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ABSTRACT

Title: Kinematic control based on dual quaternion algebra and its application to robot manipulators
Author: Luis Felipe da Cruz Figueredo
Supervisor: Prof. João Yoshiyuki Ishihara
Co-Supervisor: Prof. Bruno Vilhena Adorno

Keywords: Dual quaternion algebra, Kinematic control, Robust manipulation, H∞ control, Optimal ma-
nipulation, Task-space optimization, Singularity avoidance, Hybrid systems, Switched systems.

In the light of the ongoing effort to improve the state-of-the-art in robotics, this thesis’s main goal is to
contribute to the understanding and advancement of control techniques for robot manipulators. In this context,
the present work provides solutions to a number of relevant and challenging task-space kinematic control
problems for robot manipulators in the sense of accuracy, robustness, optimality and flexibility. These are
cornerstone features required to unfold tools for robots to execute sophisticated tasks deployed at increasingly
less controlled scenarios. To support the theory presented herein, this thesis exploits the advantages of the dual
quaternion algebra to model and control the robot coupled translation and rotation kinematics.

First, to address the manipulator liability to modeling errors, uncertainties, exogenous disturbances, and
their influence upon the robot orientation and translation kinematics, we adaptH∞ techniques—suitable solely
for additive noises—to dual quaternion algebra. In this sense, we provide an intuitive and elegant connec-
tion between performance effects over the end-effector trajectory and different sources of uncertainties and
disturbances while satisfying disturbance attenuation properties with minimum instantaneous control effort.

Sharing the dual quaternion advantages, we also propose novel optimal control strategies in dual quater-
nion task-space. In contrast to standard optimal control techniques, herein, we focus on optimizing task-space
variables. In addition to preventing drifts and overshoots, the analysis is particularly relevant to address the
challenges for increasing accuracy in scenarios that require precise and safe interaction in contrast to con-
vergence speed—for instance, compliant robots, multiple arms and human-robot interaction where literature
shows that controlled speed at task-space largely influences the human acceptance of the contact.

Finally, to cope with reactiveness requirements, we introduce a new criterion to enrich the self-motions of
robot manipulators. Using a switching control technique, we relax particular task specifications in order to con-
trol fewer degrees of freedom while maintaining the end-effector within desired subspaces. As a consequence,
the Jacobian nullspace is enlarged with more degrees of freedom to perform additional self-motion tasks.

Departing from the requirements for robustness, optimality and reactiveness, this thesis also aims at ensur-
ing proper manipulation throughout the workspace. Singularities instrisic to the kinematic modeling are ad-
dressed both by means of self-motion—which is shown to be valid within the dual quaternion formalism—and
using a novel avoidance strategy based on the H∞ criteria. The novel solution is suitable for dual quaternion
manifold and explicitly regulates the trade-off between exactness and effort of avoiding inescapable singulari-
ties. Finally, we also approach the topological obstruction to global stabilization using continuous feedback—
inherent to all rigid body representations. In the case of unit dual quaternions, the obstruction is reflected by
the unwinding phenomenon that stems from the group double cover. Herein, we propose a switching control
law with hysteresis that ensures robust global asymptotic stability within dual quaternion space.

An extensive collection of examples, simulations and experiments are performed to illustrate the effective-
ness and relevance of our results. Most important, all the proposed results are supported by rigorous mathe-
matical evidence to ensure accuracy and proper synthesis with practical applications. Therefore, we believe the
approaches herein formalize the control theory within unit dual quaternions and improve the state-of-the-art in
control of manipulators—contributing to the ongoing effort of unfolding tools for the future of robotics.
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Título: Controle cinemático baseado na álgebra de quatérnios duais e sua aplicação para robôs manipuladores
Autor: Luis Felipe da Cruz Figueredo
Orientadore: Prof. João Yoshiyuki Ishihara
Co-Orientador: Prof. Bruno Vilhena Adorno

Keywords: Quatérnios duais, Controle cinemático, Manipulação robusta, Controle H∞, Controle ótimo,
Otimização em espaço de tarefas, Prevenção de singularidades, Sistemas híbridos, Controle chaveado.

O objetivo principal deste trabalho é contribuir para a compreensão e para o avanço das técnicas de con-
trole para robôs manipuladores no contexto de aprimorar o estado-da-arte em robótica. O presente trabalho
fornece soluções para uma série de problemas relevantes e desafiadores com ênfase na precisão, robustez,
otimização e flexibilidade do controle cinemático no espaço de tarefas. Estas características são essenciais para
o desenvolvimento de ferramentas que permitam robôs executarem tarefas sofisticadas em cenários cada vez
menos controlados. As contribuições são obtidas a partir da exploração da álgebra de quatérnios duais que é a
abordagem escolhida para a modelagem e o controle da cinemática acoplada dos robôs manipuladores.

A fim de defrontar a suscetibilidade de manipuladores com respeito a erros de modelagem, incertezas,
distúrbios exógenos e a influência destes na pose do efetuador, adaptamos técnicas de controle H∞—válidas
apenas para perturbações aditivas—para a álgebra de quatérnios duais. Assim, obtemos um vínculo intuitivo e
elegante entre o desempenho sobre a trajetória do efetuador e diferentes fontes de incertezas e perturbações, ao
mesmo tempo que atenuamos perturbações no sentido H∞ com o mínimo esforço de controle instantâneo.

A partir da álgebra de quatérnios duais, também propomos novas estratégias de controle ótimo para ma-
nipuladores. Em contraste a técnicas clássicas, a otimização foca-se em variáveis do espaço de tarefas. Além
de prevenir derrapagens e sobrepassos, esta nova estratégia é particularmente relevante ao lidarmos com os de-
safios inerentes a cenários que requerem maior precisão e segurança de interação em contraste com velocidade
de convergência—é o caso, por exemplo, de robôs complacentes, múltiplos braços e interação homem-robô,
onde a velocidade no espaço de tarefas é fator que influencia largamente a aceitação humana ao contato.

A fim de aprimorar a reatividade do manipulador, introduzimos um novo critério que enriquece movimentos
no espaço nulo. Utilizando controle chaveado, relaxamos determinadas especificações reduzindo o número de
graus de liberdade controláveis, mas mantendo o efetuador dentro de subespaços desejados. Assim, o espaço
nulo da Jacobiana é ampliado com mais graus de liberdade possibilitando a execução de tarefas adicionais.

Aparte destes requisitos, visamos igualmente assegurar a manipulação adequada em toda a área de trabalho.
Singularidades intrínsecas à cinemática são defrontadas tanto por meio de movimentos no espaço nulo—que
mostramos ser válidos no formalismo de quatérnios duais—como através de uma nova estratégia de prevenção
com base em critériosH∞. A solução é adequada para a variedade de quatérnios duais e regula explicitamente a
compensação entre a exatidão e esforço de prevenção de singularidades inevitáveis. Finalmente, também abor-
darmos a obstrução topológica referente a estabilização global a partir de controladores contínuos—restrição
válida para todas as representações de corpos rígidos. No caso de quatérnios duais unitários, a obstrução é rep-
resentada pela problema de cobertura dupla inerente ao grupo. Neste trabalho, propomos uma lei de controle
chaveada com histerese que assegura a estabilidade global robusta e assintótica no espaço de quatérnios duais.

Uma extensa coleção de exemplos, simulações e experimentos são realizados para ilustrar a eficácia e
relevância dos resultados. Ademais, e mais importante, os resultados propostos são validados por uma explo-
ração matemática rigorosa a fim de garantir precisão e síntese adequada para aplicações práticas. Assim, o
trabalho formaliza a teoria de controle na álgebra de quatérnios duais e aprimora o estado-da-arte de controle
para manipuladores—contribuindo com o esforço contínuo para o desenvolvimento da robótica do futuro.
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List of Symbols and Notations

Basic symbols and notations

In this thesis, the following notation is employed for scalar, vectors and matrices elements:

a, b, c, . . . scalars are represented by lowercase plain letters;

a, b, c, . . . vectors are represented by lowercase bold letters;

A,B,C, . . . matrices are represented by uppercase bold letters.

The only exceptions lie with respect to cost functions, represented by uppercase plain letters F and H , and to
Lyapunov function candidates, represented by uppercase plain letter V .

Moreover, throughout the thesis we use the following notation:

sgn (•) the signal of a given scalar;

‖•‖ a generic norm of a function;

‖•‖2 the induced norm p=2 of a function (also called, the Euclidean norm);

〈•, •〉 the inner product;

Symbols and notations for vectors and matrices

The regular notation related to vectors and matrices are

• × • the outer product (also known as the cross-product) between two
three-dimensional vectors, or two pure quaternions;

{•}× the skew symmetric matrix representation for a given vector, such that,
{v}×u = v × u and −{v}× = {v}×

T
, for any given vectors v,u;

I the identity matrix with appropriate dimensions;

AT the transpose of matrixA;

A+ the Moore-Penrose pseudoinverse of matrixA;

tr (A) the trace of matrixA;

diag (a1, a2 . . . , an) diagonal matrix with the diagonal elements being the scalars a1, a2 . . . , an;

diag (A1,A2 . . . ,An) block diagonal matrix with the diagonal elements being the matricesA1, ...,An;

‖v‖2 the induced norm p=2 of a vector, known as the Euclidean norm, defined by the
square root of the inner product of the vector with itself;

‖A‖2 the induced norm p=2 of a matrix, known as the Euclidean norm, defined by its
largest singular value, i.e., the square root of the largest eigenvalue ofATA;

‖•‖F the Frobenius norm of a matrix;

σm{A} the minimum singular value of a matrixA.
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Quaternion and dual quaternions symbols and notations

The variables ı̂, ̂ and k̂ denote ordinary complex imaginary units (also known as quaternionic units),
whereas the variable ε is reserved to denote the nilpotent dual unit.

Similarly to vectors, in this thesis we represent quaternions using lowercase bold letters, whereas dual
quaternions are represented by underlined bold variables, that is,

a, b, c, . . . quaternions and pure quaternions are represented by lowercase bold letters;

a, b, c . . . dual quaternions and pure dual quaternions are represented by lowercase bold
underlined letters;

a∗ and a∗ the conjugate of quaternion a and dual quaternion a, respectively;

A set of operators for quaternions and dual quaternions employed throughout this thesis is also represented
as follows:

Re (a) , Im (a) the real and imaginary components of the quaternion a, such that,
a = Re (a) + Im (a);

Re (a) , Im (a) the real and imaginary components of the dual quaternion a;

P (a) , D (a) the primary and secondary parts of the dual quaternion a, such that,
a = P (a) +D (a) ε;

vec3 a and vec4 a the vector space isomorphism mapping from pure quaternions and quaternions
to R3 and R4, respectively;

vec6 a and vec8 a the vector space isomorphism mapping from pure dual quaternions and dual
quaternions to R6 and R8, respectively;

vec the inverse vector space mapping from Rn ;
+

H4 (a) ,
−
H4 (a) the Hamilton operator (matrix form of the algebra product) for a quaternion a,

such that vec4 (ab) =
+

H4 (a) vec4 b =
−
H4 (b) vec4 a;

+

H (a) ,
−
H (a) the Hamilton operator (matrix form of the algebra product) for a dual quaternion

a, such that vec8 (ab) =
+

H (a) vec8 b =
−
H (b) vec8 a.

Symbols and notations related to sets

R the set of real numbers;

Rn the set composed of n-tuples of real numbers (x1, x2, . . . , xn) for
xi ∈ R, i = {1, . . . , n}. In vector matrix notation, it can be written as
[x1 x2 . . . xn]

T
;

C the set of ordinary complex numbers;



xi

D the set of dual numbers;

H the set of quaternions;

H0 the set of pure quaternions;

Sn the unit hyper-sphere belonging to Rn+1;

S3 the set of quaternions with unit norm, i.e. the unit 3-sphere;

H⊗ D the set of dual quaternions;

H0 ⊗ D the set of pure dual quaternions;

S the set of dual quaternions with unit norm;

B the closed unit ball in the Euclidean norm of appropriate dimension;

Symbols and notations related to groups and algebras

GL (n,R) the n−dimensional general linear group over the field R;

SL (n,R) the n−dimensional special linear group over the field R;

SE (n) the n−dimensional special Euclidean group;

SO (n) the n−dimensional special orthogonal group;

SE (3) the group of rigid body motions, i.e., the tridimensional special Euclidean group;

SO (3) the group of rigid body rotations, i.e., the tridimensional special orthogonal
group;

gl (n,R) the Lie algebra associated to the group GL (n,R);

sl (n,R) the Lie algebra associated to the group SL (n,R);

se (n) the Lie algebra associated to the group SE (n);

so (n) the Lie algebra associated to the group SO (n);

The Lie group of unit quaternions and unit dual quaternions are denoted by Spin(3) and Spin(3) nR3.

Additional symbols and notations

Matrices corresponding to task Jacobians are represented by J . Particularly, the task Jacobian that maps
the joint velocity vector to an R8-representation of the end-effector pose is denoted by Jvec whereas the task
Jacobian that maps the joint velocity vector to the unit dual quaternion twist is denoted by Jω.

The variable γ is reserved to denote the upper bound of the H∞ induced norm. Particularly, γO and γT
are used to denote the noise-to-error upper bound in the H∞ sense for the rotation and translational errors,
respectively.



INTRODUCTION

The ongoing research on control, cybernetics and automation brought the robotics field to the edge of a
paradigm revolution. The future of robotics is being studied today and moves towards releasing robots from
mostly repetitive tasks and bringing them to close, fluid and robust interaction with other robots and humans in
less constrained environments.

Since the 18th century industrial revolution to current day, human relation to machinery changed quickly
and deeply. From the first digitally operated and programmable robots from Unimation in the fifties and up to
complex service and state-of-the-art robots of today, robotics played a significant role in this attitude shift that
brought machines closer to humans. With the advance of Lyapunov’s control and Kalman’s estimation theories,
and the development of feedback systems and Wiener’s cybernetics systems, robotics flourished as a science of
perceiving and manipulating the physical world with computer-based mechanical devices.1

There is still plenty to be done in robotics and we are far from the futuristic scenario envisioned by Karel
Čapek and Isaac Asimov,2 but it is a field with enormous potential to change the way we interact with the
world and with ourselves. Due to its life-changing characteristics, robotics has increasingly become an inter-
disciplinary and multidisciplinary field of study, attracting and stimulating research from engineers—control,
automation, mechanical, computer, electric, cybernetics, and others engineers—scientists, mathematicians,
physicians, psychologists, among others. Despite being a relatively new field of study, robots are currently
present in various aspects of the construction of modern life, whether for industrial manufacturing, service
robotics, autonomously driven cars, actuated arms that assist surgeons and other medical robotic devices, or
robotic platforms for aquatic and planetary exploration.

However, most applications involving robots—particularly, in manufacturing environments—are still gen-
erally limited by the following key features: for safety, robots work isolated from humans, they operate in
environments that are well structured and fully known, and robots are constrained to performing simple repeti-
tive tasks.

In contrast, robots of tomorrow are expected to execute tasks deployed at increasingly less controlled sce-
narios where robustness and flexibility become crucial features. In this scenario, robots are supposed to un-
derstand different scenes and contexts, navigate in populated and unstructured environments, and work with
other robots and with humans. Taking a closer look at the aforementioned problems, even seemingly simple
subproblems such as the interpretation of range measurements from a precise laser sensor are often hard to
solve due to the complexity of realistic environments and the inherent uncertainties. These uncertainties are
propagated to decision, planning and control problems requiring robust responses from each solution.

Motivated by the new challenges that arise from the envisioned scenario and the considerable amount of
work to be done to achieve such features, this thesis was developed within the context of the Towards Robust
Robotic Manufacturing project from the Model-based Embedded and Robotic Systems group (MERS) from the
Computer Science and Artificial Intelligence Laboratory (CSAIL) at the Massachusetts Institute of Technology
(MIT) in partnership with the Mechatronics, Control, and Robotics research group (MACRO) at the Federal

1This particular concept of robotics is introduced by Thrun et al. [7]
2The term "robot" was first used in a play called "Rossum’s Universal Robots" by the Czech writer Karel Čapek to describe intelligent

machines that resemble humans and execute complex and undesired tasks. In the forties, Asimov coined the term “robotics” and postulated
the famous three laws of robotics.

1
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Figure 1.1: A demonstration and an illustration of the proposed robust robotic manufacturing assembly concept
with a Baxter robot and two Wam arms.

University of Minas Gerais (UFMG) and the Automation and Robotics Laboratory (LARA) at the University of
Brasília. The project and the partnership, funded by Boeing and CNPq-MIT MISTI Global Seed Funds, aimed
at pushing the state-of-the art in robotics and developing tools to unfold tomorrow’s robotic manufacturing
environment. In this framework, teams of robots are expected to collaborate together as peers to leverage their
different abilities in order to perform elaborate tasks robustly and efficiently within a semi-structured workplace
and likewise to be able to perform tasks with human help. This scenario as depicted in Figure 1.1 highlights
task execution that is quite fluid from the robot point of view.

Among the multiple dimensions of this project, this thesis’s goal is to contribute to the understanding
and advancement of control techniques for robot manipulators in the sense of robustness, optimality and
flexibility—cornerstone features for the required level of performance and robotic autonomy. Because the
robots must operate in different conditions executing complex and time-varying tasks, the control strategies
should allow reactiveness. Hence, the present work focused on kinematic control strategies in task-space.
Moreover, due to the environment and tasks uncertainties, accurate, optimal, robust and flexible task execution
have been the central to this thesis. Supporting this level of robot manipulation still poses challenges and is
essential to disclose the envisioned robust robot scenario.

Moreover, to cope with the challenges arising from robust, optimal and flexible control of robot manipula-
tors in the task-space, this thesis exploits the advantages of dual quaternion algebra to model and control the
robot coupled translation and rotation kinematics, following the steps and continuing the history introduced in
Adorno’s work [1]. The use of unit dual quaternions in robotics can be traced back to the works of [8–11], but
only in Adorno’s work a complete framework for robot kinematic modeling by means of unit dual quaternion is
properly formalized. A careful analysis on the contributions stemming from [1] shed some light on its paradigm
shift characteristics for rigid body representation in robotics. In this context, and deviating from the challenges
inherent from the Towards Robust Robotic Manufacturing project, this work also aims at setting foundations
for advanced control theory within unit dual quaternions by solving problems intrinsic to the algebra of dual
quaternions and to the kinematic structure of robot manipulators, and providing tools that enable complex and
sophisticated tasks to be performed robustly and efficiently.
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1.1 CONTRIBUTIONS

This thesis presents solutions to a number of relevant and hard problems that arise in the field of kinematic
control of robot manipulators using unit dual quaternion formalism. Particularly in this thesis, we are interested
in addressing the aforementioned challenges that play an important role towards robust robotic manufacturing
and the advancement of service robots. Moreover, theoretical and practical aspects of the dual quaternion alge-
bra have been considered and studied in depth. Hence, this thesis also yields results towards a systematization
of control techniques within dual quaternion algebra.

First, the following chapter provides for the reader a prelude prior to the contributions that introduces the
reader to basic concepts and to the theoretical mathematical background regarding rigid body transformations,
quaternion and dual quaternion algebras, robot arm kinematics, and basic control theory. This chapter presents
the background needed to understand the concepts proposed in the thesis and sheds a light on the importance
of a proper mathematical representation and the advantages that stems from using unit dual quaternions.

Apart from this introduction chapter and the following prelude chapter, this thesis organization and main
contributions are outlined as follows:

Dual quaternion based H∞ control design - In the light of practical robotics applications, Chapter 3 ad-
dresses the robot manipulator liability to modeling errors and uncertainties, exogenous disturbances and, most
importantly, herein, we focus on robust solutions based on the explicit description of the system requirements
into H∞ control design problems. The proposed dual quaternion kinematic controllers derived in this chapter
explicitly address different sources of uncertainties and disturbances and their influence over the orientation
and translation in the H∞ sense, which has the advantage of casting aside requirements regarding the distri-
bution description—that are significantly hard to characterize within the group of rigid body transformations.
Using the dual quaternion algebra, we adapt classic H∞ techniques—suitable solely for additive noises—to
derive easy-to-implement closed form H∞ setpoint control and tracking strategies that also incorporate robust-
ness requirements, disturbance attenuation, and performance properties, while minimizing the required control
effort. The dual quaternion H∞ criteria provide an intuitive and elegant connection between control effort and
the performance effects over the end-effector trajectory and different sources of uncertainties and disturbances.
The efficiency of the proposed controllers are evaluated in simulated scenarios both in Matlab and in the Virtual
Robot Experimentation PLatform (V-REP) from Coppelia Robotics GmbH.

Dual quaternion based optimal tracking control - To address the challenge of increasing the manipulation
accuracy in the context of compliant robots and reduced velocity profiles, Chapter 4 addresses the robot ma-
nipulator task-space design control problem using unit dual quaternion in the context of optimal control theory.
Novel task-space control criteria are proposed in order to find an optimal trajectory for the end-effector in dual
quaternion space, providing a tool to balance more conveniently the end-effector error and its task-space ve-
locity. The optimization-based controller extends the results from dual quaternion based controllers—sharing
the inherent representation advantages—and provides the designer with a more intuitive set of performance
indexes and enlarges the range of applications of the dual quaternion formalism in robotics. In contrast to stan-
dard optimal control techniques for manipulators, this chapter focuses in optimizing task-space variables which
greatly simplifies the control implementation. As a consequence, we aim at obtaining an optimal result for the
end-effector velocity at task-space. The analysis is particularly relevant in advanced manipulation tasks—for
instance, manipulation in hazardous or unstructured environments, and multi-arm manipulation—that require
precise and safe interaction in contrast to convergence speed. For instance, in the view of human-robot inter-
action, the speed of the end-effector largely influences the human acceptance of the contact and reduces the
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stress and discomfort that arises from the interaction. A controlled speed at task-space also prevents drifts
and overshoots caused by large accelerations requirements at the low level controllers. Lastly, to illustrate the
efficiency and the reliability from the proposed dual quaternion optimal criteria, we present a set of numeri-
cal examples and simulations in different scenarios and evaluate the controllers experimentally in a Meka A2
compliant manipulator.

Dual quaternion based H∞ kinematic singularity avoidance - In order to ensure proper manipulation ca-
pabilities throughout the whole end-effector task-space, Chapter 5 addresses the problem of singularity avoid-
ance for robot manipulators. Singularities play a significant role in design and control of rigid body motion,
particularly in the context of robot manipulators. The unit dual quaternion framework—similarly to unit quater-
nions for pure rotations—provides a escape for utterly describing the coupled kinematics without representation
singularities. Still, regardless the rigid motion representation, manipulator tasks are liable to kinematic singu-
larities where specific joint configurations render the differential forward kinematics to be ill-posed which
implies in losing one or more degree-of-freedom. To study and avoid kinematic singularities of a manipulator
is of great importance since at the neighborhood of these configurations several problems arise due to the Jaco-
bian rank loss. Since most of the singularity avoidance solutions in the literature assume Euclidean task-space
representation, this chapter provides tools to address kinematic singularities within dual quaternion space. For
redundant manipulators, we prove that existing techniques based on the self-motion (i.e., motions projected
on the Jacobian nullspace) can be extended when using the dual quaternion Jacobian and, for non-redundant
manipulators, we propose a new singularity avoidance strategy based on the H∞ dual quaternion controller
derived in Chapter 3, suitable for the non-Euclidean task-space manifold, that explicitly regulates the trade-off
between exactness of the solution and avoidance effort for inescapable singularities and non-redundant arms
based on the H∞ theory.

Dual quaternion based hybrid robust kinematic control for global stability - The approaches discussed
above all rely on unit dual quaternion framework for utterly describing the manipulator coupled translation
and rotation kinematics without representation singularities. Nonetheless, any proper rigid body representation
presents a topological obstruction to global stabilization by means of a continuous feedback. Unit dual quater-
nion representation is no exception. In fact, every rigid body real pose is represented by a pair of antipodal
dual quaternion elements which causes the unwinding phenomenon. In this context, using dual quaternion
formalism, Chapter 6 addresses the problem of globally stabilizing a rigid body pose. An hybrid strategy is
used to design a switching control law with hysteresis in such a way that the global asymptotic stability of
the closed-loop system is guaranteed and such that the controller is robust against arbitrary small perturba-
tions. The resulting controller is written in terms of the rigid body twist within unit dual quaternion formalism.
Moreover, we adapt the proposed hybrid criterion to global stability in the context of robot manipulators and
using the proposed controllers discussed above. Last, using numerical simulations, we illustrate the problems
that arise from neglecting the double cover—as unwinding and chattering—and verify the effectiveness of the
proposed controller to solve the robust global pose stability problem.

Dual quaternion flexible task-execution applied to two-arm manipulation - While the general kinematic
task-space control problem has been addressed optimally and robustly concerning uncertainties, disturbances,
kinematic singularities and even topological obstruction inherent to any rigid body representation, more dy-
namic scenarios require additional level of reactiveness from the manipulator. In modern control tasks, we
are also interested in satisfying secondary constraints such as avoiding joint limits, obstacles and different
undesired poses—seldom known a priori. In this sense, self-motion is paramount to unfold the desired task
flexibility to unforeseen scenarios by enabling motions of the links without disturbing the end-effector configu-
ration. Still, even seemingly simple problems may demand all available DOFs leaving no room for self-motion.
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In this context, Chapter 7 focuses on a novel strategy for enlarging the self-motion by relaxing control speci-
fications according to end-effector’s pose pertinence to regions of interest where fewer degrees of freedom are
needed. To illustrate the effectiveness of enlarging the nullspace to allow further self-motion operations, the
criterion is introduced in the context a two-arm manipulation which better illustrates both the need for further
DOF and the advantages of the proposed technique.

The contributions of this thesis exceeds the sum of its individual parts through a portfolio of methods
that as a whole pushes the state-of-the-art in control of robot manipulators and unfolds the tools required for
sophisticated task execution in the context of robust robotic manufacturing and service robots. In this context,
Chapter 8 presents the concluding remarks and perspectives for future works.
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FUNDAMENTALS FOR KINEMATIC MODEL-
ING AND CONTROL OF ROBOT MANIPULATORS

Every morning on coming downstairs to breakfast, his eldest son would ask
him, “Well, Papa, can you multiply triplets?” And each time he had to confess

ruefully, “No, I can only add and subtract them.”, Hamilton eldest son, [12]

2.1 COMPLEX NUMBERS IN GEOMETRY

The introduction of complex numbers into algebra is connected with the solution of particular quadratic
(and irreducible cubic) equations, for instance, x2 + a = 0, a > 0, [12–14]. The ingenious idea of expressing
complex values of the radicals in terms of the square root of minus one (

√
−a =

√
a
√
−1) originates from

the manuscript Algebra (1572) from Rafael Bombelli. The use of the special number
√
−1—henceforth, to

be known as imaginary unit—as to extend the idea of real numbers was only fully understood by William
Rowan Hamilton (1805–1865) [15], who expressed such numbers in terms of couples—ordered pairs of real
numbers—in almost the same way it is done in modern texts [12]. To ease the description of complex numbers,
herein, we denote the imaginary unit as i, such that, i =

√
−1 and i2 = −1. In this sense, a complex number

is composed of two real numbers combined with the imaginary unit.

Definition 2.1 (Complex Numbers). Let C ,
{
x+ yi | x, y ∈ R, i2 = −1

}
be the set of

complex numbers. A set of elements x` + y`i are said to be ordinary complex numbers if the
operations—addition/subtraction and multiplication—and equality on C are defined as follows:
(a) The addition/subtraction operation C× C 7−→ C is defined as

(x1 + y1i)± (x2 + y2i) = (x1 ± x2) + (y1 ± y2)i.

