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Abstract
The Cerrado, the largest savanna region in South America, is located in central Brazil. Cer-

rado physiognomies, which range from savanna grasslands to forest formations, combined

with the highly weathered, acidic clay Cerrado soils form a unique ecoregion. In this study,

high-throughput sequencing of ribosomal RNA genes was combined with shotgun metage-

nomic analysis to explore the taxonomic composition and potential functions of soil micro-

bial communities in four different vegetation physiognomies during both dry and rainy

seasons. Our results showed that changes in bacterial, archaeal, and fungal community

structures in cerrado denso, cerrado sensu stricto, campo sujo, and gallery forest soils

strongly correlated with seasonal patterns of soil water uptake. The relative abundance of

AD3, WPS-2, Planctomycetes, Thermoprotei, and Glomeromycota typically decreased in

the rainy season, whereas the relative abundance of Proteobacteria and Ascomycota

increased. In addition, analysis of shotgun metagenomic data revealed a significant

increase in the relative abundance of genes associated with iron acquisition and metabo-

lism, dormancy, and sporulation during the dry season, and an increase in the relative abun-

dance of genes related to respiration and DNA and protein metabolism during the rainy

season. These gene functional categories are associated with adaptation to water stress.

Our results further the understanding of how tropical savanna soil microbial communities

may be influenced by vegetation covering and temporal variations in soil moisture.

Introduction
Despite the considerable biodiversity found in Brazil, only recently have efforts been made to
describe microbial diversity in the different Brazilian biomes. To better understand patterns of
microbial distribution, an initiative has brought together leading microbial diversity studies
conducted in various Brazilian biomes during the last 5 years [1], which has provided the infor-
mation needed for in silico analysis of 16S ribosomal RNA (rRNA) genes. Previous studies
have shown that some Brazilian soils support more complex microbial communities than
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others, with an unexplored genetic diversity [2–5]. The soils of the Cerrado biome have been
the principal focus of a number of culture-independent analyses of microbial diversity [2, 6–8].

The Cerrado, which is considered the largest savanna region in South America, is located in
the central Brazil, bordered by Amazonian forests to the northwest and the Atlantic coastal for-
est to the southeast [9]. The Cerrado biome is thought to have existed even before the final sep-
aration of the South American and African continents. Its physiognomies, which vary from
savanna grasslands to forest formations, in combination with its soil conditions (weathered,
acidic, with high clay content) form a unique ecoregion [9]. The Cerrado biome offers a home
to a wide range of plants, animals, and microorganisms, making it one of the 25 most vital ter-
restrial biodiversity hotspots described by Myers et al. [10]. However, its true diversity is
unclear, as estimates vary considerably among studies. Despite its importance, the cerrado
biome has suffered degradation for decades due to human activity and land use changes. The
most drastic impact to the biome was the construction of the new capital Brasília in 1960 in the
center of the Brazilian Cerrado and the subsequent 50-fold increase in population in this
region.

Although many studies have shown that alterations in environmental conditions are impor-
tant drivers of changes in soil microbial diversity, this has been poorly documented in the Cer-
rado biome. In particular, detailed studies are needed to understand how soil microbial
community structure and function in the Cerrado vary across terrestrial environments, and
how soil microbial communities are influenced by the temporal variations in soil moisture
associated with vegetation cover. For this reason, this study investigated the bacterial, archaeal,
and fungal associations in Cerrado soils within four different vegetation physiognomies using
high-throughput DNA sequencing of ribosomal marker sequences in combination with shot-
gun metagenomic analysis. Revealing diversity at the genetic level will be fundamental to fur-
thering our current understanding of microbial interactions and the potential consequences of
future climate change in terrestrial ecosystems.

Material and Methods

Sample collection
The study site was located in the Brazilian Institute of Geography and Statistics (IBGE) Eco-
logical Reserve, a protected area in the Federal District of Brazil. Soil samples were obtained
from four different vegetation physiognomies: cerrado denso (dense tree layer ranging from
5 to 8 m in height) (15° 56' 43.1''S, 47° 51' 26.0''W), cerrado sensu stricto (continuous grass
layer and a woody layer of trees and shrubs varying in cover between 10% and 60%) (15° 57'
02.4''S, 47° 5' 32.1''W), campo sujo (open savanna with widely scattered small trees and shrubs)
(15° 56' 54.6''S, 47° 52' 11.7''W), and gallery forest (forest formation along a water course)
(15° 57' 06.0''S, 47° 53' 18.7''W).

