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ABSTRACT 

 

In line with an emerging paradigm, theorization in psychology should not be restricted to 

verbal descriptions of thought and behavior. If phenomena can be somehow expressed by 

numbers, theory must adopt mathematical and probabilistic reasoning, in a way that 

traditional data analysis cannot accomplish. While often implemented in theories of decision 

making, signal detection and item response, mathematical and probabilistic reasoning are 

rarely identified in important socio-psychological processes. Excuse giving occurs when 

someone tries to disengage one’s self from the cause of a social fault. It is an impression 

management strategy mostly explained by attributional theory, not yet subjected to a 

mathematical psychological approach. The main objective of this thesis was to formalize and 

test part of Weiner’s attributional theory as a social decision making process. By using 

dichotomous judgment tasks of usability and distance evaluation of adequacy, consequences 

and assumptions of excuse giving were assessed in two studies. Study 1 (n = 63) was aimed 

at explaining why people prefer external over internal excuses. Bayesian multidimensional 

scaling identified that external and internal excuses occupy different psychological spaces. 

Also, a quantum model of order effects fitted the data well, which means that the preference 

of excuse types could be predicted by the quantum principle of interference. Study 2 (n = 92) 

was conducted to formally characterize excuse giving as an impression management process. 

It is congruent with attributional theory, where motivational latent variables predict which 

excuse type people would rather use. A Bayesian latent mixture model showed that people 

indeed preferred external excuses, but only when highly motivated to be excused. The 

findings of this thesis make it possible to make better inferences about how people excuse 

themselves. As measured in a psychological space, people differentiate excuses given their 

level of adequacy, being the consequences of this differentiation moderated by the motivation 

one has to manage a relationship. Furthermore, using an excuse can be affected by taking into 

account its consequences and in which order they are evaluated. Further investigation should 

study if these inferences are generally valid. Some aspects of attributional theory remain 

unexplored from a mathematical psychology perspective, which could help clarify the often 

puzzling evidence in the literature. Applications of excuse giving and social decision making 

are discussed. 

 

Keywords: excuse giving; attribution theory; formal theorizing; cognitive modeling; 

Bayesian analysis. 
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RESUMO 

 

De acordo com um paradigma emergente, a teorização em psicologia não deve ser restrita a 

meras descrições verbais de como nos comportamos e pensamos. Se os fenômenos podem ser 

de alguma forma expressos por números, a teoria precisa também adotar um raciocínio 

matemático e probabilístico, algo que a análise tradicional de dados não pode realizar. 

Embora natural no avanço das teorias de tomada de decisão, de detecção de sinal e de 

resposta ao item, entre outras áreas, isso raramente é identificado em importantes processos 

sociopsicológicos. Desculpar-se é o processo de desvencilhar a si mesmo da causa de uma 

falha social. É uma estratégia de gerenciamento de impressões, em grande parte explicada 

pela teoria atribucional, a qual ainda não foi submetida a uma abordagem de psicologia 

matemática. O objetivo principal desta dissertação é formalizar e testar parte da teoria 

atribucional de Weiner como um processo de tomada de decisão social. Isso foi feito ao se 

avaliar as hipóteses sobre as consequências e pressupostos no contexto de desculpas em dois 

estudos, usando tarefas de julgamento dicotômico sobre usabilidade e tarefas de julgamento 

de distâncias de adequação. O Estudo 1 foi conduzido para explicar por que as pessoas 

preferem desculpas externas ao invés de internas. Utilizando o escalonamento 

multidimensional Bayesiano, 63 participantes permitiram identificar que as desculpas 

externas e internas ocupam diferentes espaços psicológicos. Além disso, um modelo quântico 

de efeitos de ordem teve um bom ajuste aos dados, o que significa que a preferência de tipos 

de desculpas pode ser predita pelo princípio quântico da interferência. O Estudo 2 foi 

conduzido para caracterizar formalmente o processo de se desculpar como um processo de 

gerenciamento de impressões. Isto significa, e é congruente com a teoria atribucional, que a 

variável latente motivacional deve prever qual tipo de desculpa as pessoas preferem usar. As 

respostas de 92 estudantes de graduação foram modeladas através de um modelo Bayesiano 

de mistura latente. Os resultados mostraram que as pessoas realmente preferem desculpas 

externas, mas somente quando altamente motivadas para serem desculpadas. Os achados 

desta dissertação mostram que as pessoas diferenciam as desculpas de acordo com seu nível 

de adequação, medido em um espaço psicológico. Esta diferenciação é moderada pela 

motivação que se tem de gerenciar um relacionamento. Finalmente, o uso de uma desculpa 

pode ser afetado pelas possíveis consequências que são levadas em conta, e em que ordem 

elas são avaliadas. Pesquisas futuras precisam avaliar a possibilidade de generalização dessas 

inferências. Além disso, aspectos da teoria atribucional permanecem inexplorados a partir de 

uma perspectiva de psicologia matemática, os quais poderiam ajudar a esclarecer evidências 

ambíguas na literatura. Aplicações do uso de desculpas e tomada de decisão social são 

discutidos. 

 

Palavras-chave: desculpas; teoria de atribuição; teorização formal; modelagem cognitiva; 

análise Bayesiana. 
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EXCUSE GIVING, SOCIAL DECISION MAKING, AND BAYESIAN STATISTICS:  

THE MATHEMATICAL PSYCHOLOGY OF AN ATTRIBUTIONAL PROCESS 

 “I am sorry, but I am just very lazy”. According to empirical findings by Weiner 

(2006), many people would hardly accept an excuse like that from someone who refused to 

help in a difficult time. These empirical findings also show that excuses with external causes, 

based on situational justifications, are usually, and by large, preferred over excuses with 

internal causes, based on dispositional justifications. Despite the large use of Weiner’s 

attribution theory (1995) to explain those findings, recent evidence shows moderating effects 

that affect the overall logic for the attribution theory (e.g., Pilati et al., 2015).  

The psychological mechanism of attribution theory applied to excuses is theorized 

mainly by verbalizing. This means, in plain English, that it is based largely in a “good idea” 

and indirect inferences of implied relations between variables are verbally reported. 

Therefore, the study of excuses, and the attribution theory itself, could be invigorated with 

the practice of formal theorization—the use of logic and mathematics to describe theories 

(Devlin, 2012).  

Mathematics is the language of quantities and patterns (Pasquali, 2001). Traditionally, 

in psychology as a whole, mathematics and statistics are mostly used to analyze data. The 

theorizing is mostly verbal, which means that phenomena are explained without formalization 

(Adner, Polos, Ryall, & Sorenson, 2009). Nevertheless, as empirical sciences mature, 

theoretical and empirical progress often leads to the development of formal models—in 

psychology, they can be called cognitive models. This happens as a consequence of the need 

to describe quantities and patterns, which are hard to describe with natural language. To a 

data scientist, as a mathematician or a statistician, cognitive models remain naturally 

interpretable as statistical (or mathematical) models, and in this sense modeling can be 

considered an elaborate form of data analysis. The main difference is that models will 
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formalize processes and parameters that have stronger claims to psychological interpretability 

(Lee, in press). As a consequence, statistical, mathematical and cognitive models are very 

alike. It is often possible for a statistical model to have valid interpretations as a method of 

data analysis and as a psychological model. Similarly, psychological models developed in a 

specific context can be extended to other applications. This means that different 

psychological processes may function alike. Therefore, despite the duality, the distinction 

between data analysis and psychological modeling is a useful one. 

Lewandowsky and Farrell (2010) describe three different classes of quantitative 

models. The first is data description. As the name suggests, they only describe relations of 

variables. They are explicitly devoid of psychological content, although the modeled function 

constrains possible psychological mechanism to the phenomena. The second is process 

characterization. These models postulate and measure distinct cognitive components. Yet, 

they are neutral about how specific instantiations underpinning the cognitive components 

work. Finally, we have process explanation. Like characterization models, their advantage 

stands on hypothetical cognitive constructs. However, they provide detailed explanation 

about those constructs. Summing up, descriptive models tell us that variables are somehow 

related. Characterization models tell us what processes originate the variables relations. 