(b) The multiplication operation C× C 7−→ C is defined as

(x1+y1i)(x2+y2i) = (x2 + y2i)(x1 + y1i) = x1x2 − y1y2 + (x1y2+y1x2)i. (2.1)

(c) For z1, z2 ∈ C, with z1 = x1 + y1i and z2 = x2 + y2i, the equality z1 = z2 on the set C is
satisfied if and only if x1 = x2 and y1 = y2.

In the sense of Definition 2.1, it is clear that real numbers are a particular case of complex numbers, that is,
the complex number x + yi is a real number if y = 0, that is, x + 0i = x ∈ R. On the other hand, complex
numbers 0 + yi = yi ∈ C are said to be pure complex numbers. To find the result from a division operation
between two complex numbers z1, z2 ∈ C, we introduce other complex number z∗2 such that z2z∗2 yields a real
number. In this sense, we have

z1
z2

=
z1
z2

(
z∗2
z∗2

)
=
z1z
∗
2

z2z∗2
, (2.2)
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which is basically a complex number multiplication followed by a division by a real number.1 According to
the Definition 2.1, a convenient choice for z∗2 is simply the complex number (x − yi)—called conjugate of
the complex number z2—which yields a positive real number after complex number multiplications, that is,
z2z
∗
2 = z∗2z2 =

(
x2 + y2

)
∈ R . The square root of the product, that is,

√
x2 + y2, is called the modulus of

z2, and the difference between z2 and its conjugate yields a pure complex number, that is, (2y) i.

From (2.2), the set of complex numbers can be said to be a division algebra. Hence, according to the
Definition 2.1, the set of complex numbers can also be said to be a field over R—although a non-ordered field,
since the inequality z1 < z2 cannot be defined for every element z1, z2 ∈ C. The identity element is defined by
1 + 0i = 1 ∈ R, whereas the zero element is given by 0 + 0i = 0 ∈ R. Thus, for all complex numbers z ∈ C,
the following holds z

z = 1 and z − z = 0.

Definition 2.2. Consider an ordinary complex number z ∈ C composed of the real numbers x
and y, that is, z = x + yi. The real number x is said to be the real part of z whereas the real
number y is said to be the imaginary part of z. The values of the real and imaginary parts can
be directly extracted from the complex number z through the respective functionsa

Re (z) , x,

Im (z) , yi.

In the same way, the complex number z can be described by z = Re (z) + Im (z).

aIn contrast to Definition 2.2, for historic reasons some texts also refer to the imaginary part of z as Im (z) = y.

The absence of a full understanding and a skeptical attitude toward these numbers led to different desig-
nation such as “impossible”, “nonexistent”, and—finally—“imaginary” numbers from Descartes’ Géométrie
in the XVII century [12]—although the notation i =

√
−1 stems from Euler in the eighteenth century. In-

deed, despite different attempts for a proper—and physical—interpretation, such imaginary numbers were
only geometrically understood three centuries later by Caspar Wessel—curiously (and understandable), a non-
professional mathematician but a surveyor working with maps [14]—although the idea became widely known
only after the works of K. F. Gauss and A. Cauchy.

The work of Wessel enlightened the close connection between the theory of complex numbers and the
geometrical interpretation of complex numbers as points of a plane [13]. The rectangular Cartesian coordinates
x,y ∈ R from one point of a plane—as well as the polar representation with coordinates r =

√
x2 + y2 and

ϕ = tan−1 yx—corresponds to the complex number z ∈ C,

z = x+ yi = r (cosϕ+ i sinϕ) ,

and the algebra involving imaginary numbers is closely related to geometrical transformations on the plane.
For example, translation, rotation, dilatation could be obtained with addition, subtraction, and multiplication
among imaginary numbers.

1It is important to highlight that, similarly to R, the division for the zero element 0 is unfeasible and undefined.
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2.1.1 Most general complex numbers

The employment of imaginary numbers in geometry, and a better understanding of their behavior, influ-
enced eminent mathematicians to study different generalizations of this special set of numbers and its appli-
cations to geometry [13]. A general complex number could therefore be expressed by any linear combination
of

z = x+ yE,

where x,y ∈ R and addition/subtraction and equality operations are defined as ordinary complex numbers—
stressed in Definition 2.1, but with a more general multiplication law, that is, for general complex numbers
z1, z2,

z1z2 = z2z1 = (x1 + y1E)(x2 + y2E) = x1x2 + (x1y2 + y1x2)E + y1y2E
2,

whereE2 is also a complex number. In this sense, the general complex number forms an algebraic commutative
ring. Nonetheless, applications to geometry would often require a feasible solution for the division operation
as in (2.2). Hence, the solution requires a new complex number z∗ such that zz∗ yields a real number. From
the multiplication operation, it is clear that feasible solutions must lie within the set z∗ = α(x − yE), where
α ∈ R, and

zz∗ = α(x2 − y2E2).

For simplicity, let us regard α = 1. In this case, there exists only three possible solutions for the value of
E2 that yields a real valued number for the general expression, that is, for zz∗ ∈ R. The first solution, E2 < 0,
exploited in (2.1) yields ordinary imaginary numbers, whereas the others are E2 = 0 and E2 > 0. Moreover,
any resulting value for the general expression given E2 can be described by a by a simple linear combination
with the set {−1, 0, 1}.

Definition 2.3. Given a commutative ring and a conjugate definition, all systems of the most
general complex numbers can be reduced to the following three different systems [13]a:

Ordinary complex numbers E = i, i2 = −1,

Dual numbers E = ε, ε2 = 0,

Double numbers E = e, e2 = 1.

aMore precisely, all feasible most general complex numbers are isomorphic to ordinary complex, dual, or double
numbers when E2 < 0, E2 = 0, or E2 > 0, respectively.

It is important to emphasize that dual and double numbers differ from the ordinary complex set in the sense
of not being a division algebra, since there exist non-null elements that are not invertible.

2.1.2 Dual numbers

Dual and double numbers—introduced in the nineteenth century by geometers E. Study and W. Clifford2

[16]— have no connection to the theory of quadratic equations with real coefficients as the ordinary complex
numbers, and their main application usually lies in geometry [13]. Double numbers is usually concerned with

2Clifford [16] who was concerned with the use of these numbers in mechanics called them motors [13, 16]
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the non-Euclidean geometry of Lobachevskii or with pseudo-Euclidean geometry—closely related to the theory
of relativity —which is out of the scope of the manuscript. Hence, in this Subsection we will focus our attention
to the representation of dual numbers.

Dual numbers are two-dimensional commutative and associative algebra over the real numbers. Similarly
to ordinary complex numbers (Definition 2.1), they can be described by the composition of two real numbers
with a complex special unit, ε for dual numbers. Hence, a dual number can be described by z = x + yε for
x, y ∈ R.

Definition 2.4 (Dual Numbers). Let D ,
{
x+ yε | x, y ∈ R, ε2 = 0

}
a be the set of dual

numbers. Elements of the form zi = xi + yiε composed of the real numbers xi and yi are said
to be dual numbers if the operations—addition/subtraction and multiplication—and equality
on D, are defined as follows:
(a) The addition/subtraction operation D× D 7−→ D is defined as

z1 ± z2 = (x1 + y1ε)± (x2 + y2ε) = x1 ± x2 + (y1 ± y2) ε

(b) The multiplication operation D× D 7−→ D is defined as

z1z2 = z2z1 = (x1 + y1ε) (x2 + y2ε) = x1x2 + (x1y2 + y1x2) ε.

(c) The equality on the set D, that is z1 = z2, is satisfied if and only if x1 = x2 and y1 = y2.
aThe element ε—called dual unit—extends real numbers to the algebra of dual numbers. It is a nilpotent element

(also called nilpotent Clifford unit) defined by ε 6= 0 and ε2 = 0.

Definition 2.5. (From [1]) Let z be a dual number composed of the real numbers x and y, that
is, z = x+ yε. The real number x and y are said to be the primary part P (z) and dual parta

D (z) of z, respectively. Hence, the dual number z can be described by z = P (z) +D (z) ε.

aNot to be confused with the real and imaginary parts of an ordinary number defined in Definition 2.2

As stressed, the algebra of dual numbers is a ring with addition/subtraction and multiplication operations
as shown in Definition 2.4. Now, similarly to the ordinary complex numbers (2.2), we can derive the division
operation based on the element z† = P (z)−D (z) ε.

Remark 2.1. The algebra of dual numbers is a commutative and associative ring. The algebra is not a division
algebra—consequently, not a field—since purely complex elements, that is, z = D (z) are not invertible.
Indeed, according to Definition 2.6 the division operation exists only if P (z) 6= 0.

Dual numbers, similarly to ordinary complex numbers, have a close connection to geometry theory. The
dual numbers representation and algebra can be used to describe and perform linear transformations of oriented
lines of a plane, see [13, Section 9] for a detailed description.
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Definition 2.6. Let a and b be dual numbers with P (b) 6= 0, the division operation between
them is defined by

a

b
=
ab†

bb†
=
P (a)P (b)

P (b)
2 +

P (b)D (a)− P (a)D (b)

P (b)
2 ε;

Hence, the inverse of the dual number b is given by

b−1 =
b†

bb†
=

1

P (b)
2 [P (b)−D (b) ε] .

2.2 QUATERNIONS

The study of quaternions can be traced back to the work by William Rowan Hamilton (1805–1865) [15].
Hamilton presents one of the earliest efforts to list systematically the properties of the real number system. In
his studies, he excludes complex numbers from ordinary algebra, and defines complex numbers in terms of
couples. The excel result led the search for the "Theory of Triplets", which he sought to relate hypercomplex
numbers with three-dimensional space just as usual complex numbers are related to two-dimensional space
[12], but such possibility has been latter disproved by Ferdinand Georg Frobenius (1849–1917):

Proposition 2.1. There exists no three-dimensional algebra over the field of real numbers that extends the
complex numbers. [17, p.3-4]

proof.

Suppose the contrary and let (1, ı̂, ̂) be a basis of such algebra, such that ı̂2 = −1 and ̂2 = −1. Given the
closed property of multiplication in an algebra, ı̂̂must be given by ı̂̂ = α0+β0 ı̂+γ0̂,with α0,β0,γ0∈ R.
Hence, by multiplying the left side by ı̂, the following must hold

0 = −ı̂2̂+ ı̂ (α0 + β0 ı̂+ γ0̂) = −ı̂2̂+ (α0 ı̂− β0 + γ0 ı̂̂)

= +̂+ (α0 ı̂− β0 + γ0 (α0 + β0 ı̂+ γ0̂))

= (α0γ0 − β0) + (α0 + β0γ0) ı̂+
(
γ20 + 1

)
̂,

which in turn implies that γ20 + 1 = 0, contradicting that γ0 ∈ R. 2

Frustrated by his repeated failure to multiple triplets in a way that would preserve the properties of ordinary
complex numbers [12], Hamilton fulfilled his idea with the derivation of quaternion through the ingenious idea
of including a new term such that ı̂̂ = −̂̂ı = k̂.

The quaternion algebra, introduced in [18], is composed of the set

H ,
{
q = η + ı̂µ1 + ̂µ2 + k̂µ3 | η, µ1, µ2, µ3 ∈ R, ı̂2=̂2=k̂2=ı̂̂k̂=−1

}
.

The algebra is a four dimensional algebra over R generated by the quadruple (η, µ1, µ2, µ3) with quaternionic
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units ı̂, ̂, k̂, satisfying

ı̂̂ = −̂̂ı = k̂,

̂k̂ = −k̂̂ = ı̂, (2.3)

k̂ı̂ = −ı̂k̂ = ̂,

being with {1} the basis of this algebra.3 For the purpose of brevity, quaternion elements may also be denoted
by

q = η + µ,

where µ = ı̂µ1 + ̂µ2 + k̂µ3.

Definition 2.7 (Quaternions). Let

H ,
{
η + ı̂µ1 + ̂µ2 + k̂µ3 | η, µ1, µ2, µ3 ∈ R, ı̂2=̂2=k̂2=ı̂̂k̂=−1

}
be the set of quaternions, a four dimensional vector space over the real numbers, and let q, q′ ∈
H belong to this set such that q = η+µ and q′ = η′+µ′. The algebra of quaternions is defined
over the binary operations—addition/subtraction, scalar multiplication and multiplication—
and equality on H
(a) The addition/subtraction operation H×H 7−→ H is defined as

q ± q′ = η ± η′ + µ± µ′

= (η ± η′) + ı̂ (µ1 ± µ′1) + ̂ (µ2 ± µ′2) + k̂ (µ3 ± µ′3) .

(b) The quaternion multiplication operationa H×H 7−→ H is defined as

qq′ =
(
η + ı̂µ1 + ̂µ2 + k̂µ3

)(
η′ + ı̂µ′1 + ̂µ′2 + k̂µ′3

)
= (ηη′ − µ1µ

′
1 − µ2µ

′
2 − µ3µ

′
3) + ı̂ (ηµ′1 + µ1η

′ + µ2µ
′
3 − µ3µ

′
2)

+̂ (ηµ′2 + µ2η
′ + µ3µ

′
1 − µ1µ

′
3) + k̂ (ηµ′3 + µ3η

′ + µ1µ
′
2 − µ2µ

′
1) .

(c) For α ∈ R, the scalar multiplication operation R × H 7−→ H is a special case of (b) that
yields αq = αη + αµ.
(d) The equality on the set H, that is q = q′, is satisfied if and only if η1 = η2 and µ1 = µ′1,
µ2 = µ′2 and µ3 = µ′3.
The zero and the identity elements of the algebra are respectively 0 and 1.

aNote that the quaternion multiplication is not commutative, that is, qq′ 6= q′q.

3The quaternion algebra can also be directly derived from the even Clifford algebra C+(R3) where the quaternionic units ı̂, ̂, k̂ are
associated with the basis bivectors ı̂ = e2e3, ̂ = e3e1 and k̂ = e1e2 (see [19, Chapter 4] for further details). In Clifford algebra, the
orthonormal basis vectors ei are combined under product operation as follows: eiej = −ejei, for i 6= j, and eiej = −1 for i = j.
Therefore, the quaternionic properties described in (2.3) can be obtained directly from Clifford algebra over R.
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Definition 2.8. (From [1]) Let q be a quaternion element belonging to the set H composed of
(η+µ). The real component and the imaginary component of q are defined by the operations

Re (q) , η,

Im (q) , µ,

such that the quaternion q can also be represented by q = Re (q) + Im (q).

In the sense of Definition 2.8, quaternion elements with real part equal to zero, that is, x = Im (x) , belong
to the set of pure quaternions H0 and are very convenient to represent vectors of R3 within the quaternion
formalism by means of a trivial isomorphism.

Definition 2.9 (Pure quaternions). Let H0 , {qa ∈ H | Re (qa) = 0} be the set of pure
quaternions (a subset of the quaternion set with real part equal to zero). The set can be used
to represent vectors of R3 within the quaternion formalism by means of a trivial isomorphism,
that is, {H0,+} ∼=

{
R3,+

}
. We define the isomorphism mapping between H0 and R3 by

vec3 : H0 7−→ R3, (2.4)

such that qa=
(
qa1 ı̂+qa2̂+qa3k̂

)
yields vec3 qa=[ qa1 qa2 qa3 ]T from (2.4). The in-

verse mapping is defined by vec3 : R3 → H0.
Both cross product and dot product are defined for elements of H0 and they are analogous to
their counterparts in R3. More specifically, given u,v ∈ H0, the inner product 〈, 〉 and the
cross product × are respectively defined as [1]

〈u,v〉 , −uv + vu

2
and u× v , uv − vu

2
. (2.5)

An additional algebraic operation is the conjugate element. The conjugate of a quaternion q = η + ı̂µ1 +

̂µ2 + k̂µ3 is given by the unique element

q∗ = η − ı̂µ1 − ̂µ2 − k̂µ3,

= η − µ,
(2.6)

which may define a quaternion involution [20], and satisfies the following properties
α ∈ R, q ∈ H, =⇒ (αq)

∗
= αq∗,

q∗q = 0, q ∈ H, =⇒ q = 0,

q1, q2 ∈ H, =⇒ (q1q2)
∗

= q∗2q
∗
1.

Similar to the algebra of complex numbers (see Subsection 2.1), a consequence—and the objective—of the
conjugate definition (2.6) is to yield the square norm ‖q‖2 ∈ R of any arbitrary quaternion q ∈ H,

‖q‖2 = qq∗ = q∗q

= η2 + µ2
1 + µ2

2 + µ2
3.

12



Hence, the quaternion norm ‖q‖ ,
√
η2 + µ2

1 + µ2
2 + µ2

3 ∈ R coincides with the Euclidean norm of a vector[
η µ1 µ2 µ3

]T
∈ R4. From the quaternion norm information, we can derive the inverse operation,

q−1 =
q∗

‖q‖2
. (2.7)

The algebra of quaternion is therefore a four dimensional associative division algebra4 over R as it can easily
be observed from Definition 2.7 and (2.7).

An additional consequence of the conjugate definition is the inner product between two quaternion elements
h1,h2 ∈ H, that is, the mapping H×H→ R of the form

〈h1,h2〉 ,
h1h

∗
2 + h2h

∗
1

2
. (2.8)

The algebraic representation of the inner product also implies that 〈h1,h1〉 = ‖h1‖2 .

According to Frobenius’ Theorem [17, p.21-24], “The only associative and division algebras over the real
numbers are (up to isomorphism) the field of real numbers, the field of complex numbers, and the algebra of
the quaternions”.

2.2.1 Vector isomorphism and Hamilton operators for quaternions

As stressed in Definition 2.7, the quaternion multiplication is not commutative. Indeed, from Frobenius’
Theorem [17, p.21-24], the algebra of the quaternions can be shown to be the only finite dimensional, associa-
tive and division algebra over real numbers which is not commutative. Nonetheless, we may exploit the matrix
form of the algebra product (as for any Clifford algebra) to commute terms when performing quaternions mul-
tiplications.

First, taking that every n-dimensional real algebra is vector space isomorphic5 to Rn, we define a isomor-
phic mapping to R4, that is,

vec4 : H 7−→ R4, (2.9)

such that for any quaternion x, defined as x = x1 + ı̂x2 + ̂x3 + k̂x4, the vector space isomorphic mapping
(2.9) yields an R4 vector defined by vecx = [ x1 x2 x3 x4 ]T .

When quaternions are mapped into R4, Hamilton operators (matrix form of the algebra product) can be used
to commute terms when performing quaternions multiplications. For the quaternion z = xy, the Hamilton
operators are matrices that satisfy [1, 19, p.21-24]

vec4 z =
+

H4 (x) vec4 y =
−
H4 (y) vec4 x,

where

+

H4 (h) ,


h1 −h2 −h3 −h4
h2 h1 −h4 h3

h3 h4 h1 −h2
h4 −h3 h2 h1

 and
−
H4 (h) ,


h1 −h2 −h3 −h4
h2 h1 h4 −h3
h3 −h4 h1 h2

h4 h3 −h2 h1

 . (2.10)

4Compared to complex numbers, the algebra of quaternions lacks the commutative law property but retains the associative law [12].
5See [21, Chapter 8] for further details
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In addition, using the definition of conjugate of quaternions, it is easy to show that vec4 x
∗ = C4 vecx,

where C4 = diag(1,−1,−1,−1).

Alternative representation:
It is interesting to highlight that an arbitrary quaternion can also be represented by the vector iso-
morphism as

vec4 q =

[
η

µ

]
,

where η ∈ R denotes the scalar part and µ = [µ1 µ2 µ3]T ∈ R3 its vector part. In
this sense, the zero and the identity elements of the quaternion algebra are respectively denoted

by vec4 0 =
[

0 0
]T

and vec4 1 =
[

1 0
]T

. The conjugate element is denoted by

vec4 q
∗ =

[
η −µT

]T
. The quaternion multiplication (group operation) between two elements

vec4 qi =
[
ηi µTi

]T
, i ∈ {1, 2}, is defined as

vec4 (q1q2) =

[
η1η2 − µT1 µ2

η1µ2 + η2µ1 + µ1 × µ2

]
. (2.11)

2.3 DUAL QUATERNIONS

The origin of the dual quaternion algebra can be traced back to the work of W. K. Clifford [16] who first
derived a broad generalization of real, complex, hypercomplex and quaternion numbers to a new algebra—
Clifford algebra. Clifford called the extensions of quaternions as biquaternions. E. Study [22] studied (no
pun intended) and redefined this new algebra in the context of rigid body displacements as an extension of
quaternions [23], which became to be known as Study biquaternions and latter dual quaternion.6

The algebra of dual quaternions is an algebra over R8 composed of the set

H⊗ D =
{(
η + µ1 ı̂+ µ2̂+ µ3k̂

)
+
(
η′ + µ′1 ı̂+ µ′2̂+ µ′3k̂

)
ε | η, µ1, µ2, µ3, η

′, µ′1, µ
′
2, µ
′
3 ∈ R

}
where the dual number ε is the nilpotent commutative Clifford unit introduced in Definition 2.4. We can also
regard the real vector space H⊗D as a linear combination of the canonical basis vectors from quaternion even
Clifford algebra in R4 with coefficients in the commutative ring D (basically, dual numbers) [24], that is,

q = q + q′ε.

for q ∈ H⊗D. Hence, we can basically extend the basis {1, ı̂, ̂, k̂} for R4 to the basis {1, 1ε, ı̂, ı̂ε, ̂, ̂ε, k̂, k̂ε}
for R8 using the modulo relation ε2 = 0 and the commutative characteristic from ε, that is, ı̂ε = εı̂, ̂ε = ε̂,
k̂ε = εk̂. The dual quaternion elements can also be regarded as pairs of elements in R4, and consequently, an
element of R8 [25].

6Since both Eduard Study and William Kingdon Clifford used and wrote about dual quaternions, at times authors refer to dual quater-
nions as "Study biquaternions" or "Clifford biquaternions". Since the claims of Clifford and Study are in contention, it is convenient to use
the current designation dual quaternion to avoid conflict.
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Definition 2.10 (Dual Quaternions). Let H ⊗ D = {q + q′ε | q, q′ ∈ H} , be the set of dual
quaternions, a eight dimensional vector space over the real numbers, and let q

1
= q1+q′1ε and

q′
2

= q2 + q′2ε belong to this set. The algebra of dual quaternions is defined over the the bi-
nary operations—addition/subtraction, scalar multiplication and multiplication—and equality
defined as
(a) The addition/subtraction operation H⊗ D×H⊗ D 7−→ H⊗ D is defined as

q
1
± q

2
= (q1 ± q2) + (q′1 ± q′2) ε

(b) The dual quaternion multiplication operationa H⊗ D×H⊗ D 7−→ H⊗ D is defined as

q
1
q
2

= q1q2 + (q1q
′
2 + q′1q2) ε.

(b) For α ∈ R, the scalar multiplication operation R × H 7−→ H is a special case of (b) that
yields αq

1
= αq1 + αq′1ε.

(d) The equality on the set H⊗ D is satisfied if and only if q1 = q2 and q′1 = q′2.
The zero and the identity elements of the dual quaternion algebra are respectively 0 and 1.

aNote that the dual quaternion multiplication is not commutative, that is, q
1
q
2
6= q

2
q
1

.

Definition 2.11. (From [1]) Referring the dual quaternions as pairs of elements in R4, we can
define (similarly to Definition 2.2) the primary part P

(
q
)

and the dual part D
(
q
)

for any
given dual quaternion q = q + q′ε belonging to the set H⊗ D, that is,

P
(
q
)
, q,

D
(
q
)
, q′.

Hence, a dual quaternion element can also be described by q = P
(
q
)

+D
(
q
)
ε.

In a different manner, we can also decompose H⊗D into a direct sum of the form D⊕H0⊗D,
where D is the two dimensional real algebra of dual numbers and H0 ⊗ D is a six dimensional
real algebra subspace of dual quaternions, also known as pure dual quaternions. To maintain
a similar notation from quaternions, the result from this decomposition will be defined as the
real componenta and the imaginary component of q and stems from the operations

Re
(
q
)
, Re (q) + Re (q′) ε = η + η′ε,

Im
(
q
)
, Im (q) + Im (q′) ε = µ+ µ′ε,

such that the dual quaternion can also be represented by q = Re
(
q
)

+ Im
(
q
)
.

aNote that the operator Re () yields a dual number and not a real number as Definition 2.2. Still, we will keep the
notation to ease the overall manuscript description.

The addition/subtraction and multiplication operations can be described using the primary and dual parts
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from the dual quaternion, that is

q
1
± q

2
=
[
P
(
q
1

)
± P

(
q
2

)]
+
[
D
(
q
1

)
±D

(
q
2

)]
ε

and
q
1
q
2

=
[
P
(
q
1

)
P
(
q
2

)]
+
[
P
(
q
1

)
D
(
q
2

)
+D

(
q
1

)
P
(
q
2

)]
ε.

From Definition 2.11, dual quaternion elements with real part equal to zero, that is, x = Im (x) , belong
to the set of pure dual quaternions H0 ⊗ D (also, known as dual vectors). Similar to the relationship between
pure quaternions and R3, pure dual quaternions are very convenient to represent vectors of R6 within the dual
quaternion formalism by means of a trivial isomorphism.

Definition 2.12 (Pure dual quaternions). Let H0 ⊗ D be the set of pure dual quaternions

H0 ⊗ D , {µ+ µ′ε | µ,µ′ ∈ H0} .

The algebra of pure dual quaternion (also known as dual vectors) is a six real dimensional sub-
space of dual quaternions with real part equal to zero, that is

{
q
a
∈ H⊗ D | Re

(
q
a

)
= 0
}

,

and can be used to represent vectors of R6 within the dual quaternion (or dual vector) formalism
by means of a vector space isomorphism between H0 ⊗ D and R6 defined by the map

vec6 : H0 ⊗ D 7−→ R6, (2.12)

such that pure dual quaternions q
a
=
(
µ1 ı̂+ µ2̂+ µ3k̂

)
+
(
µ′1 ı̂+ µ′2̂+ µ′3k̂

)
ε yield six di-

mensional real vectors vec6 qa=[ µ1 µ2 µ3 µ4 µ5 µ6 ]T . The inverse mapping is de-
fined by vec6 : R6 → H0⊗D. Both cross and dot products are defined for elements of H0⊗D,
but differently from the vec3 mapping, they are not analogous to their counterparts in R6.

An additional algebraic operation is the conjugate element. The conjugate of a dual quaternion q = P
(
q
)
+

D
(
q
)
ε is given by the conjugate of the primary and dual quaternion elements

q∗ = P
(
q
)∗

+D
(
q
)∗
ε.

The conjugate satisfies the following properties
α ∈ R, q ∈ H⊗ D, =⇒

(
αq
)∗

= αq∗,

q∗q = 0, q ∈ H⊗ D, =⇒ P
(
q
)

= 0,

q
1
, q

2
∈ H⊗ D, =⇒

(
q
1
q
2

)∗
= q∗

2
q∗
1
.

(2.13)

Analogously to the algebras of complex numbers, dual numbers, and quaternions, the norm operation must
be defined using the conjugate multiplication. Nonetheless, according to (2.13), for a nonzero dual quaternion
element q defined with primary part equal to zero—that is, q = D

(
q
)
ε—we have q∗q equal to zero even if

for nonzero q. Hence, similar to quaternions, the algebra of dual quaternions is a eight dimensional associative,
but not commutative algebra over R8—although is not a division algebra, as seen in Definition 2.10.7

7Compared to quaternions, the algebra of dual quaternions is a non-division algebra since it has divisors of zero. In this sense, dual
quaternions should not be confused with octonions which defines a division algebra over R8.
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Another consequence is that we cannot state a proper norm—which must be strictly positive for non-zero
elements—for the dual quaternion algebra. Instead, we define a seminorm—that allows zero values for non-
zero dual quaternion elements (in addition to the zero element).

