seem to cluster
priority areas around current protection areas, in scenarios ‘b’ and ‘d’ (see Fig 3C and 3D). It
seems that, in general, current PA coverage would only influence the priority area location out-
put from Zonation either when its coverage is significantly large relative to the whole region
extent, e.g. fully covering at least one of the priority areas highlighted when considering the
species original distribution; or if they were to represent an area with a particular set of biodi-
versity features, e.g. a gathering of restrict endemic species. Both scenarios could, consequently,
raise the value of occurrence of a once secondary biodiversity feature, signaling it as a priority
area for conservation when current protected area coverage is considered. Clearly, this is not
the case for the Cerrado, whose realtively small protected area network, covering less than 2%
of the region [28], was not large enough to significantly alter the distribution of spatial priori-
ties at the biome scale.

Despite their small overall area, our results show that current protected areas partially over-
lap small fractions of priority areas II (Espinhaço), IV (Chapada dos Veadeiros), V (Serra Geral
do Tocantins) and VI (Chapada dos Guimarães) (Fig 3A), highlighting the importance of the
current PA in safeguarding Cerrado species diversity and biogeographical patterns. The clear
overlap between the top priority areas in the nucleus of region VI and Chapada dos Guimarães
National Park suggests that the existence of the park could be granting the preservation of his-
torical biogeographic patterns in the region, even though its creation in 1989 [77] was not
based in standard systematic approach of conservation as defined in the conservation planning
literature [45]. Therefore, this situation stresses that although sometimes we may not truly
know if we are conserving what we say we are [78], it is important to preserve and adequately
maintain the reserves already established [79], because they are an effective in reducing defor-
estation and representing species regional diversity [80]. In fact, many biogeographical areas
now largely affected by habitat loss, such as the entire Paraná-Paraguay BE in southern portion
of the domain, have their last remnants within Cerrado protected areas (Emas, Serra da Canas-
tra and Serra da Bodoquena National Parks). If not for these key areas, the entire biotic element
would now be almost totally converted to anthropic areas.
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Threatened biogeographic patterns
Overall, irrespectively of the region, every species suffered decreases in current ranges as an
effect of habitat loss (see S1 Table), a consequence of the massive and widespread habitat losses
driven by the use of mechanized agriculture [27,28]. Nevertheless, we obtained significant dif-
ferences in habitat losses between BE III (Paraná-Paraguay) and BEI (Tocantins Serra-Geral),
and BE III and BE IV (Espinhaço) (Fig 1). It is noteworthy that the most imperiled BE (BE III
—Paraná-Paraguay) is located at the southern portion of the Cerrado, which overlaps with Bra-
zil’s most populated and developed region, that holds the three largest metropolitan regions in
the country [81]. On the other hand, the least imperiled BE (BE III—Tocantins-Serra-Geral),
i.e. the BE which held least habitat losses and proportionally most of its species EOO under PA
areas, is located at the Northern portion of the Cerrado, distant from the same large Brazilian
economical centers [82], and showing least developed and less populated cities than their
southern counterparts [81,82].

Biotic element IV, the other biographical unit suffering significantly smaller losses than BE
III, is the Espinhaço region. Even though the Espinhaço (BE IV) is geographically close to the
massive economical centers in the south-eastern region of Brazil [81,82] (see Fig 1), it is a
region formed mainly by steep and rocky outcrops [46], which potentially hampers any
attempt of implementation of mechanized agriculture, or anthropic occupation, the main driv-
ers of deforestation not only in Brazil [27,28], but also globally [26].

Not surprisingly, habitat losses among the BEs located in the Central region of the Cerrado,
and the northernmost and southernmost BEs (Fig 2) were not significantly different, possibly a
consequence of the south-northern [27,28] contiguous pattern of deforestation in the Brazilian
Cerrado. This gradient is in consonance with the recent extensive occupation of Central Brazil
[27], which has suffered important losses in habitat cover in the past 40 years, due to the expan-
sion of agribusiness for exportation [25,27,28], and to the reallocation of the Country capital
from Rio de Janeiro to Brasília in the early 60’s, coupled with an expansion of the road network
and an intensive urbanization of Central Brazil [83]. Furthermore, future projections of habitat
loss in the Cerrado point towards a maintenance of the current expansion rate of agriculture
[84]. The Cerrado will continue to be the main region for landscape conversion in Brazil [85],
and, proportionally, BEs in the Southern region of the Cerrado will probably continue to be
heavily affected by deforestation (only 34% of the original cover remains). It is clear that the
Cerrado could be part of the ongoing worldwide process of species loss due to anthropic causes
[86].