Explicative models tell us how exactly variables are related. Each model has its advantages 

and drawbacks. It is up to the research problem, and the researcher, to define which will suit 

better the data available.  

Here we investigate psychological aspects of excuse giving by applying formal 

theorization. The present dissertation is organized in two independent manuscripts, following 

the American Psychological Association guidelines for submission to scientific journals. 

Manuscript 1 describes a survey, aimed to testing two explicative models for excuse giving: 

distances in psychological spaces for control loci differentiation and quantum cognition of 
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preferences for excuse type. Manuscript 2 describes another survey, aimed to test a Bayesian 

latent-mixture model, so there is a reported formal characterization of excuse giving as an 

impression management process.  

It should finally be pointed out that these papers are a first attempt to initiate a 

research program of social decision making, focused mainly on the use of quantitative 

analysis and, even more, formal theorizing, which is sparse in the psychological literature as 

a whole (Coleman, 1964; Doignon & Falmagne, 1991; Falmagne, 2005; Lewandowsky & 

Farrell, 2010). Results from this type of research may have many potential applications to 

benefit psychology as a science, lowering questionable research practices and also lowering 

unending debates that cannot be solved with simple discussion of ideas (e.g., Heathcote, 

Brown, & Mewhort, 2000).  
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Abstract 

Excuses can have external or internal causes. Literature shows that external are usually more 

acceptable than internal ones. Does this preference stands albeit the use of more precise 

analysis of preference? This study has two main objectives. First, to test the hypothesis that 

good and bad excuses are constrained in different psychological spaces by a Bayesian 

Multidimensional Scaling (BMDS) model. Second, to estimate the preference people should 

have about two different types of excuses based on a quantum model of order effect. Sixty-

three undergraduate students judged the use of external and internal excuses presented in 

different orders, and eight excuses, evaluated in an adequacy scale. Results showed that 

external and internal excuses are constrained in different psychological spaces and that 

preference in excuse-giving context follows a quantum principle of interference. 

Consequences of those findings make essential that individual differences and their relation 

with excuses types be further investigated.  

Key-words: Excuse-giving; attribution theory; Bayesian Multidimensional Scaling; quantum 

model of order effect. 
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Representational space and quantum cognition: Why do people prefer external excuses 

Excusing oneself involves two meaningful processes: first, self-evaluations of one’s 

ability and will to act well (Snyder & Higgins, 1988); and second, a perception about one’s 

need to be excused by others (Schlenker, 1980). Although different, both have a convergent 

purpose - impression management. According to decision making theory, one way of people 

distinguishing themselves is through their preferences (Dake & Wildavsky, 1991; Levin & 

Hart, 2003). In an excuse-receiving context, excuses with external causes are generally more 

accepted than excuses with internal causes (Weiner, 2006). Nevertheless, there are neither 

direct evidences about excuse-givers preferences nor estimates for the magnitude of this 

inferred preference. 

 The study of preferences has been guided mostly by theories that value maximization 

and assume that each person possesses stable preferences for all possible options—an internal 

global preference set (i.e., utility theory; Kami, Maccheroni, & Marinacci, 2015; prospect 

theory; Glöckner & Pachur, 2012). This has a meaningful consequence: despite prescribing a 

utterly simple set of decision rules, if one does not have a global preference, the application 

of the principles of value maximization is idle (Tversky & Simonson, 1993). 

 Moore (1999) argues that actual behavior deviates from predicted behavior by models 

of value maximization because people do not possess established global preference orderings. 

The author proposes that, instead of global preferences, people have mental schemas that 

allow them to generate preferences when called for. Therefore, it is important to know if 

apparently different alternatives are perceived as such. Also, even if not perceived as 

different, it is relevant to know whether elements of the same category present different 

preference orders, one over another. 

 One method vastly used in psychology to identify the differences between a set of 

stimuli (or categories of options) is multidimensional scaling (MDS, Young, 2013). It has 
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been used, for example, to study animacy categorization (Sha et al., 2015), organizational 

values (Smith, Dugan, & Trompenaars, 1996) and stereotyping (Koch, Imhoff, Dotsch, 

Unkelbach, & Alves, 2016). In summary, MDS can be said to be a method for estimating the 

distance between objects in a psychological space. In this psychological space, however, 

positive or negative poles have no meaning–they only represent relative spatial locations 

(Young, 2013). This makes possible to know if stimuli are differently evaluated, but 

impossible to infer the valence of the evaluation. 

To evaluate the valence of judgments, one can use an order effect paradigm (Moore, 

1999). Order effects occur when preferences change given different orders of exposition of 

the possible alternatives. Thus, formal models of order effects can be used to make inferences 

about the preferences one has. The task to mathematically model order effects, however, is no 

easy to classical probability theory apparatus (Aerts & Sozzo, 2011). A growing framework 

of modeling techniques, called quantum cognition, on the other hand, has been successful to 

model different types of order effects (Bruza, Wang, & Busemeyer, 2015). 

Both modeling techniques, MDS and quantum model for order effects, can show, 

respectively, how people tell excuse types apart and test the possible preference for one type 

over another. Therefore, the objective of this study is twofold: testing whether excuses with 

external and internal causes occupy different psychological spaces; and modeling the relative 

valence and magnitude of these differences using a parameter-free quantum model of order 

effects. 

Excuse giving and attribution theory 

 To commit a social fault demands that one uses an impression management strategy 

known as excuse giving: ideally, you want your relevant ones to know that you did not want 

to cause harm (Mehlman & Snyder, 1985). When one has to manage his or her impression in 

an excuse-giving context, deciding between strategies involves, at least, two basic beforehand 
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paths (Weiner, 2006): the cause of your fault was dispositional (internal); or situational 

(external). This means that the fault can be a consequence of a characteristic that you present 

(e.g., “Sorry, but I’m lazy”) or an event independent of who you are (e.g., “Sorry, but there 

was a traffic accident”). Saraiva and Iglesias (2013) have shown, using Weiner’s attribution 

theory in a Brazilian context, that people tend to accept external excuses more than internal 

ones. Weiner et al. (1987) have originally identified this same trend, so they labelled external 

excuses as “good” and internal excuses as “bad”. 

 From a value maximization point of view, it would be expected that, since external 

excuses are more likely to be accepted, they should also be more likely to be used. 

Nevertheless, when excuse-givers use convenient causes, they risk being seen as deceptive, 

self-absorbed, and ineffectual (Schlenker, Pontari, & Christopher, 2001). This means that, 

influenced by the context, excuse-givers would have to worry not only with being absorbed, 

but also with not being perceived as deceivers. Empirically, without a specific relational 

context, this may have two main consequences: internal and external excuses are 

differentially evaluated; and excuse-givers will have the same preferences as excuse-

receivers. 

 Difference evaluation and preferences are difficult to be analytically tested (Hunt, 

2006). Lewandowsky and Farrell (2010) argued that classical statistical analysis does not 

allow to making explanatory conclusions about psychological processes. To make inferences 

about why people differentiate excuse-types and the mechanism the predict preferences 

estimates, more elaborate models should be used. Respectively, a multidimensional scaling 

and a quantum model for order effects provide explanations for the psychological processes 

involved. 

Spatial analysis of human mental representations 
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The study of the how humans distinguish between stimulus domains starts with the 

concept of human mental representation, or the internal cognitive abstraction that represents 

external reality (Perner, 1991). Mental representation theory, in turn, is the basis for the MDS 

model (Shepard, 1974), which has provided psychologically meaningful representations of 

many stimuli domains (Young, 2013). MDS is a statistical method for finding a spatial 

representation of a set of objects, based on the (dis)similarities between them, represented in 

low-dimensional spaces. The distance between each pair of objects is the estimative of 

similarity between them, so more similar objects are nearer each other than dissimilar ones. 