Definition 2.13. Let q be a dual quaternion belonging to the set H ⊗ D, the seminorm q is
given by ∥∥q∥∥ =

√
q∗q

=

√[
P
(
q
)∗ P (q)]+

[
P
(
q
)∗D (q)+D

(
q
)∗ P (q)] ε

=

√∥∥P (q)∥∥2 +
[
P
(
q
)∗D (q)+

(
P
(
q
)∗D (q))∗] ε

=

√∥∥P (q)∥∥2 + 2〈P
(
q
)
,D
(
q
)
〉ε

=

√(∥∥P (q)∥∥+ 1

‖P(q)‖〈P
(
q
)
,D
(
q
)
〉ε
)2

=
∥∥P (q)∥∥+

〈P(q),D(q)〉
‖P(q)‖ ε.

The dual quaternion q has a zero seminorm if and only if
∥∥P (q)∥∥ = 0, while it has unit length

if and only if
∥∥P (q)∥∥ is a unit quaternion and P

(
q
)
D
(
q
)

= 0.

Note that, as opposed to real quaternions where the quaternion norm coincides with the Euclidean norm,
the seminorm of the dual quaternions yields a dual number. Stemming from Definition 2.13, we can also derive
the inverse operation.

Definition 2.14. Let q be a dual quaternion, the inverse of q is defined by

q−1 =
q∗

q∗q
=

q∗∥∥q∥∥2 ,
and exists if and only if

∥∥P (q)∥∥ 6= 0. That is, the dual quaternion algebra is not a division
algebra as previously stressed.

2.3.1 Vector isomorphism and Hamilton operators for dual quaternions

Similar to quaternion algebra, we have that dual quaternion algebra is a non commutative algebra. Hence,
dual quaternion multiplication is not commutative, that is, given two dual quaternions x and y, then xy 6= yx.
Nonetheless, we may exploit the matrix form of the algebra product (as for any Clifford algebra) to commute
terms when performing dual quaternions multiplications.

First, taking that every n-dimensional real algebra is vector space isomorphic8 to Rn, we define a isomor-

8See [21, Chapter 8] for further details
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phic mapping to R8, that is,

vec8 : H⊗ D→ R8, (2.14)

such that for any dual quaternion x, defined as x = x1 + ı̂x2 + ̂x3 + k̂x4 +ε(x5 + ı̂x6 + ̂x7 + k̂x8), the vector
space isomorphic mapping (2.14) yields an R8 vector defined by vec8 x=[ x1 x2 x3 x4 x5 x6 x7 x8 ]T .

When dual quaternions are mapped into R8 manifold, Hamilton operators (matrix form of the algebra prod-
uct) can be used to commute terms when performing dual quaternions multiplications. For the dual quaternion
z = xy, the Hamilton operators9 are matrices that satisfy [1, 19]

vec8 z =
+

H (x) vec8 y =
−
H
(
y
)

vec8 x,

where

+

H (x) ,

 +

H4 (P (x)) 04
+

H4 (D (x))
+

H4 (P (x))

 , −
H
(
y
)
,

 −H4

(
P
(
y
))

04
−
H4

(
D
(
y
)) −

H4

(
P
(
y
))
 , (2.15)

and the Hamilton operators for an arbitrary quaternion x, that is,
+

H4 (x) and
−
H4 (x), are defined in (2.9).

In addition, using the definition of conjugate of dual quaternions it is easy to show that vec8 x
∗=C8 vec8 x,

where C8 = diag(1,−1,−1,−1, 1,−1,−1,−1).

Alternative representation:

It is interesting to highlight that an arbitrary dual quaternion can also be represented by the vector isomor-

phism as q=q + q′ε, where q=
[
η µT

]T
∈ H and q′=

[
η′ µ′T

]T
∈ H,

vec8 q =

t
η + µε

η′ + µ′ε

|

=


η

µ

η′

µ′

 ,
where η, η′ ∈ R are respectively the real components of the primary and dual parts, and µ,µ′ ∈ R3 are the
imaginary components of the primary and dual parts, respectively.

In this context, the zero and the identity elements of the dual quaternion algebra are respectively denoted by[
0 0 0 0

]T
and

[
1 0 0 0

]T
. The conjugate element is thus given by vec8 q

∗ =

t
η − µε
η′ − µ′ε

|

.

Within this representation, the dual quaternion multiplication (group operation) between two dual quaternion
elements q

1
and q

2
is defined as

vec8
(
q
1
q
2

)
=


η1η2 − µT1 µ2

η1µ2 + η2µ1 + µ1 × µ2

η1η
′
2 + η′1η2 − µT1 µ′2 − (µ′1)

Tµ2

η1µ
′
2 + η′1µ2 + η′2µ1 + η2µ

′
1 + µ1 × µ′2 + µ′1 × µ2

 .

9It is important to highlight that in this manuscript, we are using Hamilton operators with the vec8 mapping to the R8 manifold, as
derived in [1]. In this sense, the Hamilton operators in this manuscript should not be confused with the Hamilton operators defined in [26]
which defines the dual matrix form of the algebra product combined with a dual quaternion mapping to D⊗ R4.
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2.4 RIGID BODY ATTITUDE

The geometric representation of attitude, that is, the orientation, of a rigid body with respect to another—a
reference base—is connected to transformations of coordinate frames theory, that is, it relies on the relationship
between coordinates frames rigidly attached to each body [27]. The linear transformation must preserve the
distance between each pair of material points in the body and the handedness of the coordinate frames [28–30].

These frames can be defined by three dimensional orthogonal unit vectors ordered according to particular
hand rule. Hence, the linear transformation is represented by a 3 × 3 matrix that transforms a vector resolved
in the body frame into its representation in the reference frame, that is, the three orthogonal unit basis vectors
of the body-fixed frame resolved in the reference frame are represented by the three columns vectors of the
representation matrix [30]. In the same manner, the three rows represent the three orthogonal unit basis vectors
of the reference frame resolved in the body-fixed frame. In this sense, attitude transformation can be defined by
the set of three dimensional orthogonal matrices, which in turn defines a Lie group over matrix multiplication
(group operation), the orthogonal group—O(3).

2.4.1 Rotation group SO(3)

The algebraic orthogonal group10 O(n,F) under matrix multiplication is a n × n subgroup of the matrix
Lie group GL(n,F)—general linear group—where the generic set F is constrained to orthogonal matrices,

O(n,F) =
{
A ∈ GL(n,F) |ATA = I

}
.

Every group element has an inverse defined by its transpose—property inherent to orthogonal matrices [31]—
that yields the unique identity element I .

To simplify notation, over the field R of real numbers, the orthogonal group O(n,R)—as well as the
general linear group GL(n,R) and its subgroups E(n,R), SE(n,R), and SO(n,R)—will be throughout the
manuscript simply denoted by O(n)—and analogously GL(n), E(n), SE(n), and SO(n).

The engaging feature—in geometry theory—endowed by the orthogonal group is its relationship to isome-
tries, where an isometry of Rn is a distance preserving bijection f : Rn 7−→ Rn, i.e., |f(x)− f(y)| = |x− y|,
x, y ∈ Rn. For A ∈ O(n) and vectors u,v in a n-dimensional real Euclidean space with regard to a fixed
point, the isometry condition Au ·Av = u · v is preserved [32, 33]. Hence, O(n) is the group of distance-
preserving transformations of a n-dimensional Euclidean space, and that is particular interesting given that a
rotation about an origin can be defined by a linear transformation that preserves the length of all vectors, i.e.,
isometry, and orientation, i.e., handedness of the space [34].

Nonetheless, one must note that the determinant of an orthogonal matrix can be either 1 or −1. In the
case of negative determinant, we would have each unit vector reflected through the origin which would yield
a reflection operation—roughly speaking a linear transformation that resolves a 180-degree rotation of the
orthogonal unit basis vectors of the body frame with regard to the reference frame.

Therefore, the three-dimensional rotation11 operation must be defined in a subgroup of O(3) with determi-
nant restricted to 1—this group, SO(3), is called the special orthogonal group or rotation group of R3.

10See further details about group definition in Appendix E.1.
11Note that a rotation can be obtained through two consecutive reflections.
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Definition 2.15 (Rotation group). Consider the set of 3× 3 real matrices, and let GL(3) be its
subset containing only non-singular matrices. The group of rotations in R3, denoted by SO(3),
is the Lie group under matrix multiplication of special orthogonal transformations in R3

SO(3) =
{
R ∈ GL(3) |RTR = I and detR = 1

}
,

where I is the identity transformation in R3 and the inverse operations is defined by the trans-
pose element. The corresponding Lie algebra, denoted, so (3), is the space of skew-symmetric
matrices

so (3) =
{
A ∈ gl (3,R) (3) |AT = −A and tr (A) = 0

}
,

where gl (3,R) is the Lie algebra corresponding to Lie group GL(3) and describes the space
of linear transformations in R3.

Definition 2.16 (Rotation group as a rigid transformation). A rotation R ∈ SO(3) is a rigid
body transformation in the sense that preserves the length of all vectors and orientation—
ensuring that particles in a rigid body can rotate but not translate with respect to each other [35].
In this sense, a rotationR maintains the distance and orientation between any two elements of
a rigid body, p and q, that is,

· Preserves Distance: ||Rq −Rp|| = ||q − p||, ∀q,p ∈ R3,
· Preserves Orientation: R (q × p) = Rq ×Rp, ∀q,p ∈ R3.

Every configuration of a rigid body that is free to rotate relative to the fixed base frame can be identified
with a unique rotation matrix R ∈ SO(3) , which can also define a transformation taking coordinates from a
point to one frame to another [35].

2.4.2 Unit quaternions

In the turn of the nineteenth century, there was a dispute between matrix-vector and quaternion based
notations for modern geometry [23]. The quaternion-Clifford algebra lost and quaternion based applications
and results were neglected till recently. Particularly, in the last thirty to forty years, unit quaternion based
representation has gained considerably attention due to its compactness, efficiency and elegant representation
for finite rotations in three-dimensional space [15].

Stemming from the set H of quaternions, unit quaternions are elements whose norm is unit, that is, the ones
that lies in the subset of unit sphere of three dimensions in R4,

S3 , {q ∈ H | ‖q‖ = 1} ,

which forms a group under the operation (2.11).
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Definition 2.17 (Unit Quaternions). Let S3 = {q ∈ H | ‖q‖ = 1} be the set of unit quater-
nions, a subset of the quaternion set H constrained to be within the unit sphere of three dimen-
sions in R4. The group of unit quaternions Spin(3) is defined under quaternion multiplication
operation (see Definition 2.7) with identity element defined by 1 , 1 and inverse element
defined by its conjugate (see (2.6)) as to satisfy the following axioms
(a) Associative: For all q1,q2,q2∈ Spin(3), we have (q1q2) q3 = q1 (q2q3);
(b) Identity: For all unit quaternion element q ∈ Spin(3), we have q1 = 1q = q;
(c) Inverse: For all unit quaternion element q ∈ Spin(3), there exists an inverse element in
Spin(3) denoted by q−1—which is also defined by the conjugate of q, that is, q∗—such that

qq−1 = qq∗ = q∗q = 1;

(d) Closure: The product from any unit quaternion elements q1,q2∈ Spin(3) yields an unit
quaternion element, that is, q1q2 ∈ Spin(3).
The unit quaternion group forms a Lie group whose Lie algebra is given by the quaternions
with real components equal to zero—pure quaternions [36] (see Definition 2.9).

Analogously to the way that complex numbers are used to represent rotations in the plane, unit quaternions
encapsulates the group of three-dimensional rotations SO (3) in the sphere. This way, an arbitrary three-
dimensional rotation of φ (rotation angle) around the orthogonal rotation axis n = nx ı̂ + ny ̂ + nz k̂ can be
represented by the unit quaternion [37]

r = cos(φ/2) + sin(φ/2)n.

Within unit quaternions, the conjugate element r∗ = cos(φ/2)− sin(φ/2)n also defines the inverse operation;
that is, rr∗ = 1. Furthermore, the unit quaternion group double covers the rotation group SO (3). Therefore,
the unit quaternion −r also represents the same rotation of r [23].

Unit quaternions are very useful either to describe a point by the coordinates of two frames different from
each other only by a rotation and to represent a point resulting of a rotation applied to another point of the same
frame. First, it is important to highlight that points and translations can be represent by pure quaternions, that
is, quaternions with real part equal to zero. This property follows straight from the Definition 2.9 and from the
natural isomorphism with R3.

To represent a point p in a different frame, consider the pure quaternions p0 and p1 to be the representation
of the point p with respect to the frames F0 and F1, respectively. If the frame F1 is obtained by rotating the
former frame by a quaternion r01, then the representation of the point in the frame F1, that is, p1 is given by
the transformation [37]

p1 = r0∗1 p
0r01. (2.16)

This transformation is called frame rotation.

In the same sense, but with a different perspective, let p00 be a point with respect to a coordinate frame F0.
The transformation that corresponds to a rotation within the same coordinate frame yielding to a new point is
called a point rotation [37],

p01 = r01p
0
0r

0∗
1 . (2.17)
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The difference between frame rotation and point rotation is a matter of perspective. In the former, observers
located at the point will be stationary while the frame moves. Conversely, in point rotation, observers located
at the frame will be stationary while the point moves [1].

Rotation Matrix from Unit Quaternion Elements, and Unit Quaternion Double Cover

The Lie group of unit quaternions Spin(3) can be used to parametrize the group of rotations through the
isomorphic mapping defined in (2.9) and (2.4). In this sense, consider the matrix form of the quaternion trans-
formation (2.17) obtained using the mapping to Rn,

vec4 p
0
1 =

+

H4 (r)
−
H4 (r

∗) vec4 p
0
0.

Note that the matrix representation from the quaternion rotation r = r01 = cos(φ/2) + sin(φ/2)n can be
rewritten as

+

H4 (r) =

[
cos(φ

2
) − sin

(
φ
2

)
vecT3 µ

sin
(
φ
2

)
vec3 µ cos(φ

2
)I + sin

(
φ
2

)
S

]
,

−
H4 (r

∗) =

[
cos(φ

2
) + sin

(
φ
2

)
vecT3 µ

− sin
(
φ
2

)
vec3 µ cos(φ

2
)I + sin

(
φ
2

)
S

]
.

where S = {vec3 n}× is the skew symmetric matrix from the unit vector vec3 n. Hence,
+

H4 (r)
−
H4 (r

∗) is
given by cos

2(φ
2
) + sin2

(
φ
2

)
vecT3 µ vec3 µ − sin2

(
φ
2

)
vecT3 µS

− sin2
(
φ
2

)
S vec3 µ

(
sin2

(
φ
2

)
vec3 µ vecT3 µ+ cos2(φ

2
)I

+2 cos(φ
2
) sin

(
φ
2

)
S + sin2

(
φ
2

)
S2

) .
Note that the expression can be considerably simplified if we consider the identities

cos2(φ
2
) + sin2 (φ

2

)
vecT3 µ vec3 µ = ‖r‖ = 1,

S vec3 (µ) = vecT3 (µ)S = 0,

vec3 µ vecT3 µ = I + {vec3 µ}×
2
.

Hence,

+

H4 (r)
−
H4 (r

∗)=

[
1 0T

0 sin2
(
φ
2

) (
I+S2

)
+ cos2(φ

2
)I+2 cos(φ

2
) sin

(
φ
2

)
S+sin2

(
φ
2

)
S2

]

=

[
1 0T

0
(
cos(φ

2
)I + sin

(
φ
2

)
S
)2

+ sin2
(
φ
2

) (
I+S2

)] , (2.18)

where 0 is a three dimensional zero vector.

We can find that the 3×3 submatrix from (2.18) yields exactly the orthogonal matrixR such that vec3 p0
1 =

R vec3 p
0
0.

It is however interesting to highlight that the rotation matrix

R =
(
cos(φ

2
)I + sin

(
φ
2

)
S
)2

+ sin2 (φ
2

) (
I+S2)

is a quadratic function of the quaternion components. Therefore, the quaternion r and −r represents the same
rotation. The result is a two-to-one covering map from the rotation group.
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Attitude Representation
As the group of rotations is not an Euclidean space, but rather a differentiable manifold [38], attitude control is
typically studied using various attitude representations [28–30,39–41]. Rigid body attitude is often represented
using three or four components, and the representation can be defined in an Euclidean space, as in the case of
Euler angles, which lie in R3, or non-Euclidean spaces, as in the case of quaternions, which lie in the non-
Euclidean three-sphere S3. Nonetheless, due to topological properties of the rotation group SO(3), all existing
representations fail to represent the set of attitudes both globally and uniquely [29, 30, 42].

Three-parameter representations of attitude include the Euler angles as well as parameters derived from
the unit quaternions as in the case of the Rodrigues parameters and the modified Rodrigues parameters. These
three-parameter sets can be viewed as embedded subsets of R3, thus allowing methods of analysis that are
suited to the Euclidean space R3. Nonetheless, these Euclidean representations will inherently present singu-
larities. For instance, Euler angles can represent every attitude, however this representation is not unique at
kinematic singular points—described by a gimbal lock [30]—and yields an unfeasible representation for the
time-derivative of the angles; that is, the transformation from their time rates of change to the angular velocity
vector is not globally defined. The Rodrigues parameters and modified Rodrigues parameters are geometrically
singular since they are not defined for 180◦ of rotation. Therefore, continuous control laws using these three-
parameter representations cannot be globally defined, and, as such, these representations are limited to local
attitude maneuvers.

On the other hand, the non-Euclidean space of unit quaternions provides a convenient and efficient mathe-
matical notation for representing orientations and rotations in three dimensional space. Indeed, unit quaternions
can represent all possible attitudes, rotations, and angular velocities transformations, that is, they are global in
their representation of attitude. Still, the map from the space of unit quaternions to the space of SO(3) is not
unique. Indeed, it is a two-fold covering map, where each physical attitude R ∈ SO(3) is represented by a
pair of antipodal unit quaternions ±q ∈ S3 [30]. In this sense, continuous control laws using unit quaternions
four dimensional space representation can be used to globally define the rotation group without singularities,
however cannot ensure global stability yielding the undesirable phenomenon of unwinding [30, 42, 43].

Indeed, regardless of the choice of parameterization, there exist no controller defined in a continuous vector
field that can globally stabilizes the compact group of rotations SO(3).

Theorem 2.1 Theoretical limitations for global stability (from [42])

LetM be a manifold of dimensionm and consider a continuous vector field onM. Suppose
π :M 7−→ L is a vector bundle over L, where L is a compact, r-dimensional manifold with
r ≤ m. Then there exists no equilibrium point of f that is globally asymptotically stable.

Advantages of unit quaternions
The main advantage of using unit quaternions four parameters representation for describing finite rotations in
space is their global representation of attitude. Unit quaternions is the universal covering map—that is, it covers
all connected covers of SO(3)—for the set of rotation matrices SO(3), and provides a globally nonsingular
parametrization of SO(3) [42], that is, they can represent all possible attitudes, rotate coordinate frames, and
transform angular velocities continuously without singularities [30, 44].

Unit quaternions parametrization of SO(3) is based on the set of quaternions that lie on the sphere manifold
S3, which is easily parametrized in terms of four parameters subject to one constraint, while a rotation matrix
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contains nine parameters satisfying six constraints [42]. Hence, quaternion elements are as efficient, more
compact, and more elegant than their matrix counterparts [45]. Moreover, unit quaternions seem to offer a
more intuitive framework for using and understanding the effects of three-dimensional rotations because the
axis and angle of rotation appear explicitly in their definition [45].

In the context of computational applications, the finite precision arithmetic will inherently introduce errors.
If the rotation is represented as an orthogonal matrix, then the errors will mean the result is probably not
orthogonal. To recover an orthogonal matrix requires a time consuming Gramm Schmidt process. By contrast,
if the rotation is represented by a unit quaternion, all that is needed is to divide by the sum of the squares of the
components [23].

Furthermore, for n ≥ 3, the group Spin(n) is simply connected (a fact that it not so easy to prove without
some machinery) whereas SO (n) is not simply connected. Hence, Spin(3) is topologically simpler than the
group SO (3) which, intuitively speaking, is more twisted than Spin(3) [46]. This is an important advantage
when dealing with robotics, particularly in the case of defining the configuration space for robots and for
motion planning. Being simply connected, it is easier to define harmonic functions for navigation through unit
quaternions (see, [47, chapters 3 and 8]).

In this context, the efficiency, compactness, and elegance of the quaternion algebra makes the unit quater-
nion formalism a rewarding alternative in research and pedagogical environments for representing finite rota-
tions in space [15, 45].

Still, as previously stressed, there is no continuous control laws that can globally stabilize the rotation
group, regardless of the parametrization. The map from the S3 of unit quaternions to the space of SO(3) is a
two-fold covering map, where a pair of antipodal unit quaternions ±q ∈ S3 defines the same physical attitude
in SO(3). This constraint will be further detailed and investigated in Chapter 6.

2.5 RIGID BODY POSE REPRESENTATION

2.5.1 Unit dual quaternions

Since the first studies from E. Study (no pun intended), dual quaternion algebra has been used as a tool
to describe rigid body displacements through Clifford algebra. Similarly to the matrix-vector notation, that
is, the use of homogeneous transformation matrices, dual quaternions provide a powerful representation to
describe both positions and orientations simultaneously [1,9,48]—that is, within a single mathematical element.
Moreover, dual quaternions completely describe the rigid motion using only eight parameters, in contrast to
twelve parameters from homogeneous transformation matrices, being probably the neatest and most useful way
of picturing the rigid body motion group manifold [23].

Stemming from the set H⊗D, unit dual quaternions are elements whose seminorm is unit, that is,
∥∥P (q)∥∥

is a unit quaternion and P
(
q
)
D
(
q
)

= 0. Under the dual quaternion multiplication (see Definition 2.10), the
unit dual quaternions set

S =
{
q ∈ H⊗ D |

∥∥P (q)∥∥ = 1 and P
(
q
)
D
(
q
)

= 0
}
, (2.19)

forms the Lie group of unit dual quaternions [49]—Spin(3) nR3.
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Definition 2.18 (Unit Dual Quaternions). Let

S =
{
q ∈ H⊗ D |

∥∥P (q)∥∥ = 1 and P
(
q
)
D
(
q
)

= 0
}

be the set of unit dual quaternions, a subset of the dual quaternion set H ⊗ D. The group of
unit dual quaternions Spin(3) n R3 is defined under quaternion multiplication operation (see
Definition 2.7) with identity element 1 and inverse element defined by its conjugate (see (2.13))
as to satisfy the following axioms
(a) Associative: For all q

1
,q

2
,q

3
∈ Spin(3) nR3, we have(
q
1
q
2

)
q
3

= q
1

(
q
2
q
3

)
;

(b) Identity: For all unit dual quaternion elements q ∈ Spin(3) nR3, we have

q1 = 1q = q;

(c) Inverse: For all elements q ∈ Spin(3)nR3, there exists an inverse element in Spin(3)nR3

denoted by q−1—which is also defined by the conjugate of q, that is, q∗—such that

qq−1 = qq∗ = q∗q = 1;

(d) Closure: The product from any elements q
1
,q

2
∈ Spin(3)nR3 yields an unit dual quaternion

element, that is, q
1
q
2
∈ Spin(3) nR3.

The unit dual quaternion group forms a Lie group whose Lie algebra is given by the dual
quaternions with real components equal to zero—pure dual quaternions (see Definition 2.12).

In this sense, and analogously to the way unit quaternions cover the rotation group SO(3), the unit quater-
nion group encapsulates SE(3) with a double cover. Hence, the complete rigid body motion, coupled with
translation and rotation operations, can be described using unit dual quaternion algebra [23].

An arbitrary rigid body displacement defined by a translation p followed by a rotation r is represented by
the unit dual quaternion element12

x = r + ε(1/2)pr, (2.20)

where r = cos(φ/2) + sin(φ/2)n, is a unit quaternion from Spin(3) that represents the rotation and p =(
px ı̂+ py ̂+ pz k̂

)
∈ H0 represent the translation operator in the form of a pure quaternion (i.e., a quaternion

with real part equal to zero that is isomorphic to R3). The translation can also be easily retrieved from (2.20):

p = 2D (x)P (x)
∗
,

where the operations P () and D () are described in Definition (2.11).

Within unit dual quaternions, the conjugate element x∗ = r∗+ε(1/2)r∗p∗ = r∗−ε(1/2)r∗p also defines
the inverse operation; that is, xx∗ = x∗x = 1. Furthermore, the unit dual quaternion group double covers
the rigid body motion group SE (3), in an analogous manner to unit quaternions double covering the SO (3)

group. Therefore, the unit dual quaternion −x also represents the same rigid body transformation of x.
12Similarly, the rigid motion could also be represented by a rotation r followed by a translation p̂ [50], that is, x = r+ ε(1/2)rp̂. We

can also relate both transformation by taking p̂ to be defined as p̂ = r∗pr.
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A sequence of rigid motions can be represented by a sequence of unit dual quaternion multiplications; for
instance, given that x0

1 represents frame F1 with respect to F0 and x1
2 represents frame F2 with respect to F1,

then the transformation from F0 to F2 is x0
2 = x0

1x
1
2. Alternatively, the transformation x0

2 can be regarded as
a coordinate change from the coordinate system F0 to the coordinate system F2.

As the unit dual quaternion group is a Lie group, we can derive the corresponding maps from and to its Lie
algebra.

Proposition 2.2. [51, 52]Let x = r + ε(1/2)pr, be a unit dual quaternion with rotation operator defined
by the quaternion r = cos(φ/2) + sin(φ/2)n, where n is the rotation axis n = nx ı̂ + ny ̂ + nz k̂ and
p = px ı̂+ py ̂+ pz k̂ is the pure quaternion that defines the translational operator, then the logarithm of x is

logx =
1

2
(φn+ p) .

Proposition 2.3. [1,53]Let x = P (x)+D (x) ε be a dual quaternion with real numbers equal to zero, that is,
formed by pure quaternions P (x) =

(
a1î+ a2ĵ + a3k̂

)
and D (x) =

(
b1î+ b2ĵ + b3k̂

)
. The exponential

of x is
y = expx = P (expx) +D (x)P (expx) ε,

where

P (expx) =

cos ‖P (x)‖+ sin‖P(x)‖
‖P(x)‖ P (x) , if ‖P (x)‖ 6= 0,

1, otherwise.

Definition 2.19. (From [1]) Given the aforementioned Propositions 2.2 and 2.3, the dual
quaternion x raised to the u-th power is given by

xu , exp (u logx) .

Homogeneous Transformation Matrix from Unit Dual Quaternions, and Unit Dual Quaternion Double Cover

The Lie group of unit dual quaternions Spin(3) n R3 can be used to parametrize the group of rigid motion
through the isomorphic mapping defined in (2.9) and (2.4), similarly to quaternions parametrization for SO (3)

in (2.18).

In this sense, an element of SE (3) given in its homogeneous representation [35][
R p

0 1

]
,

where R is a rotation matrix (obtained in (2.18)) and p is the translation vector, can be related to a unit dual
quaternion x = (η + µ) + (η′ + µ′) ε through the mapping[(

ηI + ‖vec3 µ‖2 S
)2

+ 2
(
{µ}×

)2
2 (ηµ′ − η′µ− µ× µ′)

0T 1

]
. (2.21)

with S = {vec3 µ}× being the skew symmetric matrix from vec3 µ and 0 being a three dimensional zero
vector.
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We can find that the 3× 3 submatrix from (2.21) yields exactly the orthogonal matrixR and the expression
2 (ηµ′ − η′µ− µ× µ′) yields the translation p.