Soil sampling methods and physicochemical analyses of these habitats were previously
described [2]. In the dry season (September 2010) and rainy season (February 2011), three rep-
licate soil samples were obtained from each of the four vegetation physiognomies (24 samples
total). Gravimetric water content was calculated based on soil weight before and after the sam-
ples were oven-dried at 105°C for 72 h. Physicochemical properties of the soils were deter-
mined using samples obtained in the dry season (S1 Table).

High-throughput DNA sequencing of ribosomal RNA genes
Microbial DNA was extracted from 0.5 g soil from each of the 24 samples using the PowerSoil
DNA Isolation Kit (MO BIO Laboratories, Carlsbad, CA, USA) according to the manufactur-
er’s instructions. The triplicate DNA samples were not pooled.
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Bacterial 16S rRNA genes were amplified with the primer pair 787F/1492R [11], archaeal
16S rRNA genes were amplified with the primer pair 751F/UA1406R [12], and fungal 18S
rRNA genes were amplified with the primer pair EF4F/Fung5R [13] using a previously
described polymerase chain reaction (PCR) protocol [2]. The amplicons were purified using
the QIAquick PCR Purification Kit (QIAGEN, Chatsworth, CA) and sequenced using the GS
FLX+ Titanium system (454 Life Sciences Corporation, Branford, CT, USA).

rRNA gene analysis
The rRNA gene analyses were performed using Quantitative Insights Into Microbial Ecology
(QIIME) software, version 1.6.0-dev [14]. Briefly, adaptor sequences were trimmed from raw
data, with 98% or more of the bases demonstrating a Phred quality score of 30. Sequences were
binned into individual sample collections based on barcode sequence tags, which were then
trimmed. The resulting files were denoised using the PyroNoise algorithm. Sequences less than
180 bp in length were deleted, and the rest were clustered into species-level operational taxo-
nomic units (OTUs) at 97% sequence similarity using an open-reference OTU picking proto-
col. Taxonomic assignment was carried out by alignment with the Greengenes database using
the Uclust algorithm.

The alpha and beta diversity of the microbial communities were determined. Significant dif-
ferences between groups were evaluated by analysis of similarities (ANOSIM) [15], and the
partial Mantel test was used to evaluate relationships between level of precipitation and micro-
bial community composition. Groups were compared by Fisher’s exact test (confidence inter-
vals with nominal coverage of 95%), followed by the Bonferroni correction using Statistical
Analysis of Metagenomic Profiles software, version 2.0.0 [16]. All sequences files are available
from the GenBank database Submission BioProject ID: PRJNA298258.

Shotgun metagenomic analyses
Environmental DNA was extracted from each soil sample using the FastDNA1 SPIN Kit for
Soil (MP Biomedicals, Santa Ana, CA, USA) and the FastPrep1 sample preparation system
(MP Biomedicals) according to the manufacturer’s instructions. The 24 DNA samples (1.0 mg
per sample) were prepared for sequencing by nebulization, followed by tagging using the GS
FLX Titanium Rapid Library MID Adapters Kit (454 Life Sciences).

The metagenomic analysis was conducted using the Metagenomics Rapid Annotation using
Subsystem Technology (MG-RAST) server, version 3.2 [17]. Short and low-quality sequences
with ambiguous bases (multiple internal Ns) were removed before analysis. Functional analyses
were performed using the SEED database (maximum e-value cutoff 1e-10, minimum percent
identity cutoff 60%, and minimum alignment length cutoff 50 bp). Groups were compared by
Fisher’s exact test (confidence intervals with nominal coverage of 95%), followed by the Bon-
ferroni correction for multiple comparisons using the Statistical Analysis of Metagenomic Pro-
files software, version 2.0.0. All sequences files are available from the GenBank database
Submission BioProject ID: PRJNA298258

Results

Characterization of microbial communities by ribosomal gene analysis
To analyze soil microbial communities during the dry season, soil samples were collected from
four Cerrado vegetation physiognomies (cerrado denso, cerrado sensu stricto, campo sujo, and
gallery forest) in September, after the study site had experienced more than 100 consecutive
days without rain. The dry season ended in October, when the study areas received
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approximately 200 mm precipitation. To analyze soils during the rainy season, samples were
collected in February (S1A Fig). As shown in S1B Fig, the gravimetric water content of soils col-
lected during the dry season differed considerably among the four study areas.