The initial development of the formal theory behind MDS was done by Shepard 

(1987). His theory centered on how stimulus generalization occurs. Nowadays, not only it is 

used to study the relation between categorization, identification and learning (Nosofsky, 

1992) of stimulus classes, but is also a tool to understand how psychological constructs, such 

as personality traces (Papazoglou & Mylonas, 2016), are represented in the human mind. 

Facet theory (Canter, 2012), a systematic approach to facilitating theory construction, is also 

heavily based on the use of the MDS. However, the present paper is oriented to its original 

use, estimation of distance between psychological representations, given by Shepard (1987). 

 Despite all of its successful use, the application of MDS has its limitations, such as 

restricted capacity to estimate the real distance between representations. Such limitation can 

be surpassed by Bayesian multidimensional scaling (BMDS, Appendix A), a method 

developed by Oh and Raftery (2001). The authors propose a series of modifications in the 

classical MDS and show that BMDS has, at least, three main gains. First, it provides a better 

fit than classical MDS. Second, it provides a probability distribution of the estimated 

distances, an exclusive characteristic of Bayesian methods (see Gelman & Shalizi, 2013). 

Third, the Bayesian criterion for size selection, MDSIC, is a direct method to estimate the 

optimal dimensionality of the measurements. 
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The estimation of preferences: Modeling order effects 

As a general consensus, preferences are revealed when an option is picked over other 

ones, dominating it, even when the others are normatively irrelevant (Moore, 1999). In other 

words, options that are accompanied by a downward comparison to an inferior option are 

thereby seen as more attractive. The converse of this pattern is the tendency for options to be 

less popular when they are dominated by other alternatives than when they are not, even if 

those other alternatives are normatively irrelevant. This is what the paradigm of order effects 

tries to measure (Xu & Wang, 2008). The modeling of order effects, however, is not a simple 

task. 

Recent research has shown that human decision making is biased by inferences in 

similar ways to incompatible quantum observables (Busemeyer, Wang & Lambert-

Mogiliansky, 2009). Also, judgments about individual preferences are dependent, acting as 

entangled quantum states (Aerts & Sozzo, 2011). Both series of evidences characterizes the 

quantum cognition framework. Quantum cognition (QC) is a paradigm stemming from the 

field of physics for constructing cognitive models based on the mathematical basis of 

quantum probability theory. This theory, just like the classical probability theory, is also a 

framework for assigning probabilities to events, based on different assumptions about random 

events underlying process (see Gudder, 2014). 

One important feature of QC models is the complementarity of the measurements 

(Aerts, 2009).  This means, for instance, that the order of a pair of questions presented in a 

questionnaire may bias the participant response. The mechanism for this consequence is the 

fact that classical probability necessarily obeys the commutative rule, which states that 

conditioned probabilities affect each other equally, independent of the order of their 

computation. Quantum probability, on the other hand, follows the complementarity rule: the 

measure of a first event produces a context that changes the value of the next event. 
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Therefore, order effects are a natural consequence of a QC probabilistic model, but not a 

trivial task for models based on classical probability theory (Busemeyer & Wang, 2015). 

Trying to account for order effects, Wang, Solloway, Shiffrin and Busemeyer (2014) 

introduced a QC model known as quantum model of order effect (QMOE, Appendix B). 

QMOE is a parameter-free model, which means it has not to estimate any of its parameters 

from data. Nevertheless, it can be tested using a chi-squared test of the observed order effect 

and of the a priori forecast assumption, called quantum question equality (QQ). For the 

former, the test should be significant, but for the latter, the test should be not. 

To calculate the effect of order of the answer probability, one only need to subtract 

the probability of using the internal excuse, as it is presented after the external excuse, from 

the probability to use the internal excuse when it is presented before the external excuse. If 

the probability remains the same, no order effect is observed. If the probability increases, 

there is an additive effect of order. If the probability decreases, there is a subtractive effect of 

the order (for details on the computation of the QQ, see Wang et al., 2014). 

Summating, external excuses are preferred over internal excuses for those who 

receive than. The same trend may be expected when in the perspective of those who give 

them. Also, it is necessary to have a more robust analytical method to test this inference. 

BMDS can be used to show that, in a psychological space, people differentiate those excuse 

types. QMOE can be used to show what the magnitude of the difference between those 

excuse types. It is hypothesized that BMDS will show different clusters for internal and 

external excuses and that QMOE will show a preference for excuses with external causes. 

Method 

Participants 

To test the hypothesis of this study, 63 undergraduate psychology students from a 

federal institution, with mean age of 20 years (SD = 2.17), answered the final questionnaire. 
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Following Barnett’s (1972) orientation on sample size for MDS, a sample of at least 61 

people was sought. Despite this orientation being made for classical MDS, BMDS has better 

performance with smaller samples sizes (Oh & Raftery, 2001). 

Measures 

Initially, four judges evaluated 16 written excuses created for this study. There were 

four contexts, also used by Saraiva and Iglesias (2013), each with four initial excuses, two 

external and two internal, modified from Weiner (2006). The contexts were related to: being 

late for an appointment; missing an appointment; having a poor performance on a task; and 

harming someone. Specific relationship types, as a friendship, were avoided, given that they 

could bias participants’ responses (Franco, Iglesias, & Melo, 2015). Aiming to keep only the 

more recognizable excuses—within external and internal categories—any excuse statements 

that were discordantly judged were excluded. Finally, there were four excuses reflecting a 

tardy individual and two excuse statements for two other contexts, half external and half 

internal. The final items used in this study are presented in Table 1. 

Table 1 

Final excuses according to theoretical locus of control and specific context. 

Context 
Internal 

Excuses 
External 

Excuses 

Late for an appointment 

(Imagine that you arrived late 

for an appointment and have to 

apologize) 

Sorry I'm late, but I forgot that we 

had scheduled that appointment. 

Sorry I'm late, but I had to call a 

plumber to fix a leak that appeared 

today at home. 

Sorry I'm late, but I wanted to arrive 

a little later. 
Sorry I'm late, but I came by bus and 

it broke on the way. 

Missing an appointment 

(Imagine that you did not attend 

an event and need to apologize) 

Sorry I did not appear, but this event 

was not relevant to me so I stood at 

home. 

Sorry I did not appear, but I had to 

take my mother, who got sick, to the 

hospital. 

Poor performance (Imagine that 

you had a poor performance in 

any group task and have to 

apologize) 

I'm sorry not to have given the best of 

me, but I did not wanted to worry 

myself with it. 

I'm sorry not to have given the best of 

me, but I was very sick. 

Harming others (Imagine that 

you caused harm to someone 

and needs to apologize) 

Excuse me the harm that I caused, 

even though I knew that it would 

happen. 

Excuse me the harm that I caused, 

but I was trying to fulfill a 

commitment. 
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 Procedures 

         Participants were invited from an email list. They were instructed to answer an online 

questionnaire with three main parts. First, the late/tardy for an appointment context 

statements were shown and two of the excuses, internal or external, in random order. In this 

case, participants should only indicate if they would or would not use the presented 

alternatives. Second, participants were shown all other contexts and excuses, also in a random 

order. In this case, they should judge on a scale ranging from 0 to 10, the adequacy of the 

excuse in the given context. Finally, participants answered questions about their sexes and 

age, followed by a short debrief. 

Results 

  The hypothesis that people differentiate between external and internal excuses 

because of their position in a psychological space was tested first. This was done by the 

application of Bayesian multidimensional scaling (BMDS) model to the data. Gower 

dissimilarities for ordinal measures (Gower, 1985) were estimated for the distances between 

excuses, given the nature of the measurement. To perform any Bayesian model, one needs to 

employ an algorithm that creates a quantity of simulated cases (named as “runs”). The initial 

cases are discarded (“burned in”) to avoid biased walks based on some initial random value 

(Gelman, Carlin, Stern, & Rubin, 2014). As the actual calculation of posterior distributions is 

computationally demanding, algorithms are used to sample–estimate the parameters of the 

model (see Gelman et al., 2014). 

For the present analysis, 35000 runs were set, with a 5000 initial burn in simulations. 