It is interesting to highlight that similar to (2.18) the rotation matrix is a quadratic function of the dual
quaternion elements and the translational is a combination from elements from the primary and dual parts from
x. In this sense, p yields exactly the same value if we were to take negative elements from x, that is, p =

2 (ηµ′ − η′µ− µ× µ′) = 2 ((−η) (−µ′)− (−η′) (−µ)− (−µ)× (−µ′)).

Therefore, the unit dual quaternion x and −x represents the same rigid body transformaton. The result is a
two-to-one covering map from the SE (3).

Advantages of unit dual quaternions
In the study of rigid body kinematics problems, a suitable representation is fundamental for effective description
and solution of the control problems. Several rigid motion representations detach and individually address
attitude and translational dynamics. Nonetheless, detached approaches neglects the coupling between the full
rigid motion dynamics—that is, the orientation and position coupling—which often yield into an improper
description of the rigid body motion. In this sense, it is fundamental that a suitable framework should stem
from a proper parametrization of the elements of the special Euclidean group SE(3).

Among unified frameworks, homogeneous transformation matrices (HTM) are one of the most widely
employed representations. Still, it requires additional calculations in order to extract control parameters from
the matrices. Furthermore, to maintain stability properties, trajectory generation should be performed as to
ensure small rotational errors due to the approximate nature of the extracted rotational parameters [54].

Although it is usual to describe the rigid motion using matrices to represent the elements of Lie groups
(see, for example, [41,55]), unit dual quaternion group has shown to be an elegant and effective framework for
unified SE(3) representation without singularities. Moreover, unit dual quaternions completely and globally
describes the rigid motion in a more compact way—only eight coordinates against twelve from HTM.

Analogously to the unit quaternion group for SO(3), the Spin(3) n R3 has computational advantages
compared to its matricial counterpart [23, 51], elements multiplication are less expensive [1, p. 42], and it is
straightforward to extract geometric parameters [1,51] (translation, axis of rotation, angle of rotation). Indeed,
just as real quaternions give a computationally-efficient algorithm for dealing with rigid-body rotations in real
time, dual quaternions give a computationally-efficient algorithm for dealing with rigid-body motions that also
include translations, such as the motion of joints in manipulators [23].

In this sense, and motivated by the advantageous properties, unit dual quaternions representation for rigid
body transformation has emerged as a topic of significant interest to the research community (for examples,
see [1, 4, 8, 26, 36, 49–52, 56–64]). The efficiency, compactness, and elegance of the dual quaternion algebra
makes the unit dual quaternion formalism a rewarding alternative in research environments for representing
finite rigid body transformations in space.

2.5.2 Theoretical limitations for global stability

The unit dual quaternion framework provides a concise way to utterly represent the coupled rigid body
kinematics with no singularities. Still, as it is the case for any parametrization of the SE(3) group, the Spin(3)n
R3 presents an obstruction for the global stability of a continuous vector. The theorem that follows states this
particular obstruction for the global asymptotic stability of a continuous vector field on its underlying manifold.
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Theorem 2.2 Theoretical limitations for global stability within unit dual quaternions

Let f be a continuous vector field defined on the underlying manifold S of the Lie group of
unit dual quaternions. Then there exists no equilibrium point of f that is globally asymptot-
ically stable.

proof.

For an arbitrary unit dual quaternion element q = q + εq′ = η + µ + ε (η′ + µ′) belonging to the S, as
described in Definition 2.18, it is possible to verify by direct calculation that the constraint qq′∗+q′q∗ = 0

implies
ηη′ + µ · µ′ = 0. (2.22)

Furthermore, due to the unit quaternion constraint ‖q‖ = 1, then q lies in S3. In addition, H is isomorphic
to R4 as a vector space, which implies that q′ ∈ H lies in a three-dimensional hyperplane, with q being
its normal vector, due to constraint (2.22). In this sense, S can be regarded as the product manifold
S3 × R3 [19].

The projection map from the product S3 × R3 onto S3, that is, S3 × R3 7−→ S3, yields a vector
bundle S3 × R3 over the compact manifold S3, namely the trivial bundle [65]. Since S3 is compact, it
follows from Theorem 2.1 that there is no equilibrium point of any continuous vector field f that is globally
asymptotically stable. 2

Theorem 2.2 extends to any rigid transformation with some rotational degrees of freedom, as it is still
possibly to write the state space as a vector bundle over the compact rotational manifold [42].

2.6 RIGID BODY KINEMATICS

2.6.1 Rigid body attitude kinematics using unit quaternions

The unit quaternion q can describe the attitude of a rigid body in SO(3)—as previously seen in Section
2.4—and, thus, represent a rotation of a coordinate expressed in the body frame to a coordinate expressed in
the inertial frame. In this sense, the kinematic equation of the attitude of rigid body in SO(3) can be defined
by a transformation of the velocity expressed in the body frame to the inertial frame, that is,

q̇ =
1

2
qω, (2.23)

where ω is a pure quaternion isomorphic to the group of 3−real vectors representing the angular velocity given
in the body frame. This differential equation is well-posed since ω is in the Lie algebra corresponding to
Spin(3).

The quaternion kinematics expressed in (2.23) can also be derived if we consider the derivative of a point
rotation described in (2.17). Let p0 ∈ H0 be a pure quaternion representing a point with respect to frame F0

and let p1 ∈ H0 be the pure quaternion representing the point resulting from the rotation of p0 by the unit
quaternion r ∈ Spin(3). In this sense, we have p1 = rp0r

∗ and, consequently, p0 = r∗p1r. Differentiating
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p0 yields
ṗ0 = ṙ∗p1r + r∗ṗ1r + r∗p1ṙ,

which in turn can be rewritten as

ṗ0 = ṙ∗(rp0r
∗)r + r∗ṗ1r + r∗(rp0r

∗)ṙ

= ṙ∗rp0 (r∗r) + r∗ṗ1r + (r∗r) p0r
∗ṙ

= ṙ∗rp0 + r∗ṗ1r + p0r
∗ṙ. (2.24)

Since r is an unit quaternion, the following identity

ṙr∗ + rṙ∗ = ṙ∗r + r∗ṙ = 0,

that stems from the differentiation of the rr∗ = r∗r = 1, implies that β = r∗ṙ = −ṙ∗r. Moreover, since
β∗ = −β, we can also conclude that β must be a pure quaternion, that is, β ∈ H0. Replacing β back in (2.24)
and considering that β and r0 are pure vector quaternions, we have that

ṗ0 = −βp0 + r∗ṗ1r + p0β,

= r∗ṗ1r + 2p0β,

which can be written in matrix vectorial form using the fact that β and r0 are pure vector quaternions, that is,

ṗ0 = 2p0 × β + vec4

(
+

H (r∗)
−
H (r) vec4 ṗ1

)
. (2.25)

Exploiting the group isomorphism from pure quaternions and the group of three-dimensional real vectors
under cross product operation, we can represent the same rotation, p0 = r∗p1r, in matrix vectorial form by

ρ0 = Rρ1 where R =
+

H (r∗)
−
H (r) and ρ0,ρ1 stems from p0,p1 ∈ H0 using the group isomorphism.

The first order differentiation (considering the attitude kinematics coming straight from Poisson’s kinematical
equation [66]) of the same rotation thus yields

ρ̇0 =dR
dt ρ1 +Rρ̇1

=−ΩRRρ1 = −ωR × ρ0 +Rρ̇1

=ρ0 × ωR +Rρ̇1,

where ΩR = {ωR}× is the angular velocity matrix described by the skew symmetric matrix corresponding
to the angular velocity vector ωR. Comparing the first order differentiation with (2.25) and considering the
group isomorphism that maps ρ0,ρ1 to p0,p1, we recognize that 2β is in fact the angular velocity ω in the
three-dimensional space [15]. Therefore,

ω = 2β = 2r∗ṙ.

The angular velocity described in quaternions thus yields the differential equation

ṙ =
1

2
rω

with ω identified with angular kinematic velocity described by a pure quaternion.
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2.6.2 Rigid body kinematics using unit dual quaternions

Similarly, the unit dual quaternion q can describe the coupled attitude and position, and the kinematic
equation of a rigid body motion is given by

q̇ =
1

2
ωq, (2.26)

where ω is the generalized twist expressed in inertial frame,

ω = ω + ε (ṗ+ p× ω) , (2.27)

with ω and ṗ being the angular and linear velocities of the task frame relative to the inertial expressed in the
inertial frame.13

The remarkable similarity between (2.23) and (2.26) is due to the principle of transference, whose various
forms as stated in [67] can be summarized in modern terms as [23, Sec 7.6]: “All representations of the
group SO (3) become representations of SE (3) when tensored with the dual numbers”. This means that
several properties and algebraic identities of SO (3) and the quaternions can be carried to SE (3) and the dual
quaternions algebra, respectively.

The principle of transference may mislead one to think that every theorem in quaternions can be transformed
in another theorem in dual quaternions by a transference process. However this is not the case, as shown by
simple counterexamples in [67].

2.7 ROBOTIC MANIPULATOR KINEMATICS

In this section, we provide for the reader basic concepts on how to relate the pose of the end-effector of
manipulator with the robot joint configuration by means of the forward kinematic modeling (FKM) and the
robot Jacobian that maps the differential kinematics. We also describe how to obtain the FKM and the Jacobian
for the manipulator using D-H notation (both standard and modified).

It is important to highlight that tasks specifications and control requirements in the context of robot manipu-
lators are defined at the end-effector task-space—the non-Euclidean manifold of position and orientation herein
described using unit dual quaternions—which, in turn, renders a discrepancy with regard to the joint configura-
tion space—the space (usually, Euclidean) where actuation indeed takes places. Hence, the importance of the
FKM and differential FKM maps.

The inverse kinematics (IK) provides a escape from this discrepancy by mapping a task specification to a
set of matching joint configurations. Hence, when the robot inverse kinematics is known, trajectory planning
can be used in conjunction to suitable controllers to ensure that the current vector of joint positions converge
to a desired value. Solutions for the inverse kinematics, however, are generally not easily derived and, in some
cases, the IK may even result in impossible or in an infinite number of solutions [27].

On the other hand, as modern manipulators are often equipped with low level controllers at joint level, a
control law can be applied straightly at the end-effector task-space, making direct use of the available low level

13If we consider an unit dual quaternion composed of a rotation r followed by a translation p̂ (instead of a translation p followed by a
rotation r), then we can use the same first order kinematic equation (2.26) with p = r∗p̂r or we can redefine the (2.26) as q̇ = 1

2
qω̂

where ω̂ is the twist in body frame described by ω̂ = ω̂ + ε
(
˙̂p+ ω̂ × p̂

)
with ω̂ and ˙̂p being the angular and linear velocities of the

task frame relative to the inertial frame expressed in the task-frame.
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controllers instead of redesigning them. In this sense, a convenient approach, firstly introduced by Whitney
for non-redundant manipulators [68], is to define control laws directly at the end-effector and then invert the
differential forward kinematics model as to provide suitable references for the low level controllers.

This thesis is henceforth concerned to design high level controllers with suitable references for the low level
joint-space controllers. In this sense, the results herein concerning robotic manipulator kinematics provide the
mathematical background—including some novel concepts—needed to understand the ideas and results that
follows throughout the thesis.

2.7.1 Dual quaternion forward kinematic model (DQ-FKM)

The forward kinematic model provides a mapping from the joint configuration of a n-joint serial robot to
its end-effector pose. If the combined position and orientation of the end-effector is described as an unit dual
quaternion element, then we have the mapping f

FKM
: Rn → Spin(3) nR3 described by [1]

xE = f
FKM

(θ) (2.28)

where xE is the unit dual quaternion representing the end-effector pose and θ is the joint configuration vector,
that is, the vector of joint positions.

If we consider intermediate links from the robot, we can exploit the serial chain to describe the transfor-
mation between the base to the end-effector pose. The description of the end-effector pose of a n-joint serial
robot, where joints are attached to the beginning of links, therefore stems from a series of dual quaternion
multiplications.

Let the rigid transformation between the extremities of any links i+1 and i to be defined by the unit dual
quaternion xii+1. Note that the transformation xii+1 sole depends on the position of the i-th joint angle θi. If we
consider a serial chain of links, then from the base to the second link, we would have the transformation given
by x0

2 = x0
1x

1
2. In this sense, the serial transformation from the base to the end-effector pose can be described

by [1]
xE , x

0
1x

1
2 . . .x

n−1
n . (2.29)

Because xii+1 is a function of the i-th robot joint position angle θi described by xii+1 = f
FKM,i(θi), where

f
FKM,i is the mapping from the position angle to the unit dual quaternion that describes the transformation,

that is, f
FKM,i : R 7−→ Spin(3) n R3; then the forward kinematics is a function of all joints, i.e., xE =

f
FKM

(θ0, . . . , θn−1) as described in (2.28).

2.7.1.1 D-H convention to dual quaternion FKM

The description of the end-effector transformation to the base in a serial robot can be described by a series
of dual quaternion multiplications from each intermediate link transformation. Hence, it is important to define
a convention to describe the pose of each link with respect to the previous one in the kinematic serial chain.
Typically in robotics, the link transformation is described using the Denavit-Hartenberg (D-H) convention
[27, 69]—a four parameter based convention.

The D-H convention can be described in a standard form and using modified parameters. In the case of the
former, the parametrization is given by [1, 27]: first a rotation θ is performed around the z-axis from the base
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Figure 2.1: Denavit-Hartenberg parameters: (a) standard and (b) modified conventions (figure extracted from
[1]).

link; then we consider a translation d along the z-axis followed by another translation a along the resulting
x-axis; finally, we consider a rotation α around the x-axis. The convention is shown in Figure 2.1(a).

The dual quaternion space representation for the D-H convention transformation basically consists in four
dual quaternion multiplications, one for each transformation. Hence, the link transformation can be described
by [1]:

x
DH

= rz,θpz,dpx,arx,α, (2.30)

where 

rz,θ = cos θ2 + sin θ
2 k̂ denotes the quaternion rotation of θ along the z-axis;

rx,α = cos α2 + sin α
2 ı̂ denotes the quaternion rotation of α along the x-axis;

p
z,d

= 1 + ( 1
2d)k̂ε denotes the pure translation of d along the z-axis;

p
x,a

= 1 + ( 1
2a)̂ıε denotes the pure translation of a along the x-axis.

(2.31)

Expanding the multiplication in (2.30), the unit dual quaternion representing the transformation in terms of the
D-H parameters is given by

x
DH

= P (x
DH

) +D (x
DH

) ε, (2.32)

where

P (xDH) =h DH,η + h DH,µ1 ı̂+ h DH,µ2̂+ h DH,µ3k̂,

D (xDH) =− 1
2 (d · h DH,µ3 + a · h DH,µ1) + 1

2 (−d · h DH,µ2 + a · h DH,η) ı̂

+ 1
2 (d · h DH,µ1 + a · h DH,µ3) ̂+ 1

2 (d · h DH,η − a · h DH,µ2) k̂,

with h DH,η = cos θ2 cos α2 , h DH,µ1 = cos θ2 sin α
2 , h DH,µ2 = sin θ

2 sin α
2 , and h DH,µ3 = sin θ

2 cos α2 .

2.7.1.2 Differential forward kinematics using D-H convention

The D-H convention provides a map from the i-th joint position to the transformation between connected
links, that is, the extremity of link i+1 with link i. To understand how changes in the joint value influences
the transformation between links, we take the first derivative of the transformation xii+1 described in (2.32) as
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illustrated in [1]:

ẋii+1 = d
dtx

i
i+1

=
∂xii+1

∂θi

dθi
dt
,

where

P
(
∂xii+1

∂θi

)
=
∂

∂θi
h DH,η +

∂

∂θi
h DH,µ1 ı̂+

∂

∂θi
h DH,µ2̂+

∂

∂θi
h DH,µ3k̂,

D
(
∂xii+1

∂θi

)
=− 1

2

(
d · ∂

∂θi
h DH,µ3 + a · ∂

∂θi
h DH,µ1

)
+ 1

2

(
−d · ∂

∂θi
h DH,µ2 + a · ∂

∂θi
h DH,η

)
ı̂

+ 1
2

(
d · ∂

∂θi
h DH,µ1 + a · ∂

∂θi
h DH,µ3

)
̂+ 1

2

(
d · ∂

∂θi
h DH,η − a ·

∂

∂θi
h DH,µ2

)
k̂

Calculating the derivative of (2.32) with respect to θi yields the following identities

∂

∂θi
h DH,η = −1

2
sin

θi
2

cos
α

2
= −1

2
h DH,µ3,

∂

∂θi
h DH,µ1 = −1

2
sin

θi
2

sin
α

2
= −1

2
h DH,µ2,

∂

∂θi
h DH,µ2 = +

1

2
cos

θi
2

sin
α

2
= +

1

2
h DH,µ1,

∂

∂θi
h DH,µ3 = + cos

θi
2

cos
α

2
= +

1

2
h DH,η.

Hence,

P
(
∂xii+1

∂θi

)
=

1

2

[
−h DH,µ3 − h DH,µ2 ı̂+ h DH,µ1̂+ h DH,ηk̂

]
,

D
(
∂xii+1

∂θi

)
=− 1

4
(d · h DH,η − a · h DH,µ2) +

1

4
(−d · h DH,µ1 − a · h DH,µ3) ı̂ (2.33)

+
1

4
(−d · h DH,µ2 + a · h DH,η) ̂+

1

4
(−d · h DH,µ3 − a · h DH,µ1) k̂.

Using the rigid body kinematics description in (2.26), we can also relate the velocity within the i-th joint
with the rigid body twist between related links, that is,

ẋii+1 =
1

2
ωii+1x

i
i+1 =

∂xii+1

∂θi

dθi
dt
.

Therefore, the twist ωii+1 between links is given by

ωii+1 = 2
∂xii+1

∂θi

∂θi
∂t

(
xii+1

)∗
= 2

[
∂xii+1

∂θi

(
xii+1

)∗] dθi
dt
.

Replacing (2.32) and (2.33), we have

ωii+1 = 2
∂xii+1

∂θi

(
xii+1

)∗
= $i

i+1θ̇i, (2.34)

where

$i
i+1 ,k̂.

2.7.1.3 Modified D-H convention to dual quaternion FKM

The modified D-H parameters differs from the conventional standard as shown in Figure 2.1(b). In this
case, the resulting parameters stems from the following procedure [1, 70]: first a rotation α is performed along
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the x-axis followed by translation α along the x-axis; then we consider a rotation θ along the resulting z-axis
followed by a translation d along the same z-axis.

The dual quaternion space representation for the D-H convention transformation basically consists in four
dual quaternion multiplications, one for each transformation. Hence, the link transformation can be described
by [1]:

x
DH

= rx,αpx,arz,θpz,d, (2.35)

where rz,θ, rx,α, pz,d, and p
x,a

are described in (2.31).

Expanding the multiplication in (2.35), the unit dual quaternion representing the transformation in terms of
the D-H parameters is given by xDH = P (xDH) +D (xDH) ε, where

P (xDH) =h DH,η + h DH,µ1 ı̂− h DH,µ2̂+ h DH,µ3k̂,

D (xDH) =− 1
2 (d · h DH,µ3 + a · h DH,µ1) + 1

2 (−d · h DH,µ2 + a · h DH,η) ı̂

− 1
2 (d · h DH,µ1 + a · h DH,µ3) ̂+ 1

2 (d · h DH,η − a · h DH,µ2) k̂,

with h DH,η = cos θ2 cos α2 , h DH,µ1 = cos θ2 sin α
2 , h DH,µ2 = sin θ

2 sin α
2 , and h DH,µ3 = sin θ

2 cos α2 .

2.7.1.4 Differential forward kinematics using modified D-H convention

Similarly to the kinematic description using standard D-H convention, we take the first derivative of (2.35)
to understand how joint velocities influences the transformation between links. The result follows from [1]:

ẋii+1 = d
dtx

i
i+1

=
∂xii+1

∂θi

dθi
dt
,

where

P
(
∂xii+1

∂θi

)
=

1

2

[
−h DH,µ3 − h DH,µ2 ı̂− h DH,µ1̂+ h DH,ηk̂

]
,

D
(
∂xii+1

∂θi

)
=− 1

4
(d · h DH,η − a · h DH,µ2) +

1

4
(−d · h DH,µ1 − a · h DH,µ3) ı̂ (2.36)

− 1

4
(−d · h DH,µ2 + a · h DH,η) ̂+

1

4
(−d · h DH,µ3 − a · h DH,µ1) k̂.

Using the rigid body kinematics description in (2.26), we can also relate the joint velocity with the rigid
body twist between links, that is,

ωii+1 = 2
∂xii+1

∂θi

∂θi
∂t

(
xii+1

)∗
= 2

[
∂xii+1

∂θi

(
xii+1

)∗] dθi
dt
.

Replacing (2.35) and (2.36), we have

ωii+1 = 2
∂xii+1

∂θi

(
xii+1

)∗
= $i

i+1θ̇i, (2.37)

where
$i
i+1 ,

[(
− sinαi̂+ cosαik̂

)
− ai (cosαi̂+ sinαi) ε

]
θ̇i.
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2.7.2 Dual quaternion based end-effector pose Jacobian (Jvec)

The end-effector pose Jacobian from a manipulator provides a map between the joint velocity vector to
the end-effector velocity at task-space. It defines a mapping from the n-dimensional joint-vector to an m-
dimensional representation for the task-space, usually a linear Euclidean mapping of the form Rn 7−→ Rm. If
the vector space mapping from (2.14) is used, then the differential kinematics of the robotic manipulator yields
a transformation satisfying [1]

vec8 ẋE = Jvecθ̇, (2.38)

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables and Jvec is the matrix representation for the
derivative ∂xE/∂θ representing the analytical Jacobian that characterizes the transformation Rn 7−→ R8. To
find the dual quaternion based Jacobian, consider the forward kinematics as serial of dual quaternion transfor-
mations between links. Taking the first derivative of (2.29) yields [1]

ẋE = x0
1ẋ

0
1x

1
2 . . .x

n−1
n + x0

1x
1
2ẋ

1
2 . . .x

n−1
n + . . .

= +x0
1x

1
2 . . . ẋ

n−2
n−1x

n−1
n + x0

1x
1
2 . . .x

n−1
n ẋn−1n

=

n−1∑
i=0

x0
i ẋ

i
i+1x

i+1
n . (2.39)

From the rigid body kinematics description in (2.26) and considering each transformation between links, that
is, ẋii+1 = 1

2ω
i
i+1x

i
i+1, we have

ẋE =

n−1∑
i=0

x0
i

(
1

2
ωii+1x

i
i+1

)
xi+1
n .

Replacing the twist between links ωii+1 calculated in (2.34) for the standard D-H convention and in (2.37) for
modified D-H parameters, yields

ẋE =

n−1∑
i=0

x0
i

(
1

2
$i
i+1θ̇i

)
xi+1
n

=
1

2

n−1∑
i=0

x0
i

(
$i
i+1θ̇i

) [
x0
i

]∗ [
x0
i

]
xi+1
n

=
1

2

n−1∑
i=0

(
x0
i$

i
i+1x

0∗
i

)
xEθ̇i. (2.40)

Note that the end-effector velocity description stems from a linear combination from dual quaternion ele-
ments weighted by individual joint velocities. Using the mapping (2.14) and comparing the desired form for
the end-effector Jacobian (2.38) with (2.40), it turns out that Jvec can be represented by

Jvec =
[
j0 . . . jn−1

]
, (2.41)

where
ji = 1

2 vec8
{(
x0
i$

i
i+1x

0∗
i

)
xE

}
, i=0, . . . , n−1.

The general procedure to calculate the dual quaternion based end-effector Jacobian is summarized in Al-
gorithm 2.1. The calculations for x0

i ,$
i
i+1 are found in (2.30),(2.34) for the standard D-H convention and in

(2.35),(2.37) for modified D-H parameters, andxE is the unit dual quaternion representation for the end-effector
pose found in (2.29).
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Algorithm 2.1 Calculations of the dual quaternion based end-effector Jacobian (from [1])
1: Calculate xE

2: Set x to 1, that is, x← 1

3: for i = 0 to n− 1 do
4: Calculate ji ← 1

2 vec8
{(
x$i

i+1x
∗)xE

}
5: Update x with link transformation, that is, x← xxii+1

6: end for
7: Jvec ←

[
j0 . . . jn−1

]

2.7.3 Dual quaternion Jacobian (J
ω
)

The differential FKM mapping from the joint velocity vector to the end-effector velocity can be seen as a
transformation that maps the influence of changes in the n-joint serial configuration to the end-effector con-
figuration. In the Euclidean space, task-space changes are characterized as in (2.38) since the derivative is
well defined in the same Euclidean manifold. However, task-space transformations—considering translation
and rotation—describe rigid body transformations in the non-Euclidean manifold SE (3). As seen in Subsec-
tion 2.5.1, the group of unit dual quaternions can globally represent SE (3) without singularities. Still, as a
non-Euclidean manifold, changes in this space are not described as in (2.38). Instead, for the dual quaternion
differential FKM to be well-posed, we need to consider the dual quaternion kinematics as in (2.26), that is,

ẋE =
1

2
ωExE. (2.42)

In this case, end-effector changes are described by the twist ωE = ωE + ε (ṗE + pE × ωE), where ωE and
ṗE denote the pure quaternions describing the end-effector rotational and translational velocities, respectively.
Since ωE is not an unit dual quaternion but rather an element of the Lie algebra of Spin(3) n R3, it lies in the
pure dual quaternion space (H0 ⊗ D) which is isomorphic to R6 as shown in Definition 2.12.

In this sense, we can exploit this natural isomorphism to define a new dual quaternion Jacobian that maps
changes in the n-joint configuration to end-effector twist ωE. In other words, a mapping of the form Rn 7−→
H0 ⊗ D from the n-joint configuration velocities to the end-effector twist given by

ωE = Jωθ̇, (2.43)

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables and Jω is the pure dual quaternion that
describes the Jacobian transformation.

To find the value for dual quaternion Jacobian Jω, recall the first derivative (2.39) of the serial of dual
quaternion transformations between links describing the end-effector. Considering the rigid body kinematics
description in (2.26) for each transformation between links and replacing the resulting twists for the values
calculated in in (2.34) for the standard D-H convention and in (2.37) for modified D-H parameters, we have

ẋE =

n−1∑
i=0

x0
i ẋ

i
i+1x

i+1
n

=

n−1∑
i=0

x0
i

(
1

2
ωii+1x

i
i+1

)
xi+1
n

=
1

2

n−1∑
i=0

(
x0
i$

i
i+1x

0∗
i

)
θ̇ixE. (2.44)
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The result in (2.44) follows a similar step to the one derived in (2.40) and in [1]. Nonetheless, instead of using
the vec8 mapping to R8 for each combined element

(
x0
i$

i
i+1x

0∗
i

)
xE, we define the dual quaternion Jacobian

Jω ∈ H0 ⊗ D that describes the dual quaternion differential forward kinematics mapping (2.42)-(2.43) by

Jω =

n−1∑
i=0

j
i
, (2.45)

where j
i

are dual quaternion elements defined as

j
i
, x0

i$
i
i+1x

0∗
i . (2.46)

Inspecting (2.46), it turns out that j
i

are pure dual quaternion elements, that is, pure dual vectors belonging
to the set H0⊗D. Hence, the dual quaternion Jacobian in (2.45) is indeed a pure dual quaternion element. Using
the natural isomorphism between H0⊗D and R6 provided by the mapping vec6, and the inverse mapping vec6,
we can also extract a matrix form for the dual quaternion Jacobian (2.45), that is,

Jω ,
[
vec6 j0 . . . vec6 jn−1

]
(2.47)

such that the dual quaternion differential FKM can be described by

ẋE =
1

2

n−1∑
i=0

j
i
θ̇ixE

=
1

2
vec6

(
Jωθ̇

)
xE, (2.48)

where vec6

(
Jωθ̇

)
describes the end-effector twist in dual quaternion space.