When comparing priority areas either considering or neglecting habitat loss, we found dif-
ferent regions for implementing conservation efforts (Fig 3B and 3D). Facing the current pic-
ture of habitat loss of the Cerrado, the best 10–25% priority areas for conservation areas
appeared in central and northern parts of the Cerrado (Fig 3C and 3D). This situation is possi-
bly a consequence of the loss of important areas for conservation in the southern portion of the
Cerrado (Fig 1B and 1C) a result that we also obtained for the losses within each BE (Fig 2C).
This pattern is also perceived with little modifications for priority areas in the northern portion
of the Cerrado, and the, comparatively, small losses of this region (Fig 2A and 2B). Central and
northern portions of the Cerrado have only recently been occupied, and their biogeographical
heritage is thus less impacted by habitat loss, and more prone to be represented by larger
reserves. This is a typical situation in long-settled regions of the world: by the time biodiversity
conservation became a social priority, only a non-random subset of the original habitat types
was available for conservation management [87]. This biased distribution of conservation
units, and of distribution of suitable habitats for conservation initiatives, is found in most ter-
restrial ecosystems and regions [80,88,89].
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Where and why to protect
Historical factors are important to the formation of Squamate faunas [16,38,90], and assuming
that species forming BEs are likely to share a common biogeographic history [17], our data
shows that we may be losing historical information in the Cerrado. As in the Cerrado the first
areas to be loss are exactly the interfluvial plateaus [28], key biogeographical areas patterns for
Squamates [16], and for multiple vertebrate groups in the Cerrado [15,29].This scenario is a
consequence of the non random deforestation pattern in the Cerrado due to the expansion of
mechanized agriculture [27,28], since, in general, the best farming land are tabletop savannas,
these are the first areas to be cleared [87].

Moreover, our results indicate that the current PA system in the Cerrado is not representa-
tive of regional biogeographic regions and does not take into account ancient and current pat-
terns of diversity distribution [2]. Hence, highly important regions for the conservation of
biogeographical patterns in the Cerrado are both negatively impacted by deforestation and
poorly protected (Fig 3). This indicates that decisions about the location of PA were opportu-
nistic, based more on the availability of an area for conservation management, scenic beauty
and recreational values, regardless of underlying biogeographical and biodiversity patterns (see
discussions in [91–93]). Also, the general lack of protection in agriculture prone regions may
stem from an opportunistic reserve selection, favoring globally the protection of dry, unfertile,
rocky or steep habitats [92, 94],.

As the Cerrado rapidly disappears [28], we point out that it is crucial to both expand the
Cerrado PA network in western Cerrado, mainly in priority areas VI (Chapada dos Guimarães)
and VIII (Serra da Bodoquena), through a systematic approach (sensu [45]) and to maintain
and properly manage the small remnants and PA in the southern Cerrado [80,95], priority
areas I (São Paulo) and VII (Três Lagoas), in order to effectively protect biogeographical and
evolutionary information on the richest and most imperiled savanna region in the planet.

Supporting Information
S1 Fig. Regions for Cerrado squamate conservation. Suitable regions for implementing con-
servation actions for Cerrado endemic Squamates, considering both current habitat loss and
protected area coverage. Gradient colors are as follows: dark red, the best 2% of the landscape
for conservation efforts; red, the best 2–5%; orange, the best 5–10%; dark yellow, the best 10–
25%; yellow, 25–50%; pale yellow the remaining 50–100%. Cerrado original cover is repre-
sented in light gray. Protected areas (IUCN categories I-IV) are represented in green.
(TIF)

S1 Table. Distribution and Threat data for all 49 endemic squamates forming Cerrado
Biotic elements. Group: amp—amphisbaenians; liz—lizards; ser—serpentes. Taxon: species
names according to Bérnils & Costa (2012). NR: number of locality records for each species.
PAC: Protected Area Coverage, calculated by the sum of the species original distribution cov-
ered by protected areas (IUCN categories I-IV). % PA: Percentage natural vegetation within
range covered by protected areas. BE: Endemic Biotic Element number as in Nogueira et al.
(2011). OR: Expected area of natural vegetation within range in the original Cerrado coverage
(in km²). 2010: Expected area of natural vegetation within range in the year 2010 (in km²). BE
2010: Expected area of natural vegetation within range in the year 2010 if losses were homoge-
neous throughout the BE (in km²).
(XLSX)

S2 Table. Area loss comparison among Biotic Elements. Legend: BE: Biotic Element num-
bered and named as in Nogueira et al. (2011). Denomination: Biotic element's denomination
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as in Nogueira et al. (2011). D: Kolmogorov-Smirnov test result. P-value: For the statistical
analyses we considered a significance level of 0.05.
(XLSX)
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