Those settings assured the convergence of all parameters estimations, according with 

Heidelberger and Welch (1983) and Geweke (1991) criteria. As for the optimal number of 

dimensions, MDSIC reached its lowest value at two dimensions, with a value equals to -
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38.31 and a Stress equals to .22. For a graphical inspection of the fit, Figure 1 presents 

clusters of the excuses using BMDS. Internal excuses (I#) are closer from each other and the 

same trend is observed for external excuses (E#). 

 

Figure 1. Clusters of the excuses using BMDS. Internal excuses (I#) are closer from each 

other and the same trend is observed for external excuses (E#). 

Table 2, on the other hand, shows the estimates for the mean distance for pair of 

excuses of the same type (Internal-Internal and External-External) and of different types 

(External-Internal or Internal-External). Finally, it is also shown the estimates for the lower 

bound and the higher bound of the 95% Bayesian confidence interval, or more commonly, the 

high density interval (HDI; Kruschke, 2010). 

Table 2 

Average estimated distance to each type of pair of excuses and their lower (LB) and higher 

(HB) bounds of High Density Intervals (HDI). 

 LB (2.5%) Mean HB (97.5%) 

I - I .07 .32 .57 
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E - E .06 .31 .56 

I - E .15 .40 .65 

The difference of those distributions can be seen in Figure 2. It is possible to see that 

there is more overlapping between average same excuse type distances (Internal-Internal and 

External-External) than average different excuse type distances (External-Internal or Internal-

External). Bootstrapped paired t-tests were used to test the difference of those distributions 

(given that all participants judged all the excuses). A 1,000 random samples were performed 

with size equal to 63 (the sample size of this study). No significant difference was found 

between Internal-Internal and External-External distances, t(62) = .41, p = .48, d = .07, 95% 

CIs [-1.65,2.45], [.01,.97], and [-.28,.44], respectively. Nonetheless, the difference between 

Internal-External and Internal-Internal/External-External distances was significant, t(62) = 

4.03, p < .01, d = .71, 95% CIs [2.03,6.35], [3E-8,.04], and [.37,1.09], respectively. 

 

Figure 2. Density estimations for the average distances between excuses pairs of same excuse 

type distances (Int and Ext) and of different excuse type distances (IntExt). 

To test the second hypothesis, that excuse–givers have preference for a given excuse 

type, the quantum model of order effect was applied to data. Contingency tables were 

constructed to measure the order effect and assure independence of the questions. The order 

effect was of a magnitude of .015, or 1.5%. Then, discrepancy tests were conducted. 
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Discrepancy testing follows a chi-squared distribution, but distinguishes itself from Pearson’s 

chi-squared test and traditional chi-square goodness of fit test (see Wang et al., 2014). The 

order effect was significant, χ
2
(3) = 7.60, p = .05, and the QQ equality was respected, χ

2
(1) = 

.013, p = .90. These findings, and the contingency tables, are shown in Table 3. 

Table 3 

Contingency tables for estimation of the order effect and the discrepancy tests. 

Observed proportions of the two question orders 

  
External-Internal 

  

 
  Iy In 

  

 
Ey .030 .454 

  

 
En .030 .485 

  

      

  
Internal-External 

  

 
  Ey En 

  

 
Iy .000 .033 

  

 
In .468 .500 

  
      

  Order effect   

   Ey En   

 Iy .030 -.003   

 In -.012 -.015   

      
Discrepancy tests 

 
Order effects χ

2
(3) = 7.60, p = .05 

 

 QQ Equality 
q = - .015 

 
  χ

2
(1) = 0.01, p = .90   

 

Discussion 

This study had two main objectives. First, to test whether a BMDS model can verify 

the hypothesis that external and internal excuses are constrained in different psychological 

spaces. The second was to use a model to estimate the preference people should present about 

two different types of excuses. To the first one, the BMDS model showed that external and 

internal excuses, or “good” and “bad” excuses, define different psychological-spatial clusters. 

This means that people assume different psychological representations, and therefore spaces, 



30 

to this kind of excuses. To the second one, the quantum model of order effect (QMOE) 

showed that people have a slight preference for the external excuse. 

One motivation to use MDS and BMDS is to have a formal basis for choosing the 

number of clusters, given a certain number of objects (Oh & Raftery, 2001). This cluster can 

show that people have a homogeneous process of judgement of excuses. In the present study, 

participants rated in which degree each excuse fits a given context. This is different from 

asking them to judge how acceptable each excuse is. Mussweiler (2003) argued that different 

basis for comparison—either similarities or dissimilarities—affects which final judgment 

people will make about a group of stimuli. 

By focusing on identifying the most relevant features, the goodness-of-fit found in the 

present study could be sensible to the process of how one retrieves information about the 

alternatives. For instance, based on Smith and Zarate (1992) exemplar–based model of social 

judgment, an excuse-giver self-schemata, a social context, and an in-group/out-group 

dynamics could change which dimension it focus in order to evaluate a given excuse in a 

more naturalistic set. Therefore, in future studies, it would be relevant not only to try to 

control which dimension is being evaluated, but also to estimate relevant dispositional 

variables. 

As found by Weiner et al (1987), people present preference for external over internal 

excuses. Using an order effect paradigm, in the present study, the internal excuse presented a 

negative order effect (Moore, 2002), which was significant according to the QMOE. This has 

an important implication. While traditional theory of measurement assumes that 

psychological measurement is just retrieval of latent information, this study corroborates that 

context and procedure of measurement may affect measurement itself (Khrennikov, Basieva, 

Dzhafarov, & Busemeyer, 2014). Again, this a conundrum for classical probability theory, 

but an easy task for quantum probability models of cognition. 
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If preferences in an excuse-giving context can be better described within a QC 

framework, three relevant aspects of how the mind works should be taken into account 

(Busemeyer & Bruza, 2012). First, judgments and decisions are not simply read out from 

memory, but rather, they are constructed from the cognitive state for the question at hand. 

Second, as a consequence, making a judgment or decision changes the context and disturbs 

(or interferes with) the cognitive system. Thirdly, this change will then affect the next 

judgment or decision, thus producing order effects. This is the quantum principle of 

interference (Khrennikov, 2003). 

Summing up, further investigation in the excuse-giving context should consider two 

important issues from the present study. First, excuses may be evaluated in more than one 

dimension. This evaluation may be sensitive to dispositional characteristics that predict by 

which dimension (or dimensions) one will react upon to. Second, the decision of which 

excuse to use follows a quantum principle of interference. Both issues make the case for 

defining which type of excuse may interact with subpopulations of individuals and how this 

affects their impression management strategies. 
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Abstract 

 

People typically feel a need to be excused when they commit social faults. Given that 

external excuses are usually more acceptable than internal ones, and considering excuse 

giving as an impression management process, it is plausible to assume that people with 

different dispositional motivations to be excused will have different patterns of excuse 

giving. Therefore, the present study has the objective of testing the fit of a Bayesian latent 

mixture model to a context of excuse giving. Ninety-two undergraduate psychology students 

judged the usability of four external and four internal excuses presented in random order. 

Results showed that the model is adequate to explain the pattern of responses in data. Also, 

that there is more people willing to be excused than people not willing to. Consequences of 

these findings make essential to identify exactly what motivational content affects decision 

making, and what is the process behind the choice of the excuse to use. 

Key-words: Excuse-giving; attribution theory; Bayesian modeling; latent variable. 
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Who wants to be excused? A Bayesian latent-mixture model of an impression 

management process 

Solving conflicts in social relationships is an inevitable part of everyday life. A common 

strategy used in this context is excuse giving, as explanations used for self-serving purposes 

aiming to reduce personal responsibility for some fault by disengaging core components of 

the self from an incident (Schlenker, 1980). Weiner (1985) proposed that the excuse process 

involves how people manage causal attributional perceptions, thus, meaning that the excuse 

giving can be understood as an impression management process. Weiner, Amirkhan, Folkes 

and Verette (1987) have also shown that excuses are more efficient if they have properties 

that make people perceive them as more excusable. Therefore, excuses that imply external, 

unstable causes are largely more accepted, while excuses that imply internal causes are 

largely less accepted.  However, the literature shows that people not always prefer to use 

external excuses over internal ones (e.g. Weiner, 2006; Franco, Iglesias & Melo, 2014). A 

model designed to explain the best variables to predict which excuses will be used is still 

necessary, so the aim of the present study is to present and test such a model. 