Algorithm 2.2 Calculations of the dual quaternion Jacobian
1: Calculate xE

2: Set x to 1, that is, x← 1

3: for i = 0 to n− 1 do
4: Calculate the dual quaternion j

i
← x0

i$
i
i+1x

0∗
i

5: Update x with link transformation, that is, x← xxii+1

6: end for
7: Jω ←

[
vec6 j0 . . . vec6 jn−1

]

2.7.4 Jacobian matrices comparison and kinematic singularities

It is important to highlight that at specific joint configurations, the Jacobian matrix may lose rank—
regardless the choice of Jacobian. At these singular configurations, the desired differential kinematics within
unit dual quaternion is ill-posed and unfolds outside the Jacobian range space—in other words, the manipulator
temporarily loses one or more degrees-of-freedom (DOFs) at task-space.

The end-effector pose Jacobian Jvec is particularly liable to kinematic singularities due to its construction
since it maps the n-joint velocity vector to an R8 manifold whereas describing a six degrees-of-freedom space.
In other words, the obtained Jacobian Jvec is rank deficient in the sense that it maps the differential joint input
vector to an R8 manifold which only has six degrees of freedom. In this sense, control strategies based on
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a least square optimization from the differential dual quaternion kinematics requires a robust pseudoinverse
technique, but least square solutions may still lie in the Jacobian range space due to the two linear constraints
from unit dual quaternions. Despite this drawback, being fully construct in vector space eases the derivation of
different solutions using the end-effector pose Jacobian Jvec which is entailed with less topological constraints.

On the other hand, the dual quaternion Jacobian Jω has the advantage of being derived in dual quaternion
space which enhances its geometric significance and, at the same time, describes a linear transformation be-
tween the joint velocity inputs where actuation takes place and the rigid body twist. In this sense, the dual
quaternion Jacobian combines the geometric significance of the Lie algebra of Spin(3)nR3 with the practica-
bility of being a linear transformation between the corresponding vector space to the joint velocity vector. As
a consequence, the Jacobian is fully redundant for a six joint serial manipulator.

Nonetheless, regardless the pose representation or the choice of Jacobian, the kinematic structure of the ma-
nipulator is liable to move towards such undesired singular configurations. In this context, singularity avoidance
techniques based on dual quaternion algebra are presented in Chapter 5.

2.8 THEORETICAL BACKGROUND ON CONTROL

2.8.1 Stability analysis

The dynamic systems stability theory plays a key role in the theory and analysis of control systems. It
is the first—and probably the most important—feature we seek to obtain in a control system [71]. To better
understand the concept of stability, it is interesting to first introduce the concept of equilibrium points.

2.8.1.1 Equilibrium points

Equilibrium points are fundamental to the analysis of dynamic systems, because they define the states in
which the operating conditions of a dynamic system remains constant, that is, in situations where the system
dynamics is in a steady condition [2]. In other words, given an initial condition x(0) such that the trajectory
x(t) remains constant—that is, equal to x(0) —, we say that that x(0) is an equilibrium point [3]. A dynamic
system can have none, one, multiples, or infinity equilibra.

Consider a dynamic system given by
dx

dt
= F (x), (2.49)

then xe is said to be an equilibrium point of (2.49) if F (xe) = 0, that is, if at a given moment te > 0, the
trajectory of x(t) led to x(te) = xe, then

xe is an equilibrium point ⇔ ∀t ≥ te, x(t) ≡ xe.

To ease the analysis, every equilibrium point that is different from zero, that is, xe 6= 0 will be transformed
by a simple variable change, such that, z = x− xe,

ż = F (z + xe),
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Figure 2.2: Trajectory of the state x over time (dashed line) for an stable equilibrium point (solid green line) [2].

and ze = 0 is the new equilibrium instead of x = xe.

Intuitively, an equilibrium point is a desired point of operation for the dynamic system. However, the initial
condition of the dynamic system is most often in a point different from the equilibrium. Hence, it is interesting
to study the behavior of the system, that is, to investigate if the system trajectory will get closer or further away
from the equilibrium. In this sense, we can roughly say that an equilibrium is stable if all solutions starting at a
neighborhood from the equilibrium point are maintained within this neighborhood, otherwise, that is, if the the
trajectory tends to take the system away from the neighborhood, we say that the equilibrium is unstable. [2,72].

Definition 2.20. [3, 72] An equilibrium point xe = 0 is stable if for any R > 0, there exists a
r > 0—that depends and is smaller than the value of R, that is, 0 < r(R) < R —, such that
‖x(t0)‖ < r, where x(t0) is the initial state, then ‖x(t)‖ < R, for all t ≥ t0.
The aforementioned Definition 2.20 implies that a trajectory that starts near the equilibrium
point, particularly within a ball r around the equilibrium point, will never escape a ball R
around the equilibrium [3]. This notion is illustrated in the Figure 2.2, where the solution
represented by the solid line is stable if we can guarantee that all solutions remain within a tube
of diameter R by choosing initial conditions sufficiently close the solution.

This notion of stability is known as stability in the sense of Lyapunov,14 the mathematician who first intro-
duced this concept. Lyapunov proposed the first theoretical work on the stability of nonlinear dynamic systems
which was published in 1892 in his doctoral thesis (The General Problem of Motion Stability) [73]. In his
works, Lyapunov proposed two methods to investigate the stability of a dynamic system around the equilib-
rium point. The first method is based on the analysis and investigation of the stability of nonlinear systems
through its linearized model [74]. The second method, known as direct method of Lyapunov, investigates the
behavior of dynamic systems around a balance with the aid of a scalar function called Lyapunov function [3].

The Lyapunov function V : Rn 7−→ R is similar to an energy function that can be used to determine the
stability of a dynamic system [2]. The concept of energy relates to the real world where whether mechanical,
electrical or other, or amplifying system usually has a dissipation of energy. Hence, whenever the dissipation
exceeds the amplification, the energy decay of the system and the system variables (oscillation amplitudes,
velocities, voltages, currents, etc.) tend to evolve to zero (equilibrium point). Studying the energy associated to
the system, or other convenient magnitude becomes possible to analyze its behavior, in particular its stability
[3]. In this context, we are ready to characterize the stability conditions for an equilibrium point xe = 0 for a

14For further information regarding Aleksandr Lyapunov, please refer [73]
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Figure 2.3: Geometric representation of the level curves of a Lyapunov function [3].

generic system (2.49).

Theorem 2.3 Lyapunov Stability Theory (from [72, chapter 3])

Given an equilibrium point xe = 0, if there is a ball BR with diameter given by R > 0

around an equilibrium point, for which there exists a continuous positive definite function
V : Rn 7−→ R with time-derivate over the trajectory of the dynamic system (2.49),

V̇ =
∂V

∂x

dx

dt
=
∂V

∂x
F (x),

negative semidefinite for all x ∈ BR, then the equilibrium is locally stable in the sense of
Lyapunov. If the statement is valid for all R > 0, then the equilibrium point is globally
stable in the sense of Lyapunov. Moreover, if V̇ is negative definite, then the equilibrium
point is asymptotically stable in the sense of Lyapunov.

All functions that satisfies the conditions from the Theorem 2.3 are called Lyapunov functions. Figure 2.3
illustrates a geometrical representation of this result for two dimensional system. Note that the level curves
for a positive defined Lyapunov function are represented by 0 < V1 < V2 < V3. Hence, the condition
V̇ (x) ≤ 0 implies that the trajectory of the system tend to the origin passing through different level curves that
corresponds to smaller Lyapunov functions—as it approaches the equilibrium Moreover, if the Lyapunov time
derivativeV̇ (x) is negative definite, then x(t)→ 0 as t→∞.

The Theorem 2.3 also refers to concepts of stability and asymptotic stability of the equilibrium points. The
former concept—also called neutrally stable in the Lyapunov sense—implies that for a given ball BR with
diameter R > 0 around the equilibrium, if the initial state is within the ball BR, that is, ‖x(t0)‖ < R, where
x(t0) is the initial state, then ‖x(t)‖ < R, for all t ≥ t0. This concept is illustrate in Figure 2.4. Note that
the system norm ‖x(t)‖ does not converges to the equilibrium, but remains limited within R throughout t > 0.
On the other hand, if the equilibrium point is asymptotically stable then the system is neutrally stable in the
Lyapunov sense and the the trajectory of the system also converges to the equilibrium, that is, limt→∞ x(t)→
xe. Figure 2.5 illustrates the asymptotic stability definition.
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Figure 2.4: System with stable equilibrium point xe = 0 in the Lyapunov sense [3].

Figure 2.5: System with asymptotically stable equilibrium point xe = 0 in the Lyapunov sense [3].

2.9 LITERATURE REVIEW ON DUAL QUATERNION BASED KINE-
MATIC CONTROLLERS

Kinematic model of rigid bodies has been extensively studied in the last forty years, e.g., [27, 48, 75],
and it is fundamental for practical aspects such as control, design, motion planning, singularity and workspace
analysis [76]. Kinematic control is particularly regarded as an essential topic in the literature, which is reflected
by its coverage on most textbooks in robotics (for example, see [27,75]). It is suitable when the robot dynamics
can be neglected, as in the case of stiff robots with harmonic drives operating at relatively low velocities.

In the study of kinematics, it is important to define a suitable representation for the rigid body displacement.
Minimal representations such as Euler angles plus Cartesian coordinates lead to representation singularities
(i.e., ambiguities that make the inverse problem ill-posed), whereas non-singular representations usually cannot
be used directly as control variables.

Homogeneous transformation matrices (HTM) are a very popular choice for representing the coupled kine-
matics, but the control parameters must be extracted from the matrix, which requires additional calculations.
Moreover, as stressed in this Chapter, the unit dual quaternions representation, Spin(3) nR3, is more efficient
and compact (eight elements against twelve), being less computationally demanding [1,51,56,77]. In addition,
control laws are defined directly over a vector field, eliminating the need to extract additional parameters or to
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design matrix-based controllers (i.e., controllers based on the matrix structure of SE (3)).

In the light of those advantages, there has been an increasing interest in the study of kinematic control in
dual quaternion space. Those work comprise rigid body motion stabilization and tracking [36, 49, 52, 58–61],
rigid body multi-agent coordination [62], and kinematic control of manipulators with single and multiple arms
and human-robot interaction [4, 63, 78].

The aforementioned works can also be divided in two sets: the ones concerning general rigid body motion
and the ones designed for robot manipulators.

Results designed for rigid body motion control are all based on a logarithmic mapping approximation and
its relation to Lie algebra, which provides a geometric significance for the controller [36, 49, 52, 58–62]. The
approach and results are thoroughly investigated in [49], where the authors provide the conditions for the
logarithmic mapping approximation, its relation to Lie algebra, and a geometric viewpoint for the stability
analysis. The technique has been extended to a leader-to-formation stability analysis in [62], and to application
with dynamic controllers with a error function invariant to changes in the body coordinate frame in [36, 52].

Nonetheless, aforementioned results solely regard the general rigid body kinematics; that is, none deals
with the specificities of manipulators. This is specially important because manipulator tasks are better de-
scribed at the end-effector, but the control is performed at the joint level, which imposes an additional mapping
between the dual quaternion representing the end-effector pose/velocity and the vector corresponding to the
joint positions/velocities. Since this second mapping arises from the manipulator kinematics, it is crucial to
satisfy its constraints in order to design feasible controllers for this class of robots.

On the other hand, results designed for manipulator control (see, [4, 63, 78]) explicitly regard the robotic
arm kinematics in order to perform dual quaternion control, which produces a more intuitive manner to define
the robot objective. The authors therein propose a control strategy based on the dual quaternion error mapping
to the eight-dimensional real manifold, which has the advantage of being considerably more straightforward
and attractive from the control point of view. Although it is not invariant to changes in the reference coordinate
system and lacks an explicit geometric significance for the designer due to the error mapping.

2.9.1 In the control point of view: differences between quaternions and dual
quaternions

The literature of attitude modeling and control using quaternions is extensive with excel theoretical and
practical results. These results are unfortunately not reflected within dual quaternions literature. The challenge
lies in the fact that albeit some algebraic identities in quaternion algebra can be carried over to the dual quater-
nion algebra by the principle of transference [23, 67], most generalization does not follow by the principle of
transference. In fact, counterexamples shown in [67] illustrate the failure of the transfer principle outside the
algebraic realm.

Whereas unit quaternions are used to model only attitude and is a double cover for the Lie group SO (3),
unit dual quaternions model the coupled attitude and position and is a double cover for the Lie group SE (3).
The necessity of different procedures for quaternion and dual quaternion stems from their different topologies
and group structures. For example, the unit quaternion group is a compact manifold, while the unit dual
quaternion group is not a compact manifold. This reflects in the use of distinct approaches to controller design
(see for instance, the control differences between SO (3) and SE (3) which is detailed described in [55]).
Moreover, due to SO (3) being compact, it has a natural bi-invariant metric. The same is valid for the group of
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unit quaternions. Nonetheless, the same can not be said from SE (3), nor from Spin(3) n R3—both of which
do not posses any bi-invariant metric.

It is also interesting to highlight that The unit dual quaternion group is not a subgroup from Spin(3)—it
is indeed the other way around—and boundedness, geodesic distance, norm properties, and other manifold
features that are valid on S3 cannot be directly carried to Spin(3) nR3.

In this sense, the extension of control results to Spin(3) n R3 is not trivial, which is reflected by the gap
between quaternion based results and dual quaternion based controllers. To overcome this gap of representation
and control is one of the main motivations of the present manuscript.
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DUAL QUATERNION BASED ROBUST H∞
KINEMATIC CONTROL OF MANIPULATOR
ROBOTS

Noise, like most things in life, is beneficial in moderate amounts. We also see
this in human psychological responses to noise. Too much noise will drive

humans insane, but too little noise might also result in loss of sanity. Noise is
especially beneficial for control engineers, who would not only lose their

sanity, but would also lose their research funding if not for noise – Yaakov
Bar-Shalom

Rigid body motion have been extensively studied within the robotics community in the last forty years
and its description is closely related to specificities of a prescribed control task. In the context of robotic
arms, several tasks can be accomplished by stiff manipulators at relatively low velocities and accelerations,
justifying the use of kinematic description and control strategies (see, e.g., [27, 48, 75]). Simplifications that
arise from such description allows designing controllers that do not require inertial parameter specifications
of the manipulator. Still, in practical applications, the control problem for manipulators is liable to modeling
errors and uncertainties, exogenous disturbances, kinematic singularities and, depending on the topological
framework, even representation singularities. In the present chapter, we take interest at studying kinematic
uncertainties and designing more efficient controllers in the sense of noise sensitivity, performance and control
effort.

The problem of kinematic representing the rigid motion of manipulators has been extensively studied in
the last forty years and is one of the classic topics covered by most of robotics textbooks (for example, see
[27, 75]). The study of manipulator control and task specifications is inherently connected to the research
on efficient representations for rigid body transformation since, task specifications are usually defined at a
non-Euclidean manifold, the group of rigid body motions, SE (3). In the light of the unit dual quaternion
advantages for describing rigid body motions (see Chapter 2), there has been an increasing interest in the study
and representation of kinematics using unit dual quaternions.

Nonetheless, among existing results concerning kinematic control in dual quaternion space, either for rigid
body stabilization or for kinematic control of manipulators—and, despite their contributions—there is no result
in dual quaternion literature that studies the geometric influence of uncertainties and disturbances, nor solu-
tions and analysis on robustness and performance, energy efficiency, nor suitable controllers to overcome their
detrimental influence.

Indeed, we have introduced in [64] an initial discussion on disturbances and robust control for rigid motion,
but it is the only result in the literature. Still, only twist disturbances are considered, the trajectory as well as
the external disturbances are defined in an R8 manifold, and there is no relation nor discussion regarding the
actual physical meaning—which, as a consequence, reduces its applicability.

In this context and motivated by the problem of optimizing the system performance, this chapter first
introduces a detailed discussion and analysis on the influence of exogenous disturbances and uncertainties over
the kinematic modeling for manipulators—which in turn yields a new a new kinematic description. Moreover,
an invariant error function that describes the spatial difference between the desired and current end-effector
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configuration is introduced.

Thereafter, this chapter is concerned to explicitly describe the system requirements into an H∞ control
design. TheH∞ control theory, originated as a technique to reduce the feedback system sensitivity [79], allows
the designer to incorporate robustness requirements, disturbance attenuation, and performance properties1 into
one stabilization problem [81]. The proposed dual quaternion kinematic controllers derived in this chapter
explicitly address different sources of uncertainties and disturbances and their influence over the orientation and
translation in the H∞ sense, which has the advantage of casting aside requirements regarding the distribution
description—that are significantly hard to characterize within SE (3) or within Spin(3) n R3. Using the
dual quaternion algebra, we adapt classic H∞ techniques—suitable solely for additive noises—to derive easy-
to-implement closed form H∞ control and tracking strategies that also incorporate robustness requirements,
disturbance attenuation, and performance properties, while minimizing the required control effort.

Based on the two results for the task-space differential kinematics of the robotic manipulator described in
(2.38) and in (2.42), we also derive two different H∞ control strategies.

The first technique is based on the dual quaternion mapping to an Euclidean manifold. The resulting closed-
loop system is described in the R8 manifold which lacks an explicitly geometric influence for the end-effector
transformations but, on the other hand, let us derive a discrete-time implementation which in turn enlarges the
universe of practical applications for the contributions.

The second criterion—based on the differential kinematic description (2.42)-(2.43)—proposes a new frame-
work for kinematic control of robot manipulators by deriving a control law in dual quaternion tangent space.
Using the dual quaternion Jacobian Jω mapping between the Lie algebra of unit dual quaternions and the joint
velocity vector, this is the first result to combine the geometric significance of the Lie algebra of Spin(3) nR3

with the practicability of being linearly directly mapped to the joint velocity inputs. The method provides
an intuitive and elegant connection between control effort and the performance effects over the end-effector
trajectory and different sources of uncertainties and disturbances.

The last section of the chapter is dedicated to simulations with different scenarios and conditions using
Matlab and the Virtual Robot Experimentation PLatform (V-REP) from Coppelia Robotics GmbH.

3.1 MODELING WITH UNCERTAINTIES AND ERROR DEFINITION

This section address the description and the influence of different sources of exogenous disturbances and
uncertainties which affect the accuracy of the system representation and, as a direct consequence, the control
performance. Hence, the description of an n-joint serial manipulator using unit dual quaternion framework is
extended in order to explicitly incorporate their influence. Moreover, an invariant error function that describes
the spatial difference between the desired and current end-effector configuration is introduced.

1Other properties and design problems, such as reducing the model uncertainty “ball”, may be expressed within the H∞ norm, see
[80, 81] for further discussion on problem formulations in terms of the H∞ norm.
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3.1.1 Manipulator kinematic model with uncertainties and exogenous disturbances

According to the n-joint serial manipulator description stressed in Section 2.7, the forward kinematics
relates the configuration of all joints to the configuration xE of the end-effector; that is, xE = x0

1x
1
2 . . .x

n−1
n ,

and the differential forward kinematics is hence given by ẋE =
∑n−1
i=0 x

0
i ẋ

i
i+ix

i+1
n . Because xii+1 is a function

of θi, i.e., xii+1 = f
i
(θi), where f

i
: R → Spin(3) n R3, we have that ẋii+i = f ′

i
(θi) = wiθ̇if i(θi) with

wi ∈ H0 ⊗ D. Explicitly considering the dual quaternion differential FKM to be well defined within the unit
dual quaternion group, we have a differential FKM described as in (2.42)-(2.48), that is,

ẋE =
1

2

n−1∑
i=0

j
i
θ̇ixE

=
1

2
vec6

(
Jωθ̇

)
xE, (3.1)

where vec6

(
Jωθ̇

)
describes the end-effector twist in dual quaternion space, θ = [θ0 . . . θn−1]T is the mea-

sured vector of joint variables and Jω is the Jacobian, which can be found by using Algorithm 2.2.

Nonetheless, in more realistic scenarios, there exists several influences acting upon the system, such that the
description of (3.1) is not perfect, and it is interesting to consider the effects of different disturbances over the
system. Indeed, in practical applications, the trajectory of the system is often influenced by different sources
of exogenous disturbances, arm parameters may not be exactly accurate, and the forward kinematics liable to
unknown uncertainties, such as unmodeled viscosities, friction, etc. To improve the kinematics accuracy and the
control performance, the influence of these uncertainties and disturbances over the system must be explicitly
regarded, as neglecting their influence would most likely lead to poor performance. In this sense, different
sources of disturbances acting on a serial manipulator, classified as twist and pose configuration uncertainties,
are investigated which leads to a more complete and accurate kinematics description, although being more
challenging.

Twist uncertainties vw represent unmodeled twists describing multiple sources of exogenous disturbances,
unmodeled time-varying uncertainties, and forces acting directly at the pose of the end-effector (e.g., gravity
or interaction with the environment) or at different links from the serial manipulator, such that

ẋE =
1

2

n−1∑
i=0

j
i
θ̇ixE +

1

2
vwxE. (3.2)

The differential equation is well-posed as vw , vw + εv′w, with vw,v′w ∈ H0, is in the Lie algebra of
Spin(3) nR3.

The influence of uncertainties over the pose configuration often arises from unforeseen inaccuracies within
model parameters and time-varying uncertainties and disturbances on the coordinate base of the manipulator
or at the reference frame. It may be described as an unknown transformation in the forward kinematics model
and, therefore, mapped to (3.1)-(3.2) as

x = xEc, (3.3)

where c ∈ Spin(3) n R3 and x denotes the real configuration of the disturbed end-effector. In this sense and
with regard to the kinematics of the unknown pose disturbance, ċ = 1

2cṽc, the overall differential kinematics
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yields

ẋ = ẋEc+ xEċ

=
1

2

n−1∑
i=0

j
i
θ̇ixEc+

1

2
vwxEc+

1

2
xEcṽc

=
1

2

(
n−1∑
i=0

j
i
θ̇ix+ vwx+ xṽc

)
.

where ṽc ∈ H0⊗D. To improve the readability, we redefine ṽc using the adjoint transformation, ṽc , x
∗vcx,

which does not affect the induced norm, ‖vc‖ = ‖ṽc‖, such that,

ẋ =
1

2

(
n−1∑
i=0

j
i
θ̇ix+ vwx+ vcx

)
. (3.4)

Remark 3.1. It is important to highlight that specific joint configurations may render the differential FKM to
be ill-posed—that is, the joint-dependent Jacobian matrix which maps the joint-vector velocity to task-space
end-effector velocity loses rank. At these singularities, the desired differential kinematics within unit dual
quaternion unfolds outside the Jacobian range space—in other words, the manipulator temporarily loses one or
more degrees-of-freedom (DOFs) at task-space. Regardless the pose representation or the choice of Jacobian,
the kinematic structure of the manipulator is liable to move towards such undesired configurations. Herein, to
better illustrate the advantages of the proposed criteria and to maintain conciseness and simplicity, Jacobian
matrix is assumed to be well-posed. Still, avoidance techniques in the context of dual quaternion algebra are
presented in Chapter 5.

3.1.2 Error definition and problem statement

In this chapter, we are particularly interested in stabilizing the end-effector to a desired configuration and to
reduce the influence of uncertainties and disturbances upon the controlled pose. In other words, given a desired
output, we seek to reduce the noise-to-output influence while maintaining the system internal stability.

To this aim, given a desired fixed end-effector configurationxd, we define the spatial difference in Spin(3)n
R3 as

xe = xx∗d = re + ε 12pere, (3.5)

where re denote the orientation error in Spin(3) and pe the position error in H0. Hence, the spatial differential
kinematics for xe yields

ẋe =
1

2

(
n−1∑
i=0

j
i
θ̇ix+ vwx+ vcx

)
x∗d

=
1

2

(
n−1∑
i=0

j
i
θ̇i + vw + vc

)
xe. (3.6)

From the spatial difference, we also define an invariant dual quaternion error function of the form e :

Spin(3) nR3 7−→ H⊗ D, given by
e = 1− xe = e+ εe′ (3.7)

with dynamics described by ė = −ẋe. In this sense, when x converges to xd, the spatial difference xe tends
to 1 and, consequently, the dual quaternion error function e → 0. Analogously, to stabilize e to 0 yields the
end-effector convergence to the desired pose.
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It is interesting to highlight that the convergence properties from x to xd are utterly related to the definition
of the dual quaternion error function, e, which is invariant with respect to coordinate changes with regard to
arbitrary right shifts.2 For instance, let us assume that both end-effector frame and desired set point have been
transformed by a coordinate change represented by the unit dual quaternion y; that is,

x′ = xy

x′d = xdy.

Since e = 1− xe, the error in the new coordinate system is given by

e′ = 1− x′e = 1− x′x′∗d
= 1− xyy∗x∗d
= e,

which is independent of y. Similar properties are described for matrix representations in the excel work of
Bullo and Murray, [55]. In this context, to asymptotically stabilize the system (3.7) is to assume x → xd as
t→∞, independently from the choice of the robot base coordinate system and from coordinate changes.

To address the detrimental influence of the uncertainties and disturbances in the H∞ sense, we assume
that vw,v′w,vc,v

′
c ∈ L2[0,∞).3 The gain that defines the H∞ norm arises from the induced norm of the

map v → z, where z∈L2[0,∞) is the desired output state [81], and represents the supremum of the noise
amplification upon the system output

sup

{
‖z‖2
‖v‖2

, v ∈ L2 \ {0}
}
, (3.8)

that is, the worst-case influence of the noise over the controlled output. The main advantage of the H∞ norm
is the needlessness for assumptions regarding the statistics of the uncertainties and noises—although this in-
formation, if available, can improve analysis [83]. This is particular sensible for the space of rigid body
transformations as probability density functions are in general not well defined for such non-Euclidean spaces.

Since a direct minimization from (3.8) may not be tractable, we introduce a variable γ that upper bounds
the induced norm

‖z‖2≤γ ‖v‖2 .

The smaller is the value of the noise-to-output upper bound γ, the smaller is the influence of v over z. Hence,
the reduction of the index γ provides a way of reducing the disturbance influence from the output, z. Therefore,
the goal of theH∞ control is to reduce the noise-to-output upper bound γ,while maintaining the system internal
stability.

3.2 DUAL QUATERNION BASED H∞ CONTROLLER IN R8 MANI-
FOLD

As discussed in the preceding section, the impact of different sources of uncertainties and disturbances
over the system kinematics must be explicitly regarded, and the controller must be designed in accordance to

2Moreover, the error function (3.7) is also right invariant with regard to its norm at the Lie group tangent space. In this sense, due to the
topological constraint inherent from SE (3) , there exists no continuous metric function for rigid motion that are invariant under arbitrary
left and right shifts. Still, the proposed right invariant error also ensures bi-invariance under pure rotations [82].

3L2 is the Hilbert space of all square-integrable functions.
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their influence, as neglecting their effects jeopardizes the overall stability. Since classic H∞ theory is based on
additive noises, instead of multiplicative disturbances as in (3.6), this section presents a new control strategies
that ensures H∞ performance for the control requirements based on the dual quaternion mapping to an R8

manifold where the problem is redefined and solutions to the H∞ control derived. The first part of the section
presents solutions for the continous-time H∞ control problem, whereas the second part extends the analysis to
the discrete-time domain which also includes discretization based uncertainties.

3.2.1 Continuous-time dual quaternion based H∞ controller in R8 manifold

In this subsection, we address different control design strategies for the continuous-time kinematic model
based on the dual quaternion space mapping to an R8 manifold.