From these soil samples a total of 403,568 high-quality bacterial sequences, 27,066 high-
quality archaeal sequences, and 35, 979 high-quality fungal sequences were obtained. For all
downstream analyses, the samples were rarefied to the smallest number of reads for each
domain (bacteria, archaea, or fungi) to correct for differences in sequencing depth.

Compositions of bacterial, archaeal, and fungal communities in the
different vegetation physiognomies were associated with temporal
variations of soil moisture
The relative abundance of certain phyla in soils of the four vegetation physiognomies varied
significantly between wet and dry seasons. For most physiognomies, the relative abundances of
phyla AD3, WPS-2, Planctomycetes, Verrucomicrobia, and Chloroflexi decreased during the
rainy season, whereas the relative abundance of Proteobacteria increased (Fig 1).

In the archaeal community, Crenarchaeota was the most abundant phylum, with Thermo-
protei the predominant class detected in all soil samples except those obtained from the cerrado
denso (Fig 2). The relative abundance of Thermoprotei was higher during the dry season in
campo sujo and cerrado sensu stricto soils but was higher during the rainy season in gallery for-
est soil (Fig 2).

Sequences affiliated with Euryarchaeota, including Thermoplasmata, Methanobacteria, and
Methanomicrobia, were detected in soils of all physiognomies under both dry and rainy condi-
tions but were present in low numbers (data not shown). In contrast, sequences belonging to
candidate phyla Korarchaeota and Nanoarchaeota were not detected.

Fungal community structure also differed significantly between seasons (Fig 3). During the
rainy season the relative abundance of Ascomycota was significantly higher in the cerrado
denso, campo sujo, and gallery forest soils but lower in the cerrado sensu stricto soil. In contrast,
the relative abundance of Glomeromycota significantly decreased during the rainy season in
the cerrado denso, campo sujo, and cerrado sensu stricto sites. In addition, the relative abun-
dance of unclassified fungal sequences was lower during the rainy season in cerrado denso,
campo sujo, and gallery forest soils.

β-Diversity patterns
Differences in bacterial, archaeal, and fungal community composition between rainy and dry
seasons were demonstrated by both measures of phylogenetic distance, followed by ANOSIM
(Fig 4). Results of the Mantel test for pairs of distance matrices (999 permutations for each
test) revealed a strong correlation in the unweighted UniFrac measure (Mantel r 0.672, 0.448,
and 0.495 for bacterial, archaeal, and fungal communities, respectively; P< 0.001 in all cases).

We found that the relative abundance of Solibacteres, Acidobacteria subgroup 6, Chloro-
flexi, Betaproteobacteria, AD3 and Thermoleophilia decreased with higher soil moisture con-
tent in the rainy season. In contrast, the relative abundance of Alphaproteobacteria,
Gammaproteobacteria, Acidobacteriales, Sphingobacteria, Pedosphaerae, and Gemmatimona-
detes increased with higher soil moisture content (Fig 5). Among archaea, only Thermoplas-
mata was more abundant with increasing soil moisture content; however, this difference was
not significant (P> 0.10) (S2 Fig). In fungal communities, the relative abundance of Saccharo-
myceta and Agaricomycotina differed significantly according to soil moisture content (S2 Fig).
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Fig 1. Relative abundance of bacterial phyla in (a) cerrado denso, (b) campo sujo, (c) cerrado sensu stricto, and (d) gallery forest soils, showing differences
between the dry season (white bar) and rainy season (black bar); P < 0.05 was considered significant.

doi:10.1371/journal.pone.0148785.g001
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Functional analysis of microbial communities across vegetation
physiognomies and temporal variations of soil moisture
The metabolic potential of the microbial communities was analyzed by MG-RAST, which
assigns sequences to metabolic categories based on their best Blastx hit against the SEED
database.

Among functional categories, the most frequently encountered genes were assigned to clus-
tering-based subsystems (i.e., functional coupling evidence indicates the genes belong together,
but their precise functions are unknown), followed by cell wall and capsule synthesis, dor-
mancy/sporulation, iron acquisition, and assimilation of aromatic compounds (Fig 6). The
analysis of genes involved in sulfur and nitrogen cycles indicated that processes associated with
nitrogen fixation and sulfide oxidation did not differ significantly between dry and rainy

Fig 2. Relative abundance of archaeal phyla and classes in (a) cerrado denso, (b) campo sujo, (c) cerrado sensu stricto, and (d) gallery forest soils, showing
differences between the dry season (white bar) and rainy season (black bar); P < 0.05 was considered significant.

doi:10.1371/journal.pone.0148785.g002
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seasons. However, the relative abundance of genes associated with amino acids and their deriv-
atives, DNA/protein metabolism, and cell cycle increased during the rainy season.