Managing your impression with excuses 

People evaluate which emotions are elicited on others by their behavior, before taking 

a course of action. At least that is what is expected from Weiner’s attribution theory (1986). 

This theory has been successful to explain individual's willingness to engage in information 

seeking (Savolainen, 2013), reasons for the disruption of commercial relations (Kalamas, 

Laroche, & Makdessian, 2008), and how perceptions of responsibility are linked to ideology 

and political attitudes (Sahar, 2014). According to Weiner (2010), the process of causal 

attribution has seven distinct steps. The most prominent ones are the outcome, the causal 

ascriptions and the behavioral consequences. The first involves the evaluation of 

consequences of behaving in a particular way—which emotions one, or others, will feel. The 
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second is about the evaluation of what causes are related to what kind of emotion. At last, 

there is the decision of what course of action to take. In an excuse giving context, this process 

can be exemplified as: when one commits a social fault, he/she may consider the real reason 

(e.g., "I did not want to go"), analyze this explanation for causal properties (internal, 

controllable, and intentional), anticipate the consequences of communicating that cause (e.g., 

high anger), and then make an action decision (withhold revealing the real cause) (Weiner et 

al., 1987). The property of choosing what to do, based on what others will think of you, 

characterizes excuse giving as an impression management process. 

A temptative framework by Leary and Kowalski (1990) on impression management 

can be matched with the previous attribution process proposal. It actually enables the 

parallelization of both theories. The authors specified two major components: impression 

motivation (whether and how much one is motivated to manage one’s own impressions); and 

impression construction (strategies to manage impressions in a given direction). The 

impression motivation component can be simply defined, in the excuse giving context, as 

people wanting (or needing) more or less to be excused by to whom they have committed a 

fault. The logic is: if a person has stronger needs to maintain a relationship, she will optimize 

the strategies to manage her own impression, while a person with low needs in maintaining a 

relationship will tend to use worse strategies (Pessoa, 2009). In the excuse giving context, if 

one has committed a fault and the maintenance of the relationship is something desired, one 

will tend to use external over internal excuses (Weiner, 2006). 

The impression construction component involves a more elaborated procedure, for 

two main reasons: what could be the strategies used to select the elements that composes the 

excuse; and what motivational processes could interact with these strategies. This level of the 

model can be thought as a decision making process, as it involves the conscious selection of 

some possible choices (Morçöl, 2007). Based on Weiner's attributional theory (1986), the 
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strategies used to select the elements that composes the excuse can involve how people 

perceive which causes are attributed to their actions, based on the locus of control (external, 

internal), stability (stable, unstable) and controllability (controllable, incontrollable) implied 

by the meaning of the construction of the excuse. Motivational processes that might interact 

with these strategies are the uncertainty, when the outcome is not certainly known, and the 

risk involved, the possibility of the outcome being harmful, all common characteristics of the 

excuse contexts (Dow & da Costa Werlang, 1992). A “utilized” signal detection theory based 

model can be used to describe this component, as it is particularly useful in predicting 

responses in situations of uncertainty and risk (Lynn & Barrett, 2014). 

At least two models can be proposed for the excuse giving process given those 

components: one that predicts the excuse people use only by the motivation they have to do 

it; and one that calibrates the elaboration of the excuse by the motivation people have to be 

excused (minimizing uncertainty and risks). To test the first one, a Bayesian hierarchical 

latent-mixture model is proposed to express the relationship between motivation and type of 

excuse, and it is inspired by Lee and Wagenmaker (2013) “two-country quiz” model. In 

statistics, a mixture model is a technique of modeling that is used to predict if categorical 

latent variables that represent subpopulations, where population membership is not known, 

can be inferred from the data. This process is usually called as finite mixture modeling 

(McLachlan & Peel, 2004). A special case of this family of analysis is latent class analysis 

(LCA). In the present scenario, the latent classes explain the relationships among the 

observed dependent variables, as in a data reduction procedure, but it provides classification 

of individuals, in contrast to factor analysis. The model about minimizing uncertainty and 

risks is beyond the scope of this study. 
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Bayesian cognitive modeling 

 Modeling can be thought as the process of formalizing—expressing in mathematical 

or logical terms—scientific theories. Cognitive modeling is what modelers in psychology do 

(Busemeyer & Diederich, 2010). Albeit there is a whole world of techniques to cognitive 

modeling, one of the most prominent approaches is the Bayesian cognitive modeling (Lee & 

Wagenmakers, 2014). This approach is based on Bayesian statistics; a framework where 

knowledge and uncertainty about variables is represented by probability distributions, and 

this knowledge can be processed, updated, summarized, and otherwise manipulated using the 

laws of probability theory (Lee, in press). Therefore, Bayesian statistics provides a formal 

proceeding for making inferences different to the frequentist framework of using p-value 

based analysis (for details see Barnett, 1999; Kruschke, 2014; Samaniego, 2010). 

 Bayesian statistics are known for its flexibility; there is no unique way for doing 

things right (Gelman, Carlin, Stern, & Rubin, 2014). The analysis of data depends on the 

argument you use to construct an analytical model, based on your knowledge on probability 

theory or on previous work. There are, at least, three different ways it can be applied in 

cognitive modeling (Lee, 2011). The first is to use Bayesian methods as standard analyses of 

data. The second one is to apply Bayesian statistics as a working assumption about how the 

mind makes inferences. Finally, Bayesian methods can be used in cognitive science to relate 

models of psychological processes to data. Each of these modeling perspectives has a 

singular goal in making sense of data. 

 When using Bayesian statistics as a method for conducting standard analyses of data, 

one is following the lead of some authors that proposes the abandon of statistical inference 

that is based on sampling distributions and null hypothesis significance testing (e.g., 

Edwards, Lindman, & Savage, 1963; Kruschke, 2010; Wagenmakers, 2007). They argue that 

inference based on frequentist framework—therefore, on the use of p-values, confidence 



43 

Intervals and error sampling—does not provide coherent conclusions about data. Some of the 

ideas that gave strength to this rationale were formally backed up by a statement made by the 

American Statistical Association (Wasserstein & Lazar, 2016). This statement is built on six 

principles concerning p-values and their use. For the present study, the sixth is the more 

relevant one: by itself, a p-value does not provide a good measure of evidence regarding a 

model or hypothesis. When testing models, you are obviously concerned with this principle, 

making Bayesian statistics the right choice for such end.  

There is also the Bayesian statistics as a working assumption about how the mind 

makes inferences. This approach is generally known as the Bayesian mind (Griffiths, 2006). 

In this case, Bayesian inference is used as an account of why people behave the way they do, 

without trying to account for the mechanisms, processes or algorithms that produce the 

behavior, nor how those processes are implemented in neural hardware. This has been an 

influential theoretical position in the cognitive sciences (e.g., Chater, Tenenbaum, & Yuille, 

2006) and is worth noting that it does not require the application of Bayesian data analysis. 

What it simply does is to say people receive inputs about the world, apply Bayes’ theorem, 

and then generate outputs (broadly, any cognition or behavior). Therefore, it simply says that 

people’s mind is Bayesian when doing rational analysis. 

Finally, for a full accounting of models on how mind works, there is the use of 

Bayesian statistics to relate models of psychological processes to data (e.g., Lee & 

Wagenmakers, 2014). It has some fundamental differences as compared to data analysis and 

the Bayesian mind approaches (Lee, in press). First, it has the goal to specialize the analytical 

model and to relate some aspect of cognition to behavioral or any observed data. For 

example, instead of using a generic generalized linear model to test data about decision-

making, you could test if the take-the-best model (Gigerenzer & Goldstein, 1996) makes 

accurate predictions about what is observed in data. Second, there is no requirement that the 
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cognitive models being related to data make Bayesian assumptions. Instead, they are free to 

make any sort of processing claims about how cognition works (Kruschke, 2010). The goal is 

simply to use Bayesian statistical methods to evaluate the proposed model against available 

data. Therefore, this third approach is the one which will be used to model how latent 

motivations (cognition) predict judgements about the usability of excuses (behavior). 