To this aim, we first redesign the differential FKM subject to uncertainties and exogenous disturbances
described in (3.4) using the vector space mapping from (2.14). Hence, the differential kinematics of the robotic
manipulator considering the effects of different disturbances over the system is given by

vec8 ẋ =
∑n−1

i=0
vec8

{
1

2
j
i
x

}
θ̇i +

1

2

−
H (x) vec8 (vw + vc) , (3.9)

where
−
H (x) is the matrix representation for dual quaternion multiplication as described in (2.15). Moreover,

inspecting the first element in the right side of the equation, it turns out that the term yields the dual quaternion
based Jacobian Jvec described in (2.38)-(2.41). Hence, considering v , vw + vc, we can redefine (3.9) as

vec8 ẋ = Jvecθ̇ +B vec8 v (3.10)

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables, Jvec is the analytical dual quaternion based
Jacobian, which can be found by using Algorithm 2.1, B is a known matrix concerning x and v is the dual
quaternion denoting the exogenous disturbances, whose influence we want to minimize. Note that v actually
belongs to the set of pure dual quaternions H0 ⊗ D which in turn is isomorphic to R6.

The differential forward kinematics (3.10) has a direct influence on the error function dynamics which must
also be described in the same manifold. Hence, rewriting (3.5)(3.7) as e = (xd − x)x∗d, the error function can
be mapped into the R8 manifold, using (2.14)-(2.15), as

vec8 e =
−
H (x∗d) vec8 (xd − x) . (3.11)

For xd constant, the first derivative of (3.11) yields

vec8 ė = −
−
H (x∗d) vec8 ẋ.

Since the differential kinematics for the end-effector is given by (3.10), then the error dynamics can be described
by

vec8 ė = −
−
H (x∗d)Jvecθ̇ −

−
H (x∗d)B vec8 v (3.12)

−Nθ̇ −Bvv,

where N =
−
H (x∗d)Jvec and Bv =

−
H (x∗d)B. Moreover, note that v belongs to the pure dual quaternion set.

Hence, from the natural isomorphism from H0 ⊗ D and R6, it turns out that vec8 v yields an R8 vector with
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first and fourth elements being zero. This particular eight dimensional vector will be denoted v, and its norm
is given by ‖vec6 v‖.

For the H∞ control, we seek a control law that makes the dual quaternion configuration x asymptotically
converges to xd, whereas ensuring disturbances attenuation properties, i.e., attenuating the influence of any
exogenous signal v ∈ L2[0,∞). In this context and based on [81], the following definition describes the robust
performance in the H∞ sense for the closed-loop system described by a dual quaternion mapping to R8.

Definition 3.1. (Based on [81]) For a prescribed scalar γ > 0, the robust control performance
is achieved with an H∞ norm bound γ, if the following hold
(1) The error dynamics (3.12) is asymptotically stable for v ≡ 0;
(2) Under the assumption of zero initial conditions, the disturbance influence on the er-
ror, vec8 e, is attenuated below a desired level γ, || vec8 e||2 ≤ γ||v||2 for all nonzero
v ∈ L2[0,∞).

Considering the system description and Definition 3.1, we state a solution for the H∞ control problem in
the following criterion.4

Theorem 3.1 Dual quaternion and LMI based H∞ controller

For a prescribed γ > 0, there exist a task-space controller such that (3.12) achieves robust
stability with H∞ performance γ, in the sense of Definition 3.1, if there exist matrices
P = P T > 0 andG = GT > 0, such that[

(−2G+ I) −PBv

−BT
v P −γ2I

]
< 0. (3.13)

Moreover, if the above conditions are satisfied, a stabilizing joint velocity vector control is
given by θ̇ = N+

(
P−1G

)
vec8 e, whereN+ is the pseudoinverse ofN .

proof.

Let us choose as Lyapunov function candidate the positive definite quadratic function:

V = vec8 e
TP vec8 e. (3.14)

Taking the time-derivative of (3.14) with respect to t along the trajectory (3.12) and by setting the task-
space controller as θ̇ ,N+KP vec8 e, yields

V̇ = vec8 ė
TP vec8 e+ vec8 e

TP vec8 ė = 2 vec8 e
TP vec8 ė

= −2 vec8 e
TP

(
Nθ̇ +Bvv

)
= −2 vec8 e

TP (KP vec8 e+Bvv) .

4Avoidance techniques for kinematic singularities are considered in Chapter 5. Herein, the Jacobian matrix N is assumed to be
well-posed.
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For any K > 0, it is easy to see that V̇ < 0 holds for v ≡ 0, which in turn implies V → 0 as t→∞.
Hence, vec8 e converges to zero, and the first condition in Definition 3.1 is satisfied. Now, let us define
V̇H∞ , V̇ + vec8 e

T vec8 e− γ2vTv, such that

V̇H∞ =− vec8 e
T (2PKP − I) vec8 e− 2 vec8 e

TPBvv − γ2vTv,

which can also be written as

V̇H∞ =

[
vec8 e

v

]T [
(−2G+ I) −PBv

−BT
v P −γ2I

][
vec8 e

v

]
,

for G = PKP . Note that the condition (3.13) holds if and only if the term V̇H∞ is negative definite.
Thus, we must have V̇ + vec8 e

T vec8 e− γ2vTv < 0. Integrating the inequality from 0 to t, yields
ˆ t

0

[
V̇ + vec8 e

T vec8 e− γ2vTv
]
dtV−V (0)+

ˆ t

0

[
vec8 e

T vec8 e−γ2vTv
]
dt =< 0.

Now, under zero initial conditions and given the Lyapunov function positiveness properties, we have´ t
0

vec8 e
T vec8 edt −

´ t
0
γ2vTvdt < 0, for all t>0. Note that v ∈ L2[0,∞), thus vec8 e is also L2

and the inequality converges, which in turn is equivalent to || vec8 e||2 < γ||v||2. Hence, the conditions in
Definition 3.1 are satisfied, and the proof is completed. 2

Theorem 3.1 provides a feasible solution for the H∞ problem that ensures the asymptotic stability of the
dual quaternion error dynamics by mapping the error to an R8 manifold, while attenuating all exogenous
disturbances. The resulting control scheme is obtained through the solution of an LMI.5 Alternatively, we can
state a new control procedure based on the solution of an algebraic Riccati equation,

AT
AREP + PAARE − PMP +CARE = 0. (3.15)

Theorem 3.2 Dual quaternion and algebraic Ricatti equation-based H∞ controller

For a given scalar α>1 and a prescribed γ > 0, a task-space H∞ controller that stabi-
lizes the error dynamics, whereas ensuring disturbance attenuation properties in the sense of
Definition 3.1, is given by

θ̇ = N+K vec8 e,

where N+ is the pseudoinverse of N and K = 1
2

(
1
γ2BvB

T
v +M

)
P , for any positive

definite matrix M , and with the matrix P given as the solution of the ARE (3.15), for
AARE = 0, and CARE = αI .

proof.

From the Schur complement of the LMI condition in Theorem 3.1, we have that (3.13) holds if and only if

I − 2PKP + PBv
1

γ2
BT
v P = P

(
1

γ2
BvB

T
v − 2K

)
P + I < 0,

5Interior point based algorithms, as the LMI Control Toolbox from Matlab, can solve this convex problem in polynomial time.
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where PKP = G. Then, choosing

K , 1
2

(
1
γ2BvB

T
v +M

)
, (3.16)

we obtain the inequality
−PMP + I < 0, (3.17)

which is satisfied by the Riccati equation in (3.15), if CARE is chosen such that CARE > I . 2

To further simplify the choice of a feasible gain M > 0, we may consider M = σI , where σ is a positive
scalar. In this particular case, the following theorem presents an optimal choice of σ in the sense of minimizing
the norm of the control gainK in Theorem 3.2.

Theorem 3.3 Dual quaternion based H∞ controller—closed-form solution

For a prescribed γ > 0, a task-space H∞ controller that stabilizes the error dynamics
vec8 ė = −Nθ̇−Bvv, whereas ensuring disturbance attenuation properties in the sense of
Definition 3.1, is given by θ̇ = N+K vec8 e, whereN+ is the pseudoinverse ofN and

K =
1

γ

(
BvB

T
v +

[√
2

4
BT
vBv

]
I

)
α√

BT
vBv

√
2
, (3.18)

for any scalar α > 1.

Moreover, the norm ofK is given by ||K||2 = 1
γα
√

1
2 (1+

√
8)BT

vBv.

proof.

From (3.17) and taking the positive matrix M to be M=σI , where σ is a positive scalar, we have
−σPP + I<0, which is satisfied if

−σPP + α2I=0

holds for α > 1. A trivial solution for the above equation is P=
α√
σ
I . Then, substituting this feasible P

inK yields

K =
1

2

α√
σ

(
1

γ2
BvB

T
v +σI

)
. (3.19)

The Frobenius norm ofK is given by ||K||F = 1
2

α√
σ
|| 1γ2BvB

T
v +σI||F , which in turn yields

||K||F =
1

2

α√
σ

√√√√tr

(
BvB

T
vBvB

T
v

γ4
+

2σ

γ2
BvB

T
v +σ2I

)
.
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Using trace properties, we are looking for the σ that minimizes ||K||F , i.e., σ̂ = argmin
σ
||K||F ,

σ̂ = argmin
σ


α

2

√√√√√√ 1

σ


[
BT
vBv

]2
γ4

+
2
[
BT
vBv

]
γ2

σ + 8σ2



= argmin
σ

 1

σ


[
BT
vBv

]2
γ4

+
2
[
BT
vBv

]
γ2

σ + 8σ2

 .

After some manipulation, we find the optimum value for σ̂ to be given by σ̂ =
√
2

4γ2B
T
vBv and, in turn, the

minimum norm given by ||K||2 = 1
γα
√

1
2 (1 +

√
8)BT

vBv. Thus, replacing σ in (3.19) yields the control
gain given in (3.18). 2

Theorem 3.3 provides a straightforward solution for the H∞ control problem. The resulting task-space
control law yielding joint velocity inputs is easier to implement than the one of Theorem 3.1, as the control
gain K in (3.18) is a closed-form expression. Also, the solution is based on the optimal value for M=σI ,
in the sense of reducing the gain norm, which in turn reduces the control effort required to maintain the H∞
performance.

Remark 3.2. Both position and orientation configurations are regarded in an unified framework, which allows
more efficient control techniques compared to conventional decoupled-based control. This is thanks to the fact
that in our unified framework the error is invariant with respect to the choice of coordinate system, whereas
in the decoupled-based approach the error in position will always be dependent on the choice of coordinate
system; that is, given the error

ep = pd − pm (3.20)

between the desired and measured positions, a coordinate change given by a rotation r will result in ep =

r (pd − pm) r∗, which is clearly different from the original position error (3.20). This way, using unit dual
quaternions with an invariant error definition, all the proposed control strategies ensure the asymptotically
convergence of the error to zero, while satisfying the attenuation properties described in Definition 3.1, and
with a behavior that is independent of the choice of coordinate system.

The results from Theorem 3.1, which can be shown to be equivalent to Theorem 2, are more general and
less conservative than Theorem 3.3. However, the proposed conditions yield any feasible result, without regard
to the control effort. In this context, Theorem 3.3, although being slightly more conservative, provides an
easy to implement closed-form gain expression that also represents the minimum norm solution for (3.16) with
M=σI .

3.2.2 Discrete-time dual quaternion based H∞ controller in R8 manifold

Despite the theoretical soundness of the continuous-time differential forward kinematics model (3.4), in
practical applications it is rather common to regard discrete measurements for the joint variables and for the
end-effector configuration. Nonetheless, all results in dual quaternion literature are exclusively designed for
continuous-time domain. Indeed, the continuous-time analysis is more straightforward, and adapting these
methods to discrete-time is not trivial. Still, neglecting the discrete analysis restricts the universe of practical
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applications and degrades digital implementation performance.

From the dual quaternion space mapping to an R8 provided in the Subsection 3.2.1, Euler based and classic
discretization based techniques can be exploited. In this sense, the discretization of (3.10) leads to

∆ vec8 x[k] = Jvec (θ[k+1]− θ[k]) +Bv[k] + vd[k], (3.21)

where ∆ vec8 x[k]= vec8 x[k+1]− vec8 x[k] and the vector vd[k] ∈ R8 describes unknown uncertainties aris-
ing from the discretization procedure that takes vec8 x[k+1], that is, the vec8 mapping of the end-effector pose
in instant t+1, out of the unit dual quaternion group.

This accurate description of the end-effector transformation that explicitly considers different sources of
uncertainties and disturbances with the inherent discretization error yields a more complete description for the
end effector pose at instant k + 1. From this description, we can define a discrete error function based on the
vec8 mapping of dual quaternion error (3.5)-(3.7) to an R8 manifold, as in (3.11), that is

vec8 e[k] =
−
H (x∗d[k]) vec8 (xd[k]− x[k]) . (3.22)

From the dual quaternion based differential kinematics mapped to R8 , the error dynamics can be described by

vec8 e[k+1] =
−
H (x∗d) vec8 (xd − x[k + 1])

=
−
H (x∗d) (vec8 (xd)− vec8 (x[k])− Jvec (θ[k+1]− θ[k])−Bv[k]− vd[k])

where xd is a desired constant configuration. Moreover, since the discretization error is inherently connected
to the value of x[k], similarly to B, we can construct a combined disturbance vector w[k] to address both
disturbances and discretization error. In this sense,

vec8 e[k + 1] = vec8 e[k]−
−
H (x∗d) (Jvec (θ[k+1]− θ[k]) +Bw[k])

= vec8 e[k]−N (θ[k+1]− θ[k]) +Bvw[k], (3.23)

whereN =
−
H (x∗d)Jvec andBv =

−
H (x∗d)B.

In practical scenarios, it is also interesting to consider a variable trajectory for the end-effector which, in
turn, yields a tracking problem—a problem more general than stabilization [84, 85]. Given a varying pose
configuration, the error dynamics from (3.22)-(3.23) can be rewritten as

vec8 e[k+1] =
−
H (x∗d[k + 1]) vec8 (xd[k+1]− x[k+1])

=
−
H (x∗d[k + 1]) vec8 (xd[k+1]− x[k]− Jvec (θ[k+1]− θ[k]) +Bw[k]) . (3.24)

To ease the analysis, let us recall that

−
H (x∗d[k + 1]) vec8 xd[k+1] =

−
H (x∗d[k]) vec8 xd[k] = I.

In this sense, by adding the null expression
−
H (x∗d[k]) vec8(x[k]− x[k])=0 to (3.24), yields

vec8 e[k+1] =
−
H (x∗d[k]) (vec8 xd[k]− vec8 x[k])−

−
H (x∗d[k + 1]− x∗d[k]) vec8 x[k]

−
−
H (x∗d[k + 1]) (Jvec (θ[k+1]− θ[k])−Bw[k]) ,
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which can be written as

vec8 e[k+1] = vec8 e[k]−N (θ[k+1]− θ[k]) +Bvw[k]− vec8 xtrk[k], (3.25)

whereN=
−
H (x∗d[k + 1])Jvec, Bv=

−
H (x∗d[k + 1])B, and vec8 xtrk[k] =

−
H (x∗d[k + 1]−x∗d[k]) vec8 x[k].

It is interesting to highlight that the convergence properties from x to xd are utterly related to the definition
of the error function as described in Section 3.1. In this context, to asymptotically stabilize the system (3.23) is
to assume x[k] → xd[k] as k → ∞, independently from the choice of the robot base coordinate systems and
from coordinate changes.

For theH∞ control, we seek a control law that makes the dual quaternion configuration x[k] asymptotically
converges to xd[k], whereas ensuring disturbances attenuation properties, i.e., attenuating the influence of the
disturbances w[k] ∈ `2[0,∞)6 regardless of their distribution characteristics over the coupled kinematics. In
this context, the following definition based on [81] describes the robust performance in the H∞ sense.

Definition 3.2. (Based on [81]) For a prescribed scalar γ > 0, the robust control performance
is achieved with an H∞ norm bound γ, if the following hold
(1) The discrete-time error dynamics (3.23) is asymptotically stable for w[k] ≡ 0;
(2) Under the assumption of zero initial conditions, the disturbance influence on the error,
vec8 e[k], is attenuated below a desired level γ, that is, || vec8 e||2 ≤ γ||w||2 for all nonzero
w ∈ `2[0,∞).

Considering the system description and Definition 3.2, we first state a solution for the H∞ setpoint control
problem in the following criterion.

Theorem 3.4 Discrete dual quaternion and LMI based H∞ setpoint controller

For a prescribed γ > 0, there exist a controller given by θ[k+1] = θ[k] +N+K vec8 e[k],

such that (3.23) achieves robust stability with H∞ performance γ, in the sense of Defini-
tion 3.2, if there exist matrices P = P T > I andG = GT > 0, such that[

P −G PBv

BT
v P BT

v PBv − γ2I

]
< 0, (3.26)

where N+ is the pseudoinverse of N . Moreover, if the above conditions are satisfied, a
stabilizing control gainK is given bya

K = I−
√
G−1
√
P−I. (3.27)

aIn general, a matrix can have several representations for its square root. Nevertheless, a positive-definite matrix
has precisely one positive-definite representation. This unique positive square root, defined as the principal square
root, is the representation used throughout this thesis.

proof.
6`2 is the Hilbert space of all square-summable sequences.
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Let us choose as discrete Lyapunov candidate the positive definite quadratic function:

V [k] = vecT8 e[k]P vec8 e[k], (3.28)

where P is a positive definite matrix. The criterion presented in Theorem 3.4 stems mostly from the first
difference of the Lyapunov candidate along the trajectory (3.23),

∆V =V [k + 1]− V [k]

= vecT8 e[k+1]P vec8 e[k+1]− vecT8 e[k]P vec8 e[k].

Regarding a feedback linearization control scheme,

θ[k+1] = θ[k] +N+K vec8 e[k], (3.29)

the first difference of (3.28) may be rewritten as

∆V = ((I−K) vec8 e[k] +Bvw[k])
T
P ((I−K) vec8 e[k] +Bvw[k])− vecT8 e[k]P vec8 e[k]

=
(
K vec8 e[k] +Bvw[k]

)T
P
(
K vec8 e[k] +Bvw[k]

)
− vecT8 e[k]P vec8 e[k]

=2 vecT8 e[k]K
T
PBvw[k] +wT [k]BT

v PBvw[k] + vecT8 e[k]
(
K
T
PK − P

)
vec8 e[k], (3.30)

whereK = I −K.

For everyK, it is easy to see that the inequalityK
T
PK −P < 0 deems ∆V to be negative semidef-

inite forw ≡ 0, which from Barbalat’s Lemma [86,87] implies that vec e[k] converges to zero as k →∞.
Hence, the first condition in Definition 3.2 is satisfied.

Now, to investigate the the H∞ performance, let us define

∆VH∞ , ∆V + vecT8 e[k] vec8 e[k]− γ2wT [k]w[k], (3.31)

such that

∆VH∞ = vecT8 e[k]
(
K
T
PK − P + I

)
vec8 e[k] + 2 vecT8 e[k]

(
K
T
PBv

)
w[k]

which can also be written as ∆VH∞=ζT [k]Ωζ[k], where ζ[k] =
[
vecT8 e[k] wT [k]

]T
and

Ω =

[
K
T
PK − P + I K

T
PBv

BT
v PK BT

v PBv − γ2I

]
.

If we regard a nonsingular block diagonal matrix, diag
{
K I

}
, to prove Ω<0 is the same of proving

diagT
{
K
−1

I
}

Ωdiag
{
K
−1

I
}
<0. Moreover, given the inequality P − I > 0, defining

G ,
(
K (P − I)

−1
K
T
)−1

, (3.32)

yields exactly the same condition presented in (3.26). Therefore, Theorem 3.4, if satisfied, yields ∆VH∞ <

0, and consequently
∆V + vecT8 e[k] vec8 e[k]− γ2wT [k]w[k] < 0. (3.33)
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Furthermore, if ∆VH∞ is definite negative, then it is straightforward that K
T
PK − P < 0, and the first

condition in Definition 3.2 is satisfied. Now, taking (3.33) and summing (3.31), from 0 to k, yields

k∑
i=0

(
V [i+1]−V [i] + vecT8 e[i] vec8 e[i]−γ2wT [i]w[i]

)
=

V [k+1]−V (0)+

k∑
i=0

(
vecT8 e[i] vec8 e[i]−γ2wT [i]w[i]

)
< 0.

Under zero initial conditions and given the Lyapunov function positiveness properties, we must have

k∑
i=0

vecT8 e[i] vec8 e[i]−
k∑
i=0

γ2wT [i]w[i] < 0,

for all k≥0. Note thatw ∈ `2[0,∞), thus vec8 e is also `2[0,∞) and both terms converge. The inequality
is therefore equivalent to || vec8 e||2 ≤ γ||w||2. Hence, the conditions in Definition 3.2 are satisfied, and
the proof is completed.

To retrieve a control gain K = I−K from the resulting matrices, G and P , we suppose that K is
defined asK ,M

√
P − I withM>0. In this sense, stemming from (3.32), it follows that

G−1 =K (P−I)
−1
K
T

=
[
M
√
P−I

]
(P−I)

−1
[√
P−IM

]
=MM , (3.34)

such that M=
√
G−1, and consequently K =

√
G−1
√
P−I . After some manipulation, we find the

control gain, obtained from the resulting matrices,G and P , given byK = I−
√
G−1
√
P−I .

2

Theorem 3.4 provides a feasible solution for the H∞ control problem ensuring the asymptotic stability of
the error dynamics (3.23), while attenuating all exogenous disturbances and discretization errors. The resulting
control scheme is obtained through the solution of an LMI,7 which provides a static value for the gain K.
Regarding the matrix gain as a constant term, ease the implementation and the analysis. Nevertheless, if we re-
gard changes in the coordinate base or a time-varying reference configuration xd, e.g., a tracking system, a new
control gain must be calculated, which requires new feasibility tests for the LMI (3.26). Due to time constraints
related to the solution of an LMI problem, Theorem 3.4 becomes unsuitable for practical implementations.
Motivated by this problem, we state a solution for the H∞ tracking control problem as follows.

7Interior point based algorithms, as the LMI Control Toolbox from Matlab, can solve this convex problem in polynomial time.
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Theorem 3.5 Discrete dual quaternion based H∞ tracking controller

For a prescribed performance parameter γ > 0, and given a positive scalar α<1 and matrix

P , satisfying P>I and P<γ2
[
BvB

T
v

]−1
, a control strategy that ensures H∞ tracking

performance γ for the system (3.25) with exogenous disturbances and errors in the sense of
Definition 3.2 is given by

θ[k+1] = θ[k] +N+
((
I−K

)
vec8 e[k]+ vec8 xtrk[k]

)
, (3.35)

where N+ is the pseudoinverse of N =
−
H (x∗d[k + 1])Jvec with Bv =

−
H (x∗d[k + 1])B,

the control gain is given by

K = α

√
P−1 − γ−2BvB

T
v

√
P−I, (3.36)

and the feedforward term by

vec8 xtrk[k] =
−
H (x∗d[k + 1]−x∗d[k]) vec8 x[k]. (3.37)

proof.

From the Lyapunov function candidate described in (3.28), we have

∆V = vecT8 e[k+1]P vec8 e[k+1]− vecT8 eP vec8 e[k].

Now, by using the tracking controller defined in (3.35), the error dynamics (3.25) can be rewritten as

vec8 e[k+1] = vec8 e[k]− vec8 xtrk[k]−N (θ[k+1]− θ[k]) +Bvw[k]

=K vec8 e[k] +Bvw[k].

The first difference of Lyapunov function can thus be rewritten as

∆V = 2 vecT8 e[k]K
T
PBvw[k] +wT [k]BT

v PBvw[k] + vecT8 e[k]
(
K
T
PK − P

)
vec8 e[k].

It is easily noticed that the first difference in this case is the same of the Lyapunov difference obtained in
(3.30). Consequently, following exactly the same steps from Theorem 3.4, the H∞ tracking performance
of the closed-loop system is ensured in accordance to Definition 3.2.

Nonetheless, investigating the LMI condition (3.26) in Theorem 3.4, and using the Schur Lemma, the
condition (3.26) holds if and only if P−G<0, and

BT
v PBv − γ2I −BT

v P (P −G)
−1
PBv < 0

−γ2I +BT
v

[
P − P (P −G)

−1
P
]
Bv < 0.

Using Sherman–Morrison–Woodbury matrix identity, we have

−γ2I +BT
v

(
P−1 −G−1

)−1
Bv < 0,
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which in turn implies P−1 −G−1 > γ−2BvB
T
v , and

G−1 < P−1 − γ−2BvB
T
v . (3.38)

Stemming from the definition in (3.32), the inequality (3.38) deems

K (P−I)
−1
K
T
< P−1 − γ−2BvB

T
v .

Similarly to the analysis performed in (3.34), we set K = α
√
P−1 − γ−2BvB

T
v

√
P−I with a scalar

α<1. Thus (3.38) is satisfied, and we find that the control gain which ensures H∞ performance to (3.23)

is given byK=I−K, whereK satisfies (3.36), P>I , and P<γ2
(
BvB

T
v

)−1
.

2

Theorem 3.5 provides an easy way to update the control signal in accordance to theoretical results from
Theorem 3.4 and considering a time-varying task-space desired configuration. Still, there may exist an infinity
number of solutions for the matrix P that satisfies the conditions in Theorem 3.5. To further simplify and
improve the choice of a feasible solution, we seek a closed-form solution for the positive matrix P opt that
optimizes a given criterion. In this particular case, we seek P opt that minimizes the norm of the control gain
K in Theorem 3.5.

Theorem 3.6 Discrete dual quaternion basedH∞ tracking controller—closed form solution

For a prescribed performance parameter γ > 0, a control strategy with minimum norm
for the control gain that ensures H∞ tracking performance γ for the system (3.25) with
exogenous disturbances and errors in the sense of Definition 3.2 is given by

θ[k+1] = θ[k] +N+
((
I−K

)
vec8 e[k]+ vec8 xtrk[k]

)
, (3.39)

where N+ is the pseudoinverse of N =
−
H (x∗d[k + 1])Jvec with Bv =

−
H (x∗d[k + 1])B,

the feedforward term is given by vec8 xtrk[k] =
−
H (x∗d[k + 1]−x∗d[k]) vec8 x[k], and the

minimum control gain by

K = α

√
P−1 − γ−2BvB

T
v

√
P−I, (3.40)

with

P = γ

√
BvB

T
v

−1
. (3.41)

proof.

First, recall that the proposed tracking controller (3.39) ensuresH∞ tracking performance γ for the system
(3.25) with exogenous disturbances and errors as described in Theorem 3.5. Investigating the proposed
controller, it is easily noted that feedforward term as described in (3.37) compensates for the desired end-
effector velocities and does not depend on the control gain. Indeed, the stabilizing control gain

(
I−K

)
defines the controller performance in the sense of Definition 3.2 withK satisfying (3.36)—which ensures
the H∞ performance γ. Therefore, the gain K is the only variable in the proposed tracking controller
(3.39) and can be chosen according to some optimal criterion.
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To reduce the norm of the gainK, we first seek to prove thatK has only positive eigenvalues which are
upper bounded by 1, i.e., 0<λi(K)<1. The positiveness assumption is easily proved, sinceK arises from
the product of two positive terms which yields positive eigenvalues, although not necessarily a positive
matrix. The latter assumption is only proved to be true if the following holds:

K
T
K = α2

√
P−I

(
P−1 − γ−2BvB

T
v

)√
P−I < I. (3.42)

Pre- and post-multiplying both sides of the inequality by the positive term
√
P−I yields

(P−I)
(
P−1 − γ−2BvB

T
v

)
(P−I) < (P−I)(

I−P−1 − (P−I) γ−2BvB
T
v

)
(P−I) < (P−I)

P−I−I+P−1 − (P−I) γ−2BvB
T
v (P−I) < (P−I)

−I+P−1 − (P−I) γ−2BvB
T
v (P−I) < 0.