Discussion

Variation in the abundance of soil microbial communities
In the present study, we demonstrated that soil microbial communities of savanna grasslands
(cerrado denso, campo sujo, and cerrado sensu stricto) and forest formations (gallery forest) are
profoundly affected by the considerable seasonal variation in water availability that is charac-
teristic of the Cerrado biome. This finding is consistent with other studies reporting the effect
of seasonal fluctuations in water availability on the composition and abundance of soil micro-
bial communities worldwide [18, 19].

Fig 3. Relative abundance of fungal phyla in (a) cerrado denso, (b) campo sujo, (c) cerrado sensu stricto, and (d) gallery forest soils, showing differences
between the dry season (white bar) and rainy season (black bar); P < 0.05 was considered significant.

doi:10.1371/journal.pone.0148785.g003
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Fig 4. Principal coordinates analysis (PCoA) plots were generated for bacterial, fungal, and archaeal communities to visualize differences
between the dry and rainy season and the four Cerrado physiognomies. Analysis of soil bacterial community structure based on (a) unweighted UniFrac
distance and (b) Canberra distance; soil archaeal community structure based on (c) unweighted UniFrac distance and (d) Canberra distance; and soil fungal
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We combined the description of bacterial, archaeal, and fungal diversity in different Cer-
rado vegetation physiognomies with metagenome sequencing analysis to explore the potential
functional and structural diversity of the Cerrado soil microbial community and demonstrated
significant changes in the microbial community associated with water availability. The higher
relative abundance of Alphaproteobacteria and Gammaproteobacteria during the rainy season
may be due to higher levels of labile carbon and nutrients, as copiotrophic Proteobacteria are
associated with soils containing high levels of available carbon contributed by plant litter or
root exudation [20, 21]. In contrast, the lower relative abundance of Chloroflexi, Planctomy-
cetes, AD3, andWPS-2 during the rainy season may be due to dormancy induced by the
adverse environmental conditions [22]. In some cases, variations in relative abundance of the
microorganisms evaluated can be explained by their ecological characteristics. For example,
Acidobacteria are known to be tolerant to fluctuations in soil moisture [23, 24], which maybe
an important factor for adaptation to the seasonal variations typical of savanna environments.
We observed that, in bacterial communities the phylum Acidobacteria was highly responsive
to soil moisture. With increasing soil moisture content, members of Acidobacteria subgroup 6
and Solibacteres decreased in relative abundance, whereas members of Acidobacteriales
increased in relative abundance. These divergent responses could be due the metabolic versatil-
ity of Acidobacteria species, which may facilitate adaptation to environmental changes. Our
results are consistent with previous studies evaluating the relative abundance of members of
Acidobacteria and the differential response to changes in soil moisture [23, 25]. Although
Acidobacteria community composition and interactions have been studied in a variety of envi-
ronments using cultivation-independent methods, their functions, and in particular their inter-
actions with higher taxa in soil, remain unknown.

Previous studies report that members of Thermoprotei are disproportionately abundant in
desert soils, likely because of the radio- and thermotolerant species in this Crenarchaeota class
[26]. This observation may explain the higher abundance of Thermoprotei in the campo sujo
and cerrado sensu stricto sites relative to the gallery forest site. Campo sujo and cerrado sensu
stricto are open savanna with scattered shrubs and small trees, which allows greater soil expo-
sure to radiation [27, 28]. Our finding is consistent with that of a previous study, which
detected a greater number of bacterial OTUs associated with radiation tolerance in campo sujo
and cerrado sensu stricto soils compared with gallery forest soil [2].

Angel and collaborators (2012) found that methanogens are ubiquitous in soils, including dry
land soils, and reported that two specific methanogens, Methanosarcina andMethanocella, appear
active when incubated anoxically with water [29]. Similarly, our results show that members of the
class Methanomicrobia are more abundant in soil samples of cerrado denso with higher water
content. In contrast, the class Methanomicrobia was undetected in the dry season, because its rela-
tive frequency was lower than 0.1%. Taken together, these results suggest that methanogens are
able to survive desiccation stress and will proliferate when water becomes available again.