Who wants to be excused: Bayesian latent-mixture model 

The model can be exemplified as: in a given context (e.g. a friend’s birthday), you 

have to give an excuse for having committed a fault (e.g. you forgot her birthday). But you 

have at least a couple of things to consider before giving the excuse: how much you desire to 

maintain a good relationship with that person, and, depending on the strength of your desire, 

which excuse is more appropriate for that purpose. Figure 1 describes this situation in a 

graphical representation of a hierarchical Bayesian model (Appendix C). Thus, it expresses 

the causal relationship between latent motivations to be excused (categorically defined as 

high or low) predicting what kind of excuse (external or internal) people will tend to use. 

The notation used is the same as in Lee (2008). The observed variables are 

represented by shaded nodes and the unobserved variables are represented by unshaded 

nodes. Discrete variables are represented by square nodes, while continuous variables are 

represented by circular nodes. Stochastic variables are represented by single-bordered nodes, 

and deterministic variables are represented by double-bordered nodes. Finally, encompassing 

plates are used to denote independent replications of the graph structure within the model. 
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Figure 1. Graphical model representing the response being predicted by the match of the 

level of motivation to be excused and the quality of the given excuse. 

In this case, α is the probability of a person to use the excuse correctly associated with 

one’s latent group (e.g. use external excuse while belonging to the high motivation for 

impression management subpopulation). On the other hand, β is the probability of a person to 

use the excuse correctly associated with the other latent group (e.g. use internal excuse while 

not belonging to the low motivation for impression management subpopulation). 

Accordingly, α is expected to be high and β is expected to be low. To express this knowledge 

about the rates, the priors constrain α ≥ β, by defining α ~ dunif (0,1) and β ~ dunif (0,alpha) 

as a way to specify a joint prior over α and β in which α ≥ β, but it does not escapes criticism 

(for details, see Lee & Wagenmakers, 2014). The binary indicator variable xi assigns the ith 

person to one or another management motivation subpopulation, and zj assigns the jth item to 

one or other type of excuse (good or bad). Both are expressed by a Bernoulli distribution 

centered on .5. The probability the ith person will use the jth excuse is θij, which is simply α 

if the motivation to manage match the type of excuse, and β if it does not. The actual data kij 

indicating whether or not the excuse was used follows a Bernoulli distribution with rate θij. 

Finally, the model does not assume previous bias for subpopulation or excuse category 

belonging, configuring non-informative priors (Jeffreys, 1946). 
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Summing up, people might have different motivations to be excused after committing 

a social fault. According to attribution and impression management theories, this is what 

predicts the course of action in a given social interaction. In a latent variable analysis context, 

measuring the exact motivations may not be possible without further theoretical 

considerations. Therefore, it can be useful to distinguish people with intrinsic motivation 

classes: those who are highly motivated to be excused, and those who are not. In an excuse 

giving context, high or low motivation to be excused can predict the use of external and 

internal excuses, respectively. This happens because external excuses are, generally, more 

likely to be accepted than internal excuses. Finally, the Bayesian framework, through a latent-

mixture model, makes it possible to test the described relations. 

Method 

Participants 

To test the proposed model, an online selection task with 92 psychology 

undergraduate students, with mean age of 21 years (SD = 2.98), was conducted. This sample 

size was estimated with the goal to achieve a 95% high density interval (HDI) of maximal 

width of .2, given that the high and low motivation group have, at least, .55 bias towards 

using good and bad excuses, respectively. This procedure is based on Kruschke’s (2014) 

suggestions to a Bayesian method of sample size estimation. 

Measures 

Initially, four judges evaluated the 16 written excuses created for this study. There 

were four contexts, also used by Saraiva and Iglesias (2013), each with four initial excuses, 

two external and two internal, that were modified from Weiner (2006). The contexts were 

related to: being late for an appointment; missing an appointment; having a poor performance 

on a task; and harming someone. Specific relationship types, as a friend relation, were 

avoided, given that they could bias the participants’ responses (Franco, Iglesias & Melo, 
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2014). Aiming to keep only the more recognizable excuses—within external and internal 

categories—any excuse statements that were discordantly judged were excluded. Finally, 

there were four excuses reflecting a tardy individual and two excuse statements for two other 

contexts, half external and half internal. Nevertheless, for the first context, only two excuses 

were kept aiming to keep the same number of excuses for each context. The final items used 

in this study are presented in Table 1. 

Table 1 

Final excuses according to theoretical locus of control and specific context. 

Context 
Internal 

Excuses 
External 

Excuses 

Late for an appointment 

(Imagine that you arrived late 

for an appointment and have to 

apologize) 

Sorry I'm late, but I wanted to arrive 

a little later. 
Sorry I'm late, but I came by bus and 

it broke on the way. 

Missing an appointment 

(Imagine that you did not attend 

an event and need to apologize) 

Sorry I did not appear, but this event 

was not relevant to me so I stood at 

home. 

Sorry I did not appear, but I had to 

take my mother, who got sick, to the 

hospital. 

Poor performance (Imagine that 

you had a poor performance in 

any group task and have to 

apologize) 

I'm sorry not to have given the best of 

me, but I did not wanted to worry 

myself with it. 

I'm sorry not to have given the best of 

me, but I was very sick. 

Harming others (Imagine that 

you caused harm to someone 

and needs to apologize) 

Excuse me the harm that I caused, 

even though I knew that it would 

happen. 

Excuse me the harm that I caused, 

but I was trying to fulfill a 

commitment. 

   

 Procedures 

         Participants were invited through several email lists. They were instructed to answer 

an online questionnaire with two main parts. First, the participants were shown all contexts 

and their respective excuses in a random order. In this case, participants should only indicate 

if they would or would not use the presented alternatives. Second, participants answered 

questions about their sexes and age, followed by a short debrief. 

 

Results 
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 The model estimates four parameters from data. The first one is the probability to use 

an excuse typical from their subpopulation. This parameter is called α (alpha). The second 

one is the probability to use an excuse typical from the other subpopulation. This parameter is 

called β (beta). Thirdly is the proportion of participants in each motivation subpopulation. 

Fourth, the empirical category of each of the excuses. Accordingly, α is expected to be at 

least .05 higher than β, to avoid a randomness pattern in answers. Also, it is expected that 

most participants will be labelled as highly motivated to excuse. This means that most 

participants will, dominantly, use external excuses. Finally, the empirical category of the 

excuses should be equal to the theoretical category of the excuses. 

 To test the model, 35000 runs, being 5000 for burn in and 30000 for the simulation, 

were initiated. These settings assured the convergence of all parameters estimations, 

according with autocorrelation (Kruschke, 2014) and Geweke (1991) criteria. The 

autocorrelation criterion involves correlating the simulated estimate with itself, but with shifts 

(lags) in the chain. The value should get close to 0 as the lag gets higher. But, if the values 

are greater than .1, there is no convergence in your estimates. Also, autocorrelation estimates 

the effective sample size (ESS), which is the number of usable runs in a chain. As a 

convergence diagnostic tool, as closer as the ESS gets from the kept simulations (in this case, 

30000), the better is the chain. The Geweke criterion involves mimicking the simple two‐

sample test of means. If the mean of the first 10% runs of the chain is not significantly 

different from the last 50%, then it can be concluded that the target distribution converged 

somewhere in the first 10% of the chain. 

Table 2 shows the mean and the 95% HDI of α and β parameters’ estimates of the 

model. It is possible to see that the probability of using an excuse of your own subpopulation 

(Mα = .52) is considerably higher than the probability of using an excuse of other 

subpopulation (Mβ = .10). Also, there is no over position of these estimates, given that the 
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95% HDI of each does not share any value. Nevertheless, it should be noted that most of the 

participants where categorized as being highly motivated to excuse themselves (close to 

88%). This difference makes the values of α and β more sensitive for the high motivation 

group estimates. Anyway, the robustness of those estimates is assured by the convergence of 

the chain and the precision of the excuses type categorization. 