From the conditions of Theorem 3.5, we have P≥I , which in turn implies P−1≤I , and since γ−2BvB
T
v

is positive definite, we have that (3.42) always holds. Given the norm properties, we then have
∥∥K∥∥2

2
=

λ2max(K) < 1, which implies λi(K)<1.

Let us now address the Frobenius norm of gain matrix,K = I −K, that is

‖K‖
F

=

√
tr
{
KTK

}
=

√
tr
{
I−KT−K+K

T
K
}

=

√
tr {I}−2tr

{
K
}

+tr
{
K
T
K
}
.

As the trace ofK stems from the sum of eigenvalues, that is, tr
{
K
}

=
∑8
i=1 λi(K), the trace ofK

T
K is

defined by
∑8
i=1 λ

2
i (K). Due to the previously demonstrated properties of λi(K), that is, 0<λi(K)<1,

we have that the inequality tr
{
K
}
>tr
{
K
T
K
}

always holds. Moreover, given the eigenvalues con-

straints, the function f(K) = 2tr
{
K
}
−tr
{
K
T
K
}

is monotonically increasing. In this context, to

minimize the Frobenius norm of gain matrix, min ‖K‖
F
, is the same of maximizing the gain K. In other

words, we are now seeking for a positive matrix P opt that satisfies

P opt , arg max
P

∥∥K∥∥
F
.

The Frobenius norm ofK is given by

∥∥K∥∥
F

=
√

tr
{
KK

}
=

√
tr
{√
P−I

(
P−1 − γ−2BvB

T
v

)√
P−I

}
.

Using the cyclic properties of the trace, we have

∥∥K∥∥
F

=

√
tr
{(
P−1 − γ−2BvB

T
v

)√
P−I

√
P−I

}
=

√
tr
{(
P−1 − γ−2BvB

T
v

)
(P−I)

}
=

√
tr
{
I − P−1 − γ−2BvB

T
v P + γ−2BvB

T
v

}
.
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Since square root is a monotonically increasing function, to maximize
∥∥K∥∥

F
is to find P opt that satisfies

P opt = arg max
P
−tr
{
P−1

}
− tr

{
γ−2BvB

T
v P
}
.

To find P opt, let us take the first derivative of these trace functions [88], P−2 − γ−2BvB
T
v = 0, which

in turn yields

P opt = γ

√
BvB

T
v

−1
. (3.43)

2

The control scheme provided by Theorem 3.6 is a straightforward solution for the H∞ control of manipu-
lators using dual quaternion representation. Indeed, the controller is easier to implement than the results from
Theorems 3.4 and 3.5, as the control gain in Theorem 3.6 is given by a closed-form expression and solely de-
pends on the given scalars γ, α, on the known matrix Bv , and the the known feedforward term. Furthermore,
the resulting control scheme deems the gain value to be optimal in the sense of reducing its norm, which in turn
reduces the control effort required to asymptotically stabilize the end effector while maintaining the H∞ per-
formance. To the best of the authors knowledge, given the dual quaternion framework, this is the first work to
exploit any of the aforementioned characteristics in the control design, and the first to explicitly regard several
sources of uncertainties and disturbances acting on the discretized model.

3.3 H∞ CONTROLLER IN DUAL QUATERNION SPACE

This section proposes a new framework for kinematic setpoint control and tracking of robot manipulators
by deriving a control law explicitly in unit dual quaternion Lie algebra. Since the underlying vector space from
the Lie algebra is in fact the tangent space of the Spin(3)nR3, we can exploit a linear transformation from this
space to the joint velocity vector where actuation takes place in task-space context. To the best of the authors
knowledge, this is the first result to combine the geometric significance of the Lie algebra of Spin(3)nR3 with
the practicability of being defined in the range space of the dual quaternion error with a linear mapping to the
joint velocity inputs.

In this context, the new method provides an intuitive and elegant connection between control effort in task-
space and the performance effects over the end-effector trajectory and different sources of uncertainties and
disturbances. Using the dual quaternion algebra and the dual quaternion Jacobian Jω mapping between the
vector space stemming from the associated Lie algebra for Spin(3)nR3 and the joint velocity vector, we adapt
classic H∞ techniques—suitable solely for additive noises—to the dual quaternion space (without mapping
the error dynamics to R8 manifold). In this sense, we derive easy-to-implement closed form H∞ control
and tracking strategies in dual quaternion space that also incorporate robustness requirements, disturbance
attenuation, and performance properties, while minimizing the required control effort.

To address the detrimental influence of the uncertainties and disturbances in the H∞ sense, we assume that
vw,v

′
w,vc,v

′
c ∈ L2[0,∞) and introduce a variable γ that upper bounds the induced H∞ norm, that is, upper

bounds the noise-to-error attenuation from (3.6). At this juncture, it is interesting to remind for the reader the
error function definition from (3.5)-(3.7), that is, e : Spin(3) nR3 7−→ H⊗ D, given by

e = 1− xe = e+ εe′ (3.44)
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where xe = xx∗d = re + ε 12pere is the spatial difference in Spin(3) nR3, and re denote the orientation error
in Spin(3) and pe the position error in H0.

In this sense, we address as variable of interest the orientation and translational errors from (3.44) defined
respectively as

O(e) ,1− re,

T (e) ,pe.

Remark 3.3. Both orientation and translational errors can be easily extracted from e. The former is basically the
invariant quaternion error for orientation obtained from the primary quaternion from (3.44), that is, O(e) = e.
The second denotes the Cartesian error between the current and desired position and it is extracted from (3.44)
using T (e) = −2e′(1−e∗).

In this context, the following definition based on [81] describes the robust performance in the H∞ sense,
in terms of the dual quaternion error (3.44) and the orientation and translational errors.

Definition 3.3. (Based on [81]) For prescribed positive scalars γO1, γO2, γT 1, γT 2, the robust
control performance is achieved in the H∞ sense, if the following hold
(1) The error (3.44) is exponentially stable for vw ≡ vc ≡ 0;
(2) Under the assumption of zero initial conditions, the disturbances influence upon the orien-
tation and translational errors is attenuated below a desired level

||O(e) ||2 ≤ γO1||vw||2 + γO2||vc||2 ∀vw,vc∈L2[0,∞)\0;

||T (e) ||2 ≤ γT 1||v
′
w||2 + γT 2||v

′
c||2 ∀v′w,v′c∈L2[0,∞)\0.

(3.45)

3.3.1 Dual quaternion H∞ controller

The impact of different sources of uncertainties and disturbances over the system kinematics must be ex-
plicitly regarded, and the controller must be designed in accordance to their influence, as neglecting their effects
jeopardizes the overall stability.

This section presents a new control strategy that ensures H∞ performance for both control and tracking
problems without decoupling the rotational and translational dynamics. Since traditional H∞ theory is unable
to deal with multiplicative noises as in (3.6), the proposed analysis exploits the dual quaternion algebra prop-
erties to redefine the problem in order to solve the H∞ problem. First, we exploit the isomorphism mapping
from (2.12) such that the differential forward kinematics (3.6) yields

ẋe =
1

2

(
n−1∑
i=0

j
i
θ̇i + vw + vc

)
xe

=
1

2

(
vec
(
Jωθ̇

)
+ vw + vc

)
xe. (3.46)

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables and Jω = [vec j
0
. . . vec j

n−1] is an
analytical Jacobian, which can be extracted directly from Algorithm (2.2). In this sense, from the isomorphism
mapping (2.12), we can find solutions in the real space for θ̇ such that differential equation (3.46) is well-
posed [89, Prop. 2.1] as vec

(
Jωθ̇

)
∈ H0 ⊗ D lies in the Lie algebra of Spin(3) nR3.
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To solve the problem of robust exponential stabilization of the dual quaternion error function (3.44), we
propose a task-space controller that yields the following joint velocity inputs8

θ̇ = J+
ω

[
KO vecT3 (Im (O(e))) −KT vecT3 (T (e))

]T
(3.47)

where e ∈ H ⊗ D is defined in (3.5)-(3.7) and redefined in (3.44), KO ,KT ∈ R3×3 are respectively the
orientation and translation gain matrices, J+

ω is the pseudoinverse of Jω, and the transformation vec3 : H0→R3

uses the isomorphism from H0 and R3 to map elements from Spin(3) to the Euclidean vector space as described
in (2.4).9

Theorem 3.7 Dual quaternion H∞ controller

For prescribed positive scalars γO1, γO2, γT 1, γT 2, the closed-loop system (3.46) with task-
space controller that yields joint velocity inputs as defined in (3.47) with

KO ≥
√

2

√
γO
−2
1 + γO

−2
2 I and KT ≥

√
γT
−2
1 + γT

−2
2 I

achieves exponential stability with H∞ disturbance rejection in the sense of Definition 3.3
with minimum control effort.

proof.

To study the stability of closed loop system, let us regard the following Lyapunov candidate function

V (t, e) = ‖e(t)‖ = α1 ‖e(t)‖22 + α2 ‖e′(t)‖
2
2 , (3.48)

with given positive scalars α1 and α2. Taking the time-derivative along the trajectory (3.46) (see Appendix
C.1) in the absence of disturbances, that is, vw ≡ vc ≡ 0, we have

V̇ (t, e) ≤ −α1σm{KO}
2 ‖e(t)‖22 − 2α2σm{KT} ‖e′(t)‖

2
2 (3.49)

≤ −min

{
σm{KO}

2 , 2σm{KT}
}
V (t, e) ≤ 0.

where σm{KO} and σm{KT} denote the minimum singular value fromKO ,KT , respectively. Hence, by
the Comparison Lemma [72, pg. 85], we have that the closed-loop system (3.46) with (3.47) is exponen-
tially stable in the absence of disturbances, that is,

‖e(t)‖22 ≤ ‖e(t0)‖22 e
− 1

2σm{KO}(t−t0),

and ‖e′(t)‖22 ≤ ‖e
′(t0)‖22 e

−2σm{KT}(t−t0).

Hence, the Condition (1) in Definition 3.3 is satisfied forKO>0 andKT >0.

Now, explicitly addressing the influence of uncertainties and disturbances over the closed-loop system,

8In terms of the spatial difference xe=xx
∗
d=re + ε 1

2
pere, the dual quaternion controller (3.47) can be rewritten as θ̇ =

J+
ω

[
−KO vecT3 (Im (re)) −KT vecT3 (pe)

]T
where Im (re) and pe can be directly extracted from the dual quaternion com-

ponents of xe = η + µ+ ε
(
η′ + µ′

)
as Im (re) = µ and pe = ηµ′−η′µ+µ× µ′.

9Avoidance techniques for kinematic singularities are considered in Chapter 5. Herein, the Jacobian Jω is assumed to be well-posed.
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the Lyapunov derivative (see Appendix C.2) yields

V̇ (t, e) =− α1 vecT3 Im (O(e)) (KO vec3 Im (O(e)) + vec3 (vw + vc))

− α2

2 vecT3 T (e) (KT vec3 T (e)− vec3 (v′w + v′c)) . (3.50)

To investigate the H∞ performance, let us define VγO , ||O(e) ||22 − γO
2
1||vw||22 − γO

2
2||vc||22 and

VγT , ||T (e) ||22 − γT21||v′w||22 − γT22||v′c||22, such that

VH∞ = V̇ (t, e) + VγO + VγT .

Note that ||O(e) ||22 ≤ 2 ‖vec3 Im (O(e))‖22 for η∈[0, 1]. Hence,

VH∞ ≤− vecT3(Im (O(e))) (α1KO−2I) vec3 (Im (O(e)))− vecT3(T (e))
(
α2

2 KT −I
)

vec3 (T (e))

+ α1vecT3 (Im (O(e)))vec3(vw+vc)− γO21||vw||
2
2 − γO22||vc||

2
2

+ α2

2 vecT3(T (e))vec3(v′w+v′c)− γT21||v
′
w||22 − γT22||v

′
c||22.

Using Schur complement, we have that VH∞≤0 if and only if

KO ≥ 2
α1
I+α1

4

(
γO
−2
1 +γO

−2
2

)
I,

and KT ≥ 2
α2
I+α2

8

(
γT
−2
1 +γT

−2
2

)
I.

(3.51)

In this context, if the inequalities are satisfied for both KO and KT , then V̇ (t, e) + VγO ≤ 0 and
V̇ (t, e) + VγT ≤ 0 also holds. Now, under zero initial conditions and given the Lyapunov function
positiveness properties, the integration from 0 to∞ yields

´∞
0
||O(e) ||22 − γO21||vw||22 − γO22||vc||22 ≤ 0

and
´∞
0
||T (e) ||22−γT21||v′w||22−γT22||v′c||22 ≤ 0, which is equivalent to the conditions presented in (3.45).

Hence, the conditions in Definition 3.3 are satisfied.

Still, there exist an infinity number of solutions for α1 and α2 that satisfies (3.51). To further simplify
and improve the choice of a feasible solution, we seek a closed-form control solution that optimizes a
prescribed criterion. In this particular case, we seek α1opt and α2opt that minimizes the norm of the
control gainsKO andKT . After some manipulation, taking the minimum of (3.51) with regard to α1 and

α2, we have α1opt = 2
√

2

√
γO

2
1
γO

2
2

γO
2
1
+γO

2
2

and α2opt = 4

√
γT

2
1
γT

2
2

γT
2
1
+γT

2
2

. Therefore, control gains KO and KT

with minimum norm that satisfies (3.51) areKO ≥
√

2
√
γO
−2
1 + γO

−2
2 I andKT ≥

√
γT
−2
1 + γT

−2
2 I .

2

Remark 3.4. Note that there is no unique natural metric for Spin(3) n R3, similarly to the case for SE (3).
Hence, there is more freedom left for the control design [55]. The proposed bilinear form defined in (3.48)
exploits the natural metric for H which yields control actions along the geodesic directions for both orientation
and translational errors.

The control scheme provided by Theorem 3.7 is a straightforward solution for the H∞ control of manip-
ulators using dual quaternion representation. Indeed, the resulting controller gain is given by a closed-form
expression and solely depends on the prescribed scalars γO1, γO2, γT 1, γT 2. Furthermore, the resulting control
scheme renders the gain value to be optimal in the sense of reducing its norm, which in turn reduces the control
effort required to exponentially stabilize the end effector while maintaining the H∞ performance. To the best
of the authors knowledge, given the dual quaternion framework, this is the first work to explicitly regard several
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sources of uncertainties and disturbances acting on the manipulator and exploit the dual quaternion properties
to ensure a satisfying control performance in the H∞ sense.

3.3.2 Dual quaternion H∞ tracking controller

For practical applications, it is interesting to consider a more general scenario with time-varying reference
trajectories, that is, a tracking system. At this juncture, the desired end-effector trajectory over time is described
by the first order differential kinematic equation of a rigid body (2.26),

ẋd = 1
2ωdxd, (3.52)

whereωd is the twist for the desired pose in inertial frame. Hence, in the context of varying pose configurations,
the error differential kinematics (3.5), (3.6), (3.46) can be rewritten as

ẋe = ẋx∗d + xẋ∗d

=
1

2

(
vec6

(
Jωθ̇

)
x+ vwx+ vcx

)
x∗d + 1

2xx
∗
dω
∗
d

=
1

2

(
vec6

(
Jωθ̇

)
+ vw + vc

)
xe − 1

2xeωd. (3.53)

From Definition 3.3 and Theorem 3.7, we state a solution for the H∞ tracking control problem as follows

Theorem 3.8 Dual quaternion H∞ tracking controller

For prescribed positive performance scalar parameters γO1, γO2, γT 1, γT 2, the task-space
controller yielding joint velocity inputs

θ̇tr =J+
ω

[
KOvecT3 (Im (O(e))) −KT vecT3 (T (e))

]
T

+ J+
ω (vec6 (xeωdx

∗
e)) (3.54)

with feedforward term vec6 (xeωdx
∗
e) based on the desired end-effector twist ωd described

in (3.52), and control gains KO≥
√

2
√
γO
−2
1 + γO

−2
2 I and KT ≥

√
γT
−2
1 + γT

−2
2 I en-

sures exponential H∞ tracking performance with disturbance rejection in the sense of Defi-
nition 3.3 with minimum control effort for the closed-loop system (3.44), (3.53).

proof.

From the proposed tracking controller (3.54), the closed-loop system (3.53) yields

ẋe =
1

2

(
vec6

(
Jωθ̇

)
+ vw + vc

)
xe − 1

2xeωd.

=
1

2

(
vec6

(
Jω

˜̇
θ
)

+ vw + vc

)
xe,

where ˜̇
θ=J+

ω

[
KOvecT3(Im (O(e))) −KT vecT3(T (e))

]T
. Note that this is the same closed-loop dy-

namics obtained in (3.44) with task-space controller defined as in (3.47). Consequently, the rest of the
proof follows exactly the same steps from Theorem 3.7. 2

From Theorems 3.7 and 3.8, it is also interesting to consider particular cases where either it is difficult to

65



decouple both sources of uncertainties or the designer explicitly sets the performance to be the same, that is,
γT = γT 1 = γT 2 and γO = γO1 = γO2.

Corollary 3.1. For prescribed positive scalars γO , γT , the closed-loop system (3.44), (3.53), with task-space
controller defined in (3.54) with KO≥2γO

−1I and KT ≥
√

2γT
−1I achieves exponential H∞ tracking per-

formance with disturbance rejection in the sense of Definition 3.3 with minimum control effort.

3.4 NUMERICAL EXAMPLES AND SIMULATIONS

This section assesses the effectiveness and advantages of the proposed results within this chapter. To this
aim, different scenarios and conditions were devised using a diverse set of platforms as to investigate the
benefits from the proposed techniques and to compare with traditional controllers for robot manipulators.

In summary, this section presents three different numerical examples implemented in Open Robotics Au-
tomation Virtual Environment (OpenRAVE) without a physics engine to simulate rigid body dynamics, and
two more realistic simulations devised and implemented in the Virtual Experimentation Platform (VREP) from
Coppelia RObotics GmbH (see, [90]) using Bullet Physics Library10 as the physics engine. For examples using
OpenRAVE, all controllers were implemented using Matlab and the DQ_Robotics toolbox11; whereas the V-
REP simulations were implemented using The Robot Operating System (ROS)12 and the DQ_Robotics toolbox
with a sampling time of 5ms.

Example 3.1 (Comau SMART SiX robot using OpenRAVE). This example investigates the effectiveness from
dual-quaternion based controllers mapped to R8 manifold, that is, the results from Subsection 3.2.1.

Consider a simple task of moving the manipulator end-effector from one pose to another in a scenario sub-
jected to exogenous disturbances. For this task, we considered a Comau SMART SiX robot (a six-link robot ma-

nipulator) with initial configuration described by the joint configuration θinit =
[
−54 36 −90 0 90 0

]T
,

which corresponds to the following unit dual quaternion pose

xinit = −0.275− 0.432ı̂+ 0.847̂− 0.140k̂ −
(

0.184 + 0.387ı̂+ 0.197̂− 0.362k̂
)
.

The desired end-effector position and orientation configuration is given by

xd = 0 + 0.707ı̂+ 0.707̂+ 0k̂ +
(

0.282− 0.380ı̂+ 0.380̂+ 0.282k̂
)
.

In this scenario, we simulated the exogenous disturbance acting on the system. To ease the analysis, we set the
exogenous disturbance to be described by v = 1.1 cos(5t) and B = [1 1 1 1 1 1 1 1]T . In the H∞ sense, the
control requirement is to maintain the noise to error amplification less than the upper bound γ = 0.002.

The first result regards the time response of each component of the dual quaternion vector, shown in Figure
3.1. Besides the large disturbance, each component asymptotically converges to its desired reference. The end-
effector position are shown in Figure 3.2, which also demonstrates the convergence efficiency of the control
technique. Figure 3.3(a) regards the evolution of the convergence error, which is described by the evolution
of its norm, i.e., || vec e||2. It is clear that the H∞ control technique succeeded in reducing the disturbance
influence upon the closed-loop system, whereas maintaining the system stability. Indeed, under zero initial

10http://www.bulletphysics.org/
11http://dqrobotics.sourceforge.net
12http://www.ros.org/

66



x1

0
-1

0

1

-1

0

1

2

0
-1

0

1

2

-1

0

1

0 0.01 0.02
-1

0

1

2

0 0.01 0.02
-2

-1

0

1

time (s)

0 0.01 0.02
-1

0

1

2

0 0.01 0.02
-1

0

1

2

x2 x3 x4

x5 x6 x7 x8

Figure 3.1: [Example 3.1] Exogeneous disturbance (green dashed curve), desired dual quaternion coefficient
(red dash-dotted curve), and measured dual quaternion coefficient (black solid curve).
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Figure 3.2: [Example 3.1] Three dimensional position: reference (black dashed curve) and measured value
(solid green).

conditions and numerically computing the error and noise norms, the resulting noise to error amplification is´ t1
t0
|| vec e||2´ t1
t0
||v||2

= 0.0013, which is less than the calculated upper bound γ = 0.002.

Moreover, in order to allow comparison with previous results, we have empirically chosen a controller,
using the results from [63], with the same control performance obtained with Theorem 3.3, i.e., with a noise to
error attenuation of 0.0013. The control effort of this brute-force manually chosen controller is shown in Figure
3.3(b) (light green). The resulting control is up to 5 times more expensive than the controller obtained with
Theorem 3.3, which minimizes a given energy criterion. The result enlightens the importance of the proposed
robust control techniques in comparison to previous results.

Example 3.2 (Discrete-time control of a Baxter WAM arm using OpenRAVE). This example is particularly
designed for discrete time controllers using the vec8 to an R8 manifold. In this scenario, we are consider-
ing a WAM arm, a seven-link manipulator from Barrett Technology Inc., under simulated uncertainties and
exogenous disturbances.

Similarly to the former example, in this scenario we seek to move the end-effector from an an initial pose,
xinit = 0.27 − ı̂0.47 + ̂0.76 + k̂0.35 − ε(̂0.11 − k̂0.24), to a desired one, xd = 0.27 − ı̂0.47 + ̂0.76 +
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Figure 3.3: [Example 3.1] Plot (a) shows the error norm compared to the exogenous disturbances whereas in
(b) it is shown the control effort from the controller compared to a random gain K with similar error norm.
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Figure 3.4: [Example 3.2] Setpoint error norm (a) and control effort (b).

k̂0.35− ε(0.08 + ı̂0.03 + ̂0.10− k̂0.24). The task represents a single end-effector translation of 10 cm in each
axis, whereas holding the original orientation. In addition to the discretization error, we enforce exogenous
disturbances upon the twist and pose configuration of the end-effector. The control requirement is to maintain
a noise to error amplification less than the upper bound γ = 0.05.

The evolution of the convergence error is compared against the discretized version of [63]. As a simple
discretization could yield unstable results, and to allow fair comparison, a try-and-error strategy has been set
to find a suitable controller with similar control effort compared to Theorem 3.6. In this sense, the gain for
the manually chosen controller, based on [63], stemmed from a tedious brute-force search where different
gains were generated and tested for feasibility and control effort. The results are shown in Figure 3.4(a),
and illustrates the effectiveness of the discrete H∞ controller, which succeeded in reducing the disturbance
influence. Indeed, under zero initial conditions, the numerically computed noise to output attenuation for the
results from Theorem 3.6 is 0.044, which is less than the prescribed upper bound γ = 0.05, whereas the
results from the manually chosen controller is 0.097, up to 2.2 times worst. The end-effector position and
orientation are shown in Figs. 3.5(a) and 3.5(b), respectively, and also demonstrates the advantages of the
proposed technique.
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Figure 3.5: [Example 3.2] Three-dimensional position and quaternion orientation: reference (red dashed
curve), measured values from manually chosen controller (green) and from Theorem 3.6 (black).
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Figure 3.6: [Example 3.2] Cartesian position: tracking reference (red dashed curve) and measured positions
from Theorem 3.6 without the feedforward term, i.e., setpoint control (green) and from Theorem 3.6 consider-
ing the feedforward term, that is, tracking controller (black).

Within the same scenario, in order to compare the control effort, we investigate the influence of the dis-
turbances whereas holding a fixed pose. To allow a fair comparison, the gain for the discretized controller
from [63] has been randomly selected using a brute force search as to obtain a similar performance obtained
using Theorem 3.6, that is, γ=0.044. The control effort from both techniques are shown in Figure 3.4(b). The
brute-force manually chosen controller is up to four times more expensive than the proposed controller, which
highlights the efficiency of the minimization criterion from Theorem 3.6.

Moreover, in order to illustrate the effectiveness of the tracking strategy under high disturbance influence,
the fixed desired pose was replaced for a task trajectory along task-space. The task trajectory is composed of
five straight lines with the same orientation. Figure 3.6 illustrates the Cartesian displacement of the end-effector
from the tracking controller using Theorem 3.6 compared to the stabilizing setpoint controller (Theorem 3.6
without the feedforward term). For this particular task trajectory, the mean numerically calculated error from
the proposed tracking criterion is 0.016, whereas the mean error obtained using the setpoint controller (Theorem
3.6 without feedforward) and the manually chosen controller are 0.053 and 0.066, that is, over three and four
times higher than Theorem 3.6, respectively. The results illustrates the importance of considering a tracking
controller instead of a moving setpoint control strategy.

Example 3.3 (Comparison between control strategies based on a simulation with KUKA LBRIV arm using
V-REP). This example assesses the effectiveness and differences between the control frameworks proposed
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Figure 3.7: [Example 3.3] Screenshot from the simulated task (V-REP platform).

in this chapter, particularly, between the controllers based on the dual quaternion space mapping to an R8

manifold (Section 3.2) and strictly dual quaternion controllers (Section 3.3).

To this aim, different simulation tasks were devised and implemented in the Virtual Robot Experimentation
Platform (V-REP) from Coppelia Robotics GmbH—using Bullet Physics Library as the physics engine—with
a KUKA LBRIV arm, a seven-link manipulator from Kuka Robotics, connected to a Barret Hand for grasp-
ing. All V-REP simulations were performed using a 5 ms sampling time and the proposed controller was
implemented using the DQ_robotics toolbox.

In the first scenario, the manipulator was set to an initial configuration, x(0) = 0.46 − 0.60ı̂ + 0.35̂ +

0.55k̂ − ε(0.17 + 0.30ı̂ + 0.72̂ − 0.28k̂), from where it was supposed to travel to an specific pose, xd =

0.707 + 0ı̂+ 0.707̂k̂ + 0k̂) + ε(0.13 + 0.32ı̂− 0.13̂+ 0.78k̂), and grasp the cup. The final pose of the task
is illustrated in Figure 3.7. At this juncture, there is no disturbances except for the platform dynamic precision
and modeling approximations.

The scenario was simulated using the controller from Theorem 3.7 and compared against the controllers
from [4] and from Theorem 3.3—both of which are based on the dual quaternion error mapping to an R8

manifold—and against a decoupled approach based on Spin(3) and R3 which concerns independent orientation
and translational task Jacobians. To allow a fair comparison, for this scenario, all controllers were set with the
same constant control gain K = 0.005.

The evolution of the convergence error is illustrated in Figure 3.8 whereby it is easy to see the advantages
that stems from deriving a control law with exponential convergence at the unit dual quaternion tangent space
and, at the same time, with a linear map to the joint velocity vector. The end-effector orientation and trans-
lational trajectories shown in Figure 3.9 also demonstrates the advantages of the proposed criteria. Clearly,
Theorem 3.7 is the only to achieve exponential convergence concerning both the orientation and translation
errors which yields a combined error norm (orientation and translation) without spikes as shown in Figure 3.8.