As expected, Ascomycota and Basidiomycota dominated the fungal communities in our soil
samples. The high abundance of Ascomycota has been described in a wide range of soil types,
including permafrost soils [30], semiarid grassland soil [31], agricultural and native Cerrado
soils [6], and Amazonian rainforest soils [32]. Members of this phylum are able to degrade
plant polymers such as cellulose and hemicellulose in woody plant litter [33], which may
account for their abundance in a wide range of soils from around the world. In our study the
relative abundance of Basidiomycota in gallery forest soil was significantly higher in the dry

community structure based on (e) unweighted UniFrac distance and (f) Canberra distance. Markers represent replicate soil samples collected during the dry
and rainy season in cerrado denso (CD, square), campo sujo (CS, circle), cerrado sensu stricto (SS, triangle), and gallery forest (MG, diamond) soils.

doi:10.1371/journal.pone.0148785.g004
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Fig 5. Correlations between soil moisture content and relative abundance of the 12 dominant bacterial phyla in the Cerrado biome. Pearson
correlation coefficients (r) are shown, with P values corrected using the Benjamini–Hochberg false discovery rate procedure.

doi:10.1371/journal.pone.0148785.g005
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season; compared with other vegetation types, this physiognomy has a higher proportion of
organic matter during the dry season. This finding is consistent with a recent study, which
reported that members of Basidiomycota have the ability to decompose complex compounds
and tend to colonize soils rich in organic matter [34].

Data from recent studies suggest that the total number of fungal species is much higher
than previously thought [35]. In particular, high-throughput DNA sequencing has revealed a
surprising number of new fungal species, especially in soils [36, 37]. McGuire and colleagues
[38] used high-throughput DNA sequencing to assess fungi in tropical soils, demonstrating
that fungal diversity is not associated with plant species richness but strongly correlates with
precipitation. Similarly, our results indicate that fungal community structure is influenced by
soil gravimetric water content, as demonstrated by β-diversity and Pearson correlation analy-
ses. Previous studies have reported that fungal diversity is more strongly associated with vege-
tation cover in temperate upland grasslands [39, 40]. However, our results suggest that the
precipitation regime may be more important than plant diversity in shaping fungal community
structure in tropical savanna soils. These observed seasonal changes in microbial composition
associated with water availability are consistent with the results of other studies of tropical for-
ests [25, 41, 42].

Fig 6. Functional analysis of Cerrado soil metagenomes. The relative abundance of each gene functional category was based on MG-RAST analysis. All
data were normalized for the quantity of assigned reads for (a) cerrado denso, (b) campo sujo, (c) cerrado sens ustricto, and (d) gallery forest soils. *P < 0.05
between the dry and rainy season.

doi:10.1371/journal.pone.0148785.g006
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In fungal communities the relative abundance of Saccharomyceta and Agaricomycotina
negatively correlated with increased moisture content in Cerrado soils, in contrast with the
strong positive correlation observed between soil fungal richness and increasing precipitation
in neotropical rain forests [38]. Seasonal changes in the fungal community structure have simi-
larly been observed in Alaskan tundra soils [43]. In addition, vegetation cover appears to affect
fungal communities in the arctic tundra through nutrient availability, varying root architecture
and exudates, and the quality and quantity of litter fluxes [44]. The diversity of fungal commu-
nities also correlates with plant community composition in western Amazonian rainforests
[32]. This relationship between plant and fungal communities may explain why the relative
abundance of Basidiomycota increased in the campo sujo and cerrado sensu stricto physiogno-
mies during the rainy season, but decreased in the cerrado denso and gallery forest physiogno-
mies. Members of the phylum Basidiomycota form a symbiotic relationship with plant roots
that enables decomposition of complex lignocellulosic materials [45]. These observations illus-
trate some of the ways that fungal communities respond to variations in the soil environment.