Table 2 

Mean and 95% HDI estimates for α and β parameters, and percentage of participants 

categorized in each subpopulation. 

Parameters Mean 95% HDI 

α 0,5196 [0,4690; 0,5718] 

 β 0,1035 [0,0719; 0,1371] 

   

 % of participants with high 

motivation 

% of participants with low 

motivation 

 88.04% 11.96% 

  

The precision of the excuses type categorization by the model can be verified in Table 

3. If there was no pattern in participants’ response, the categorization of excuses and of 

subpopulations would be nonsensical. However, the categorization of excuses grouped each 

excuse as expected. This has two meanings. The first is that the excuses used as items in the 

present research were items with criterion validity. Secondly, given that the response and the 

categorization of the excuses affects the subpopulation estimation for each participant, it is 

possible to conclude that there is little bias in the subpopulation estimates. 
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Table 3 

Excuses and their theoretical and estimated types. 

Excuses Theoretical Type Estimated Type 

Sorry I'm late, but I came by bus and it 

broke on the way. 
External 1 

Sorry I'm late, but I wanted to arrive a 

little later. 
Internal 0 

Sorry I did not appear, but I had to take 

my mother, who got sick, to the hospital. 
External 1 

Sorry I did not appear, but this event was 

not relevant to me so I stood at home. 
Internal 0 

I'm sorry not to have given the best of me, 

but I was very sick. 
External 1 

I'm sorry not to have given the best of me, 

but I did not wanted to worry myself with 

it. 

Internal 0 

Excuse me the harm that I caused, but I 

was trying to fulfill a commitment. 
External 1 

Excuse me the harm that I caused, even 

though I knew that it would happen. 
Internal 0 

 

 Descriptive and inferential analysis can be used to further investigate the association 

between estimated subpopulation and excuse types. To begin with, before any modeling, 

internal excuses would be used only 11.14% of the time. External excuses, on the other hand, 

51.08% of the time. This implies an overall preference for external excuses, what helps to 

explain why most participants where categorized as high motivated to be excused. Bayesian 

hierarchical binomial analysis can be used to compare the estimates of relative frequency of 

success for two or more groups (Kruschke, 2014, Appendix D). This analysis can be thought 

as the “Bayesian chi-squared test”. However, Pearson’s chi-squared tests the null hypothesis 

that row variable is completely independent of the column variable. The Bayesian 

hierarchical binomial analysis, on the other hand, is a statistical model to estimate differences 

of proportions in different groups, which is the present aim. Table 4 shows that the proportion 

of use of excuses is related to the subpopulation. But, beyond the aggregated α estimate of the 

Bayesian latent mixture model, it can be seen that each excuse has a different rate of use in 
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each subpopulation. Accordingly, high motivated people will use excuses that are more 

accepted by others than worst excuses. The opposite is true for low motivation subgroup.  

Table 4 

Bayesian hierarchical binomial analysis of latent subpopulation and rate of use of excuses. 

Excuse High motivation Low motivation 

Mean difference 

of proportions 

Relative use 

larger for High 

Motivation 

Ex1 .41 [.26, .56] .030 [.0009, .082] .37 [.21, .53] 99.9% 

Ex2 .28 [.17, .41] .080 [.015, .16] .20 [.054, .35] 99.6% 

Ex3 .31 [.17, .45] .10 [.038, .19] .20 [.044, .37] 99.4% 

Ex4 .24 [.14, .36] .078 [.011, .18] .16 [.02, .30] 98.5% 

In1 .14 [.072, .22] .55 [.26, .81] -.41 [-.68, -.11] 2.0% 

In2 .13 [.055, .20] .42 [.22, .65] -.29 [-.52, -.065] 4.0% 

In3 .15 [.086, .23] .58 [.24, .89] -.42 [-.74, -.072] 9.0% 

In4 .16 [.091, .25] .32 [.94, .59] -.16 [-.44, .085] 11.0% 

     

  
Mean high 

motivation 

Mean low 

motivation  

 External .31 [.16, .51] .07 [.009, .18]  

 Internal .14 [.07, .23] .46 [.15, .81]  

 

 Finally, Figure 2 shows the posterior distributions for the aggregated values at the 

bottom of Table 4. On the left is the probability of using the external excuses. It can be seen 

that the high motivation group has a higher mean than the low motivation group, but larger 

dispersion. On the right is the probability of using internal excuses. It shows that the high 

motivation group has a lower mean, but considerably less dispersion. Two conclusions can be 

made. First, high motivation group is more concise in their preferences. Second, low 

motivation group is more concise in not using external excuses, but doubtful about internal 

excuses. 
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Figure 2. Posterior density for the probability of using external (left) and internal (right) 

excuses for each group. 

Discussion 

It was theorized that excuse giving shows properties of impression management and 

decision making processes. More specifically, that motivation, an impression management 

component, affects how a decision is made. Therefore, it should be expected that data about 

excuses could be readily explained by a model that accounts for both properties. A Bayesian 

latent-mixture model presents this characteristic. It explains the patterns of decision based on 

latent subpopulation and latent items’ properties. This means that, given the adequacy of the 

model, we can conclude that there is evidence to say that the intensity of the motivation to be 

excused, despite of its content, can predict how people will excuse themselves. 

Two main findings sustain this assertion. It was found that most participants were 

categorized as being highly motivated to be excused. This could be predicted by similar 

results found previously in the literature (e.g., Weiner et al., 1987; Weiner, 2006). Still, it 

could be also a sampling problem, albeit this is a less likely reason. Also, it was found that 

the excuses were correctly categorized. The model does not know, a priori, the theoretical 

categories of the excuses and how, accordingly to the theory, they should be categorized. It 



53 

only knows the process that links the participants’ latent subpopulation with the observed 

responses. Therefore, Weiner’s attribution theory, and impression management theory, in an 

excuse giving context, can be formally described by a Bayesian latent-mixture model. 

This statement has as prime consequence a claim that is supported by other authors: 

psychological theories can benefit from a broad use of modelling techniques (e.g., Lee, 2011; 

Lee & Wagenmakers, 2014; Lewandowsky & Farrell, 2010). The practice of general 

quantitative modeling is the approach of what is usually called mathematical psychology 

(Coombs, Dawes, & Tversky, 1970). According to Townsend (2008), mathematical 

psychology provides the means to work out the necessity of providing a rigorous and clear 

accounting of concepts and data. Through an approach driven by quantitative modeling, one 

can surpass the overly particular, and acts not only to accommodate an entire set of 

phenomena, but assays the ability of diverse theoretical notions and experimental 

operations—the assurance of the connectivity principle (Haack, 2007) in psychological 

science. 

As far as attribution theory is concerned, there has been some temptative 

formalization of some of its core elements. For instance, Osborne and Weiner (2015) used 

latent profile analysis (LPA, a type of mixture model) to identify unique response patterns, 

demonstrating that three distinct response patterns underlie individual differences in peoples’ 

poverty beliefs. As in the present study, it identifies that there is latent motivational 

component that predicts pattern of responses. Not as in the present study, the authors used a 

more general mixture model (LPA) and also related the groups with the content of the 

motivation, in the specific context of poverty beliefs. Therefore, more studies should be 

conducted to identify if these contents can be generalized to other contexts. Weiner’s (2010) 

levels and specific motivational components—as others and one’s elicited emotions—must 

also be properly quantitatively represented. Future studies might help to identify, for instance, 
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if motivational motivators are task specific and to what extent they are dominated by 

dispositional variables. 