Dry and rainy seasons influence the functional microbial diversity
The availability of shotgun metagenome data for Cerrado soils provides an opportunity to
compare both data sets. The relative abundance of genes associated with distinct functional cat-
egories differed among the four vegetation physiognomies, as well as between seasons, suggest-
ing that microbial communities in these soils are sensitive to both vegetation cover and soil
moisture content. Although the factors influencing the incidence and distribution of physiog-
nomic types have not been completely elucidated, Cerrado vegetation physiognomies are known
to differ according to nutrient and water availability, aluminum level, and acidity [46]. The big-
gest difference among the physiognomies analyzed in this study is wood cover [27]. Vegetation
influences the soil microclimate by insulating the soil and reducing temperature variability,
thereby affecting respiration rate and total carbon balance [47, 48]. However, soil moisture and
cover vegetation are not the only factors influencing microbial communities. Changes in pH,
temperature, and nutrient availability also influence soil microbial community structure [20, 49,
50]. The relatively higher abundance of DNA and Protein metabolism and Cell cycle genes hints
to possible activation of growth of dormant microorganisms. Plants generally represent the larg-
est source of organic carbon in soils, typically rich in lignin-derived aromatic compounds [51].
Therefore, the frequency of genes related to the metabolism of aromatic compounds was
expected in these native Cerrado areas, which possess a diverse array of plant species [52]. In con-
trast, desert soils show a relatively lower abundance of genes related to the metabolism of aro-
matic compounds [49], probably because they lack a dense vegetation cover.

The well-marked seasons of the Cerrado, which expose microbial communities to frequent
moisture stress, may explain the high relative abundance of genes related to cell wall and cap-
sule synthesis, dormancy/sporulation, and iron acquisition. The over representation of genes
associated with iron acquisition during the dry season in all four physiognomies may be due to
the high iron levels in the soils analyzed in this study. Iron is an essential element for most
organisms and can be a limiting factor because of its insolubility at neutral pH in aerobic envi-
ronments [53]. Compared with the water-saturated soils of the rainy season, soils with low
moisture content appear to have higher soil oxygen concentrations [54], which favor bacterial
iron oxidation [55]. Gallionella-related neutrophilic iron oxidizers (Ga-FeOB) prefer environ-
ments with higher O2 and Fe

2+ availability [55]. Gallionella was found in the soils of all physi-
ognomies under dry conditions. In the rainy season, genes associated with amino acids and
their derivatives, DNA/protein metabolism, and cell cycle increase in relative abundance, indi-
cating that microbial communities proliferate when water is available.
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Although we are far from achieving a full understanding of soil microbial communities in
the Cerrado biome, our approach combining high-throughput DNA sequencing of rRNA
genes with shotgun metagenomics provides insight into some specific functions of soil micro-
bial communities (S3 Fig.) Global climate change has been a growing concern in the last few
years, with altered precipitation regimes, increased concentrations of atmospheric CO2, and
more severe floods and droughts predicted for the future [56, 57]. These precipitation pulses
can directly or indirectly influence aboveground communities [58], as seasonal rainfall fluctua-
tions affect the composition and abundance of belowground microbial communities [19, 59].
Several studies have described how the belowground community influences the aboveground
community, and vice versa [58, 60]. For example, soil microorganisms can establish mutualistic
or antagonistic relationships with plant roots, influencing both the soil microbial community
and the macrofauna [61]. However, other interactions between aboveground and belowground
components of the ecosystem are not easily predicted. Thus, studies of microbial community
structure and functionality in undisturbed soils of Cerrado across different physiognomies and
altered precipitation regimes will improve our understanding of key factors determining the
remodeling of microbial communities in terrestrial ecosystems.
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S1 Fig. (a) Monthly rainfall (mm) in the IBGE Ecological Reserve, Brasília, DF during the
period in which soil samples were collected. (b) Soil moisture measurements in the dry and
rainy season in the cerrado denso (CD), campo sujo (CS), cerrado sensus tricto (SS), and gallery
forest (MG) (n = 3 for each physiognomy). Error bars represent standard deviations.
(EPS)

S2 Fig. Correlations between the relative abundance of the archaea Thermoplasmata and
fungi Saccharomyceta and Agaricomycotina and soil moisture content in the Cerrado
biome. Pearson correlation coefficients (r) are shown with P values corrected using the Benja-
mini–Hochberg false discovery rate procedure.
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S3 Fig. Conceptual map of variation in the relative abundance of soil microbial communi-
ties.Main observations from this study as a proposal for structure of soil microbial communi-
ties during the well-marked seasons of the Cerrado biome.
(PDF)

S1 Table. Physicochemical properties of soils collected from the cerrado denso, campo sujo,
cerrado sensu stricto, and gallery forest physiognomies in the dry season.
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