As a final regard, it is important to note that evidence has shown that attributional 

processes may be moderated by cultural variables (e.g., Pilati et al., 2015). This aspect is one 

of the many reasons why you need to have a transcultural perspective when studying human 

behavior (Henrich, Heine, & Norenzayan, 2010). In attributional theory’s case, the original 

framework does not account for this kind of differences (Weiner, 2010). Therefore, a higher 

level of hierarchy in the model should be added, accounting for societal aspects. This should 

have as a consequence the changing of values, or of distributional aspects, of the parameters 

in the model. In an excuse giving context, if we think of it as a decision making process and 

if we think of culture as a group process, group decision making models (e.g., Khrennikov & 

Basieva, 2014) could be the starting point to a first solution of this problem. 
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FINAL REMARKS 

The main objective of this thesis was to formalize and test part of Weiner’s 

attributional theory as a social decision making process. Specifically, it aimed at how excuse 

giving can be formalized, in a mathematical psychological sense, following previous 

empirical findings and models of classical and quantum probability theory. Two important 

findings in the literature on excuses were tested and modeled: people have preference for 

external excuses; and the cause of this preference involves the existence of some latent 

motivation for giving excuses in a particular way (Weiner, 2006). 

To the best of our knowledge, this is one of the first attempts to provide a formal 

description of attributional theory (along with Osborne & Weiner, 2015). Now some aspects 

of excuse giving are known less tacitly. People attribute topologically distinguishable 

representations to internal and external excuses. The distinguishability of these 

representations are affected by which order they are evaluated, making internal excuses less 

usable when anteceded by external counterparts. In a more general perspective, motivation 

one has to manage a relationship stochastically explain his or her overall preference for using 

external or internal excuses. This is how people excuse themselves, according to the findings.  

Finally, there are aspects yet to be formalized in attributional theory for excuse giving 

(Weiner, 2010). This task will prolong itself further, given that external aspects to the theory 

also need formalization (e.g., Pilati et al, 2015). As a research agenda, basics aspects of 

attribution must be first consistently formalized. For example, cultural variations must be 

investigated. Also, albeit the theoretical contribution, formalization also has practical value 

(Hunt, 2006). Excuse giving theory is often applied in relational, legal and consumer contexts 

(Kruglanski & Sleeth-Keppler, 2007) to solve many real problems. Formal theorization, with 

the explicit definition of parameters, gives us a kind of diagnosis of how to act upon a 

situation and generate a more desirable result.  
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Appendix A: JAGS model for the Bayesian Multidimensional Scaling in Manuscript 1 

# Bayesian Multidimensional Scaling 

model{ 

 for(i in 2:n) { 

for(j in 1:i-1) { 

    delta[i, j] ~ djl.dnorm.trunc(d[i, j], invphi2, 0, 999999999) 

  sqd[i, j] <- pow((X[i, 1]-X[j, 1]), 2) 

  d[i, j] <- sqrt(sqd[i, j]) 

  rawstressmat[i, j] <- pow(delta[i, j]-d[i, j],2) 

} 

rawstressvec[i] <- sum(rawstressmat[i, 1:i-1])  

 }  

 rawstress <- sum(rawstressvec[2:n]) 

 invphi2 ~ dgamma(a, b) 

 for(k in 1:n) { 

X[k, 1] ~ dnorm(0, invlambda)  

 } 

 invlambda ~ dgamma(alpha, beta)  

} 
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Appendix B: R script for the Quantum Model of Order Effects in Manuscript 1 

# Quantum Model of Order Effects 

rotate <- function(x) {t(apply(x, 2, rev))} 

# A = External excuse 

# B = Internal excuse 

# A-B order 

AB <- rotate(rotate(prop.table(table(df[,1],df[,2])))) 

pAyBy <- AB[1,1] 

pAnBy <- AB[2,1] 

pAyBn <- AB[1,2] 

pAnBn <- AB[2,2] 

# B-A order 

BA <- rotate(rotate(prop.table(table(df[,3],df[,4])))) 

pByAy <- BA[1,1] 

pBnAy <- BA[2,1] 

pByAn <- BA[1,2] 

pBnAn <- BA[2,2] 

# Context (order) effects 

CE <- BA - AB 

CE 

# Chi-squared tests 

pab <- rotate(rotate(table(df[,1],df[,2]))) 

n = sum(pab) 

pba <- rotate(rotate(table(df[,3],df[,4]))) 

m = sum(pba) 

# Test for the order effect 

# The log-likelihood for the unconstrained model 

Gu <- pab[1,1]*log(pab[1,1]/n) + 

      pab[1,2]*log(pab[1,2]/n) + 

      pab[2,1]*log(pab[2,1]/n) + 

      pab[2,2]*log(pab[2,2]/n) + 

      pba[1,1]*log(pba[1,1]/n) + 

      pba[1,2]*log(pba[1,2]/n) + 

      pba[2,1]*log(pba[2,1]/n) + 

      pba[2,2]*log(pba[2,2]/n) 
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# The log-likelihood for the constrained model 

Gc <- (pab[1,1] + pba[1,1])*log((pab[1,1] + pba[1,1])/(n+m)) + 

      (pab[1,2] + pba[2,1])*log((pab[1,2] + pba[2,1])/(n+m)) + 

      (pab[2,1] + pba[1,2])*log((pab[2,1] + pba[1,2])/(n+m)) + 

      (pab[2,2] + pba[2,2])*log((pab[2,2] + pba[2,2])/(n+m)) 

# The chi-quared statistic for order effect 

Csqrdoe <- (-2) * (Gc - Gu) 

Csqrdoe # with 3 dfs 

# Test for the QQ equality 

# The log-likelihood for the unconstrained model 

Gu <- (pab[1,2] + pab[2,1])*log((pab[1,2] + pab[2,1])/n) + 

      (pab[1,1] + pab[2,2])*log((pab[1,1] + pab[2,2])/n) + 

      (pba[1,2] + pba[2,1])*log((pba[1,2] + pba[2,1])/m) + 

      (pba[1,1] + pba[2,2])*log((pba[1,1] + pba[2,2])/m) 

# The log-likelihood for the constrained model 

Gu <- (pab[1,2] + pab[2,1] + pba[1,2] + pba[2,1]) * 

       log((pab[1,2] + pab[2,1] + pba[1,2] + pba[2,1])/(n+m)) + 

      (pab[1,1] + pab[2,2] + pba[1,1] + pba[2,2]) * 

       log((pab[1,1] + pab[2,2] + pba[1,1] + pba[2,2])/(n+m)) 

# The chi-squared statistic for QQ equality 

CsqrdQQ <- (-2) * (Gc - Gu) 

CsqrdQQ # with 2 dfs 

 

  



64 

Appendix C: JAGS model for the Bayesian Latent Mixture Model in Manuscript 2 

# Excuse Giving Model 

model{ 

 # Probability of Choosing to Use the Excuse 

 alpha ~ dunif(0,1) # Match 

 beta ~ dunif(0,alpha) # Mismatch    

 # Group Membership For People and Excuses 

 for (i in 1:nx){ 

 x[i] ~ dbern(0.5) 

 x1[i] <- x[i]+1 

 } 

 for (j in 1:nz){ 

 z[j] ~ dbern(0.5) 

 z1[j] <- z[j]+1 

 }    

 # Probability Used For Each Person-Excuse Combination By Groups 

 for (i in 1:nx){ 

 for (j in 1:nz){ 

  theta[i,j,1,1] <- alpha 

  theta[i,j,1,2] <- beta 

  theta[i,j,2,1] <- beta 

  theta[i,j,2,2] <- alpha 

 } 

 }    

 # Data Are Bernoulli By Rate 

 for (i in 1:nx){ 

   for (j in 1:nz){ 

  k[i,j] ~ dbern(theta[i,j,x1[i],z1[j]]) 

   } 

 }    

} 
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Appendix D: JAGS model for Bayesian analysis of group proportions in Manuscript 2 

# Bayesian "chi-squared test" 

model{ 

for(i in 1:length(x)) { 

    x[i] ~ dbinom(theta[i], n[i]) 

    theta[i] ~ dbeta(1, 1) 

    x_pred[i] ~ dbinom(theta[i], n[i]) 

  } 

} 
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