Within the same scenario, we devised a task tracking trajectory to move the end-effector to an specific point
at the second table and then release the cup. The suggested trajectory takes the arm to highly complex configu-
rations in the sense of proximity to singularities and joint limits. At this point, it is important to emphasize that
the errors—associated with the trajectory—are proportional to the tracking time that is set with the trajectory.
The smaller the time, the larger the errors. This context is rather interesting as larger errors may lead the arm
to singular and joint limits configurations13 which in turn may disrupt the task. Indeed, after fifty trials per

13To maintain the fairness, singularity avoidance was not considered at this point for none of the controllers
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Figure 3.8: [Example 3.3] Setpoint control error.

Decoupled controller Controller from [4] Theorem 3.3 Theorem 3.7
0% 26% 48% 96%

Table 3.1: [Example 3.3] Percentage of successfully completed tracking task from fifty trials per controller

controller with a 5 ms sampling time, the decoupled technique was unable to cope with the complex trajectory,
the controllers from [4] and Theorem 3.3 successfully completed 26% and 48% of the simulations, respectively,
whereas the tracking controller from Theorem 3.7 was able to complete 96% of the simulations. The results
are shown in Table 3.1.

Concerning only successful trials and despite having the same control gain, Theorem 3.8 provided superior
results in the sense of tracking errors compared to [4] and Theorem 3.3 as shown in Figure 3.10. Furthermore,
the controllers from [4] and Theorem 3.3 required higher joint velocities to cope with the task trajectory, as
shown in Figure 3.11.

Example 3.4 (Dual quaternionH∞ Controller with a KUKA LBRIV arm using V-REP). This example assesses
the effectiveness of the proposed dual quaternion based H∞ controller under uncertainties and disturbances
(Section 3.3). Similarly to the former example, the simulation was devised and implemented in the Virtual
Robot Experimentation Platform (V-REP) from Coppelia Robotics GmbH—using Bullet Physics Library as
the physics engine—with a KUKA LBRIV arm, a seven-link manipulator from Kuka Robotics, connected to a
Barret Hand for grasping.

To illustrate the effectiveness of the proposed dual quaternion H∞ controller under uncertainties and dis-
turbances, we devised a more elaborated task assignment. The control task consists in maintaining the relative
pose between the end effector and a non-fixed target, in this case, the cup which is connected to a mobile
platform—a Pioneer P3-DX from Adept Mobile Robots LCC—as shown in Figure 3.12. The proposed context
is similar to the case of a mobile manipulator with disturbances and uncertainties concerning the mobile pose.
Within this scenario, the manipulator, in addition to modeling and numerical precision errors, was subjected
to random induced disturbances as unmodeled twists and to disturbances on the reference frame—due to the
unknown time-varying movement of the Pioneer robot.

The control task was simulated using Corollary 3.1 (considering γT =γT 1=γT 2 and γO=γO1=γO2) with
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Figure 3.9: [Example 3.3] End-effector translation and orientation for setpoint control: Theorem 3.7 (solid
black line), decoupled controller (orange dotted-line), controller from [4] (green dashed line) and from Theorem
3.3 (magenta point-dashed line).
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Figure 3.12: [Example 3.4] Screenshot from the simulated task (V-REP platform).
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γT 3.5 2.0 0.9 0.6 0.5 0.4 0.2

γT sim 1.914 1.235 0.736 0.528 0.404 0.326 0.167

γO 2 2 2 2 2 2 2

γO sim 0.95 1.01 0.99 1.03 1.04 1.01 0.99

Table 3.2: [Example 3.4] Comparison between theoretical upper bound for the H∞ performance (γT , γO ) with
the numerically calculated noise-to-error attenuation from simulation (γT sim, γO sim)
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Figure 3.13: [Example 3.4] Control error from Theorem 3.7 for different values of the noise-to-error prescribed
upper bound γ .

different values for γT and γO = 2. Table 3.2 summarizes the numerically computed noise to error attenuation
(γT sim and γO sim) compared to the theoretical values from Corollary 3.1 (γT and γO ) which illustrates the
effectiveness of the proposed strategy. It is also interesting to highlight that, due to their coupled behavior,
the orientation performance varies slightly with changes in translational performance despite having the same
theoretical upper bound value. The control results are also graphically depicted in Figure 3.13 that shows the
relative pose error along time for γT = {0.5, 2, 3.5} and γo = 2. It is clear that, despite the uncertainties
and disturbances, the proposed control criterion attenuates their influence and successfully holds the desired
relative pose.

The proposedH∞ dual quaternion based control strategy with (Corollary 3.1 with γT =0.4, γO=1) was also
compared against the control results from [4] and Theorem 3.3. To maintain fairness, all controllers were set
with similar control effort. Figure 3.14 illustrates the evolution of the error norm and highlights the advantages
from the proposed criterion. The numerically calculated noise-to-error attenuation from the simulations were
(γT sim=0.61, γO sim=0.87) and (γT sim=0.63, γO sim=0.86) for the controllers from [4] and Theorem 3.3
and (γT sim=0.32, γO sim=0.65) from Corollary 3.1.
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DUAL QUATERNION BASED OPTIMAL
CONTROLLER FOR TRAJECTORY TRACKING
OF ROBOT MANIPULATORS

Bellman was a renowned mathematician with contributions in many, many
areas. I learned two things from him. First, over the years I continue to marvel

at the significance of the optimality principle in the form of the verification
theorem, which I have used in many contexts. Second and more important, I

learned that good theory is very practical – Pravin Varaiya

The study of rigid body motion and kinematic control of robot manipulators is closely intertwined with
the study of efficient representations for rigid body transformations. In preceding chapters, we have shown
that unit dual quaternions presents itself as a suitable framework for simultaneously describing the attitude and
position of the manipulator end-effector due to its efficiency, compactness, and lack of singularity. Motivated
by dual quaternion algebra advantages for rigid body kinematics description, this chapter addresses the robot
manipulator task-space design control problem using unit dual quaternion in the context of optimal control
theory. Novel optimal task-space control criteria are proposed in order to find an optimal trajectory for the
end-effector in dual quaternion space, providing a tool to balance more conveniently the end-effector error and
its task-space velocity.

Applications of kinematic controllers branch from the stable proportional gain feedback to several sub-fields
of study as, for instance, robustness to singularities and perturbations, workspace optimization, simultaneous
execution of multiple tasks, and several forms of optimization [27, 75]. Particularly, in the light of dual quater-
nion algebra, there has been an increasing interest in works related to the design of kinematic controllers. Those
works, summarized in Section 2.9, comprise rigid motion stabilization and tracking [52], multiple rigid body
coordination [62], multiple arm manipulation [1], and human-robot interaction [78].

Nonetheless, results in dual quaternion literature aim mostly at stabilizing the trajectory of the rigid body,
without much concern on control effort and optimality. For instance, although stable, the proportional gain
controller [63] shows an intrinsic delay in the presence of time-varying trajectories. Adding a feedforward
term with the proportional gain may eliminate the delay, but has the disadvantage of requiring a control effort
that inevitably grows alongside the trajectory time derivative. In this context, optimal criteria allow the designer
to choose a performance in an intermediate ground, with no phase shift and with optimal control effort.

Among optimal and robust control of robot manipulators, earlier works considered mostly the dynamic
model of the robot, using a computed torque control, and optimization techniques to compensate for uncer-
tainties in the system parameters. Particularly, considerable research effort has been dedicated to the robust
control of robot manipulators [91]. For instance, [92] uses minimum variance control to find optimal con-
trollers considering input constraints, with results applied to a two degree-of-freedom (DOF) planar manipu-
lator. Similarly, [93] proposes an optimal solution based on linear quadratic regulator theory and computed
torque to optimize the control performance under bounded uncertainties in the load and in the manipulator
dynamics—therein, the uncertainties and nonlinearities are considered to be upper bounded and the solution
tackles their previously known linear bounding information. The robust control of robot manipulators dynam-
ics based on optimal control theory and computed torque is also studied in [91, 94]. A related work uses fuzzy
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neural networks to approximately compute the optimal control [95] based on optimal control theory and using
fuzzy controller to approximate and cancel the robot manipulator dynamics nonlinearities. Another approach
uses a single network adaptive critic controller, resulting in a near optimal solution, which is tested using two
DOF of a simulated WAM robotic manipulator [96]. The aforementioned fuzzy controllers are able to show
approximate results even without much knowledge of the manipulator dynamics. On the other hand, fuzzy
controllers have a large degree of arbitrariness in parameter selection. Furthermore, works using the computed
torque technique optimize in the manipulator joint-space, usually, requiring an external tool to obtain the op-
timal inverse kinematics. The implementation complexity also reduces most examples to two DOF robots.
Concerning trajectory generation, in [97], a linear-quadratic optimization is used to generate a trajectory that
is followed using computed torque control. Using a different approach and with a different focus, the authors
in [98] presented optimal results in the sense of convergence time based on the initial work from [99] on time-
optimal control of manipulators. In this context, instead of optimizing the end-effector trajectory, the authors
are interested in bringing the end-effector to a final location in minimum time with minimum control effort
in joint-space based on the manipulator dynamics. The result is applied to a three degree planar manipulator.
Similarly results can be found in the technical report [100]. Overall, existing results in robotics manipula-
tors literature mostly concern in finding an efficient and practical trajectory smoothing algorithm with reduced
control effort in joint-space, using the computed torque technique.

Nonetheless, when using optimal controllers, we generally seek to limit the manipulator trajectory veloc-
ities and accelerations which in turn justifies the use of kinematic controllers for stiff robotic manipulators.
Moreover, as modern manipulator robots are often equipped with low level controllers at joint level, task-space
techniques have the advantage of defining the control law directly at the end-effector workspace, making direct
use of the available low level controllers instead of redesigning them or requiring an external IK planner.

In this context and motivated by the problem of optimizing the task-space control trajectory and veloc-
ity, herein, we take interest at optimization-based kinematic controllers at the task-space of general serial-link
manipulator. The optimization-based controller extends the results from dual quaternion based controllers—
sharing the inherent representation advantages—and provides the designer with a more intuitive set of perfor-
mance indexes and extends the range of applications of the dual quaternion formalism in robotics. In contrast
to standard optimal control techniques for manipulators, this chapter focuses in optimizing task-space variables
which greatly simplifies the control implementation. As a consequence, instead of optimizing the joint-space
velocity, we aim at obtaining an optimal result for the end-effector velocity at task-space. The analysis is
particularly relevant in advanced manipulation tasks—for instance, manipulation in hazardous or unstructured
environments, and multi-arm manipulation—that require precise and safe interaction in contrast to convergence
speed. In the view of human-robot interaction, the speed of the end-effector largely influences the human ac-
ceptance of the contact [101]. Indeed, even if the robotic system is able to prevent undesired injuries, a human
is likely to be in a state of constant stress and discomfort [102]. A controlled speed at task-space also prevents
drifts and overshoots caused by large accelerations requirements at the low level controllers.

In this chapter, we derive two distinguish optimal control criteria based on unit dual quaternions represen-
tation and on the two results for the task-space differential kinematics of the robotic manipulator described in
Section 2.7.

The first technique is based on the dual quaternion error mapping to an R8 manifold. By defining the control
law in the Euclidean manifold, the closed-loop system can be reduced to an affine time-varying system with
respect to the dual quaternion transformation invariant error. This allows us to obtain a recursive expression for
the optimal controller using linear quadratic regulator (LQR) theory. By modeling a continuous trajectory as
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the perturbation of the error, the proposed dual quaternion LQR can be used as a trajectory tracking controller,
while also considering other modeled error disturbances. On the other hand, the controller lacks an explicit
geometric significance for the transformations at task-space which in turn renders an addition complexity for
parameters and matrices gains selection.

In the second part of this chapter, we derive an optimal criterion based on the differential kinematics de-
scription in (2.42)-(2.48) and the dual quaternion Jacobian Jω. Using the linear transformation between inputs
of joint velocities and the vector space isomorphic to the range space of the end-effector twist, we provide a
tool to optimize the dual quaternion error exponential convergence rate at its tangent space with respect to the
controlled twist upon the end-effector.

In contrast to the first optimal strategy, the criterion has a direct geometric significance which enlarges its
applicability, improves parameters significance and, in turn, eases the process of parameter selection. On the
hand, due to highly and complex nonlinearities within the differential coupled kinematics in dual quaternion
space, there is a significant increase in analysis complexity.

Lastly, to illustrate the validity, the efficiency and the reliability from the proposed dual quaternion optimal
criteria, we present a set of numerical examples and simulations in different scenarios and with different control
specifications and conditions. Moreover, the proposed controllers are also evaluated using a real robot platform:
an anthropomorphic Meka Robotics A2 Arm compliant manipulator. 1

4.1 OPTIMAL DUAL QUATERNION BASED CONTROLLER IN R8

MANIFOLD

This section presents a novel control strategy based on the dual quaternion mapping to R8 manifold in the
context of optimal control theory. Reviewing the kinematics equations from Section 2.7 and using the vector
space isomorphism mapping, we show that the differential kinematic closed-loop system with a time-varying
reference from the point of view of error can be reduced to a linear time-varying system with an additive
perturbation term. Hence, linear quadratic regulator theory can be exploited to derive a optimal solution to the
control problem.

First, consider an arbitrary continuous desired trajectory xd , xd(t) in dual quaternion space and the
current end-effector pose x. Similarly to Section 3.1, we define the spatial difference in Spin(3)nR3 between
the current and desired end-effector configuration:

xe = x∗xd = re + ε 12pere, (4.1)

where re denote the orientation error in Spin(3) and pe the position error in H0. From the spatial difference,
we also define an invariant dual quaternion error function of the form e : Spin(3) nR3 7−→ H⊗ D, given by

e = 1− xe = e+ εe′. (4.2)

In this sense, when x converges to xd, the dual quaternion error function e → 0. Analogously, to stabilize
e to 0 yields the end-effector convergence to the desired pose. It is interesting to highlight that the error

1It is important to underline that the work described in the first part of this chapter was developed in collaboration with Murilo Marques
Marinho, a PhD student from the University of Tokyo.
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definition is invariant with respect to coordinate changes with regard to arbitrary right shifts—further details
on the invariance for unit dual quaternions are discussed in Section 3.1.

Since the optimization computation assumes future knowledge of the explicit variables, we need to remove
any direct dependency on x. Hence,

e = 1− x∗xd =⇒ ex∗d = x∗d − x∗ =⇒ x∗ = x∗d − ex∗d.

With time-varying x and xd, the derivative of (4.2) is given by ė = −ẋ∗xd − x∗ẋd. Therefore

ė = −ẋ∗xd − (x∗d − ex∗d)ẋd = −ẋ∗xd + ex∗dẋd − x∗dẋd.

Using the vector space mapping from (2.14), vec8, on both sides and defining e , vec8 e yields

ė = −
−
H (xd)C8 vec8 ẋ+

−
H (x∗dẋd) e− vec8 (x∗dẋd) .

The dual quaternion differential kinematics of the end-effector mapped to the R8 manifold, vec8 ẋ, can be
derived as in Subsection 2.7.2 using the dual quaternion based Jacobian Jvec described in (2.38)-(2.41). Hence,
the dual quaternion error mapped in R8 can be rewritten as

ė = −
−
H (xd)C8Jvecθ̇ +Ae+ c,

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables, A ,
−
H (x∗dẋd), c , − vec8 (x∗dẋd), and

C8 , diag (1,−1,−1,−1, 1,−1,−1,−1). Finally, settingN ,
−
H (xd)C8Jvec, we have

ė = Ae−Nθ̇ + c. (4.3)

Instead of considering θ̇ as the input control signal for the system, we investigate and minimize the end
effector velocity u using the mapping u = −Nθ̇. This allows the optimization to be done in task-space
variables. Hence, we focus on finding the optimal controller for the affine time-varying system

ė(t) = A(t)e(t) + u(t) + c(t). (4.4)

Therefore, from the error point-of-view, we can solve the tracking problem for a continuous trajectory using a
finite horizon LQR applied to a disturbed system, as the error disturbance caused by the time-varying trajectory
is given by c(t). Other modeled continuous disturbances can also be grouped into c(t) and used in the same
solution.

To solve a given task trajectory described in time t ∈ [0, tf ] at the the manipulator reachable space, we aim
at minimizing the following cost function

F =
1

2
e(tf )TSe(tf ) +

1

2

ˆ tf

t0

(
eTQe+ uTRu

)
dt, (4.5)

given the gain matrices S ≥ 0, Q(t) ≥ 0 andR(t) > 0 with S,Q,R ∈ R8×8.

The matrix S is the weight of the final error norm, while the time-varying matrices Q and R respectively
weigh the error cost along the trajectory and the control effort in terms of end-effector velocity norm. The
constrained optimization of (4.5) leads to an optimal feedback without excessive expenditure of control energy
while keeping the error e(t) near zero [103].
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For a continuously differentiable optimal trajectory xopt(t) = (eopt(t),uopt(t)) along the constraint sur-
face

G(t) = A(t)e(t) + u(t) + c(t)− ė(t) = 0 (4.6)

a necessary and sufficient condition for the global minimum is given by ∂F/∂u = 0 and ∂F/∂e = 0 as
F is convex. From the optimal trajectory, we also find that the gradient of F , that is ∇F , is perpendicular
to constrained surface (4.6), that is, there must be no component of ∇F parallel to G at an optimal point—
otherwise, we could move away from xopt and down the gradient of F while remaining on (4.6), contrary to
the assumption that xopt is a minimum [104, 105]. In this sense, to constrain the optimization to a feasible
trajectory, we define the augmented cost function

H = F +

ˆ tf

t0

pT (Ae+ u+ c− ė)dt, (4.7)

where p is the Lagrange multiplier for the state equations. Since ∇G defines the normal vector to G, the
constrained trajectory is satisfied if ∇F is collinear to ∇G, that is, ∇F + pT∇G = 0, where p defines the
magnitude difference.

Hence, according to [105, 106], we have ∂H/∂u = 0 and ∂H/∂e = 0 as necessary and sufficient condi-
tions for the optimal trajectory,

∂H

∂u
= 0 =⇒ u = −R−1p. (4.8)

In addition, we use the Leibniz integral rule in (4.7), that is,

−
ˆ tf

t0

pT ėdt = pT (t0)e(t0)−pT (tf )e(tf )+

ˆ tf

t0

ṗTedt,

to find ∂H
∂e = 0, which in turn implies

ṗ = −
(
Qe+ATp

)
. (4.9)

Please note that ∂2H/∂u2 must be positive to minimize (4.7), which requires R > 0. The system and
proposed cost function allow the use of the costate function [106]

p(t) = Pe+ ξ, (4.10)

where P is a time-varying proportional gain and ξ is a weighted feedforward term. The derivative of (4.10)
yields

ṗ(t) = Ṗ e+ P ė+ ξ̇. (4.11)

After using (4.10) in (4.8) and substituting the result in (4.4), and using (4.10) in (4.9), we replace the resulting
equations in (4.11) to find

−ξ̇ −AT ξ + PR−1ξ − Pc =
(
Ṗ + PA+ATP − PR−1P +Q

)
e. (4.12)

Considering that (4.12) must hold for any choice of initial state e and that both P and ξ do not depend on the
initial error, we need simultaneouslyṖ + PA+ATP − PR−1P +Q = 0

ξ̇ +AT ξ − PR−1ξ + Pc = 0,
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which means Ṗ = −PA−ATP + PR−1P −Q

ξ̇ = −AT ξ + PR−1ξ − Pc.
(4.13)

The boundary conditions to solve (4.13) are obtained using the final time, tf , of our trajectory. We set the
feed-forward term to zero in the terminal time—that is, ξ(tf ) = 0—to find the first boundary condition. From
(4.10) with ξ(tf ) = 0, we find that ∂H/∂e(tf ) = 0 yields P (tf ) = S.

Note that we know A(t) =
−
H
(
h∗dḣd

)
for all t, as it depends only on the desired trajectory. We can then

numerically solve the differential Ricatti equation P (t) backwards in time. As c = −h∗dḣd is also known for
all t and, with the solution of P (t), we can find ξ(t) by also solving it backwards in time.

Therefore, from (4.8) and (4.10) the optimal control is given by u(t) = −R−1 (Pe+ ξ) . Applying as
joint velocities, we find θ̇ = N+R−1 (Pe+ ξ) . Summarizing the control results, we can state the following
dual quaternion based optimal control theorem.

Theorem 4.1 Dual quaternion based optimal quadratic controller in R8 manifold

For prescribed gain matrices S,Q,R satisfying S ≥ 0, Q(t) ≥ 0 and R(t) > 0, the
closed loop system (4.3) with the differential kinematic controller

θ̇ = N+R−1 (Pe+ ξ) , (4.14)

where P and ξ are derived from (4.13), defines the dynamic system that minimizes the
quadratic cost function (4.5). In other words, the optimal controller (4.14) defines the opti-
mal trajectory along (4.3) for the cost function (4.5).

Remark 4.1. It is important to highlight that the substitution from u = −Nθ̇ in (4.3) results in fact

ė(t) = A(t)e(t) +NN+u(t) + c(t).

To simplify the optimal control problem, and as a first solution to such problem, we supposed in this section
that the resulting control signal u(t) is always defined in the range space of the current transformation N .
Hence, using the pseudoinverse ofN yields (4.4) and the optimal controller follows as described.

Nonetheless, note that NN+ 6= I ∀ θ, xd. Hence, in more realistic scenarios, we cannot assume that
u(t) will always be defined in N ’s range space. In this sense, we can separate NN+ into its matched and
unmatched components, which in turn results in

ė(t) = A(t)e(t) + Iu(t) + (NN+ − I)u(t) + c(t). (4.15)

Applying the dual quaternion optimal control procedures from Theorem 4.1 in the exact system defined by
(4.15) would require future knowledge of NN+, which violates causality. Therefore, we can assume the
effects of (NN+ − I)u(t) as a disturbance upon the optimal trajectory. In this sense, explicitly considering
the influence of (NN+ − I)u(t) reduces Theorem 4.1 to a suboptimal criterion. In practical applications,
nevertheless, we suppose the effects of (NN+ − I)u(t) do not greatly disturb the system as illustrated in
Sections 4.4 and 4.5. The effectiveness of the suboptimal controller motivates the study of the optimal control
result explicitly defined in dual quaternion space derived in next section that is designed to escape such topology
issue.
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4.2 OPTIMAL QUADRATIC CONTROLLER IN DUAL QUATERNION
SPACE

The solution proposed in the previous section relies on the dual quaternion error mapping to an R8 manifold
which in turn simplifies the problem to an affine time-varying system. The simplification that arises from the
described error mapping renders a more practical approach for solving problems based on control algorithms
belonging to optimal control family. Indeed, using linear quadratic regulator theory, Section 4.1 introduced a
novel criterion that albeit being suboptimal—when u(t) isn’t defined in N ’s range space—can successfully
be used to real life problems as shown in Section 4.5. The control result, on the other hand, contrasts with the
mathematical rigor from previous chapters where we focus on finding an adequate, accurate, and stable repre-
sentation for the manipulator kinematics, for the controller and for the closed loop system in dual quaternion
space.

In this sense and motivated by the effectiveness of the controller from Theorem 4.1—as shown in Sections
4.4 and 4.5—this section proposes a novel framework for robot manipulators kinematic control tracking by
deriving an optimal control law explicitly in dual quaternion tangent space. The controller concept stems
from the control structure proposed in Section 3.3 where the controller is defined in dual quaternion space,
particularly, in the Lie algebra of Spin(3) n R3. Hence, it yields an explicitly geometric significance for the
controller at the same time that it provides a well-defined map between the range space of the dual quaternion
error dynamics to the space where the actuation takes place. As stressed in Section 3.3, this framework provides
an elegant and intuitive understanding on the performance influence over the end-effector trajectory. The
formalism yields an optimal controller ease to implement and suitable for practical applications with a detailed
and proper analysis on stability. The main challenge stems from the highly and complex nonlinearities within
the differential coupled kinematics in the end-effector dual quaternion space.

Considering the spatial difference in Spin(3) nR3 between the current and desired end-effector pose to be
defined as

xe = xx∗d

= re + 1
2ε(pere),

with a time-varying reference trajectory, that is, a tracking system, then the spatial difference kinematics is
given by

ẋe = ẋx∗d + xẋ∗d

where the end-effector differential kinematics is defined in (2.48) and the desired end-effector trajectory over
time is described by the first order kinematic equation of a rigid body (2.26),

ẋd = 1
2ωdxd, (4.16)

withωd being the twist of the desired pose in inertial frame. Replacing (2.48) and (4.16) in the spatial difference
kinematics yields

ẋe =
1

2
vec6

(
Jωθ̇

)
xe − 1

2xeωd, (4.17)

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables and Jω = [vec j
0
. . . vec j

n−1] is an
analytical Jacobian from Algorithm (2.2). From the isomorphism mapping (2.12), we can find solutions in the
real space for θ̇ such that differential equation (4.17) is well-posed [89, Prop. 2.1] as vec

(
Jωθ̇

)
∈ H0⊗D lies

in the Lie algebra of Spin(3) nR3.
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The complexity and nonlinearities inherent from (4.17) justifies the gap between existing stability results
for unit dual quaternions and the optimal control theory. Indeed, there are no results for optimal control in the
literature explicitly defined within the non-Euclidean space of unit dual quaternions. In fact, even for the case
of pure rotations defined using unit quaternions, most results are based on a local linearization of the quaternion
elements [107].

To address such nonlinearities, we exploit the exponentially stable controller derived in Section 3.3. Hence,
to solve the optimal problem, let us first assume a dual quaternion based task-space controller with joint velocity
vector inputs of the form

θ̇ = J+
ω [uc + vec6 (xeωdx

∗
e)] , (4.18)

where
uc =

[
KOvecT3 (Im (re))

1
2KT vecT3 (pe)

]T
, (4.19)

and J+
ω is the pseudoinverse of Jω, KO and KT are real valued 3 × 3 matrices, and the transformation

vec3 : H0→R3 defines the isomorphism mapping from H0 and R3 as described in (2.4). Also, note that if Jω

is well defined, then the solution is always in the range space of Jω. Hence, from (4.18), the closed-loop spatial
difference kinematics yields

ẋe =
1

2
vec6 (uc)xe.

From the spatial difference, we also define an invariant dual quaternion error function of the form e :

Spin(3) nR3 7−→ H⊗ D, given by
e = 1− xe = e+ εe′. (4.20)

Hence, x converges to xd if and only if the dual quaternion error function e→ 0.

Theorem 4.2 Dual quaternion exponentially stable controller

The closed-loop system (4.17) with dual quaternion task-space controller (4.18)-(4.19)
achieves exponential stability with negative definite matrices KO and KT . Moreover the
convergence decay is defined by

d

dt
‖vec3 {Im (re)}‖2 ≤ vecT3 {Im (re)}KO vec3 {Im (re)} ,

d

dt
‖vec3 {pe}‖

2 ≤ vecT3 {pe}KT vec3 {pe} . (4.21)

proof.

The end-effector spatial differential kinematics (4.17) with dual quaternion task-space controller (4.18)-
(4.19) yields the closed-loop spatial difference kinematics:

ẋe =
1

2
vec6

(
Jω

˜̇
θ
)
xe,

where ˜̇
θ=J+

ω

[
KOvecT3 (Im (re))

1
2KT vecT3 (pe)

]T
. To study the stability of closed loop system, let

us regard the Lyapunov candidate function proposed in (3.48), with the error function defined in (4.20),
that is,

V (t, e) = ‖e(t)‖ = α1 ‖e(t)‖22 + α2 ‖e′(t)‖
2
2 ,

with given positive scalars α1 and α2. Taking the time-derivative along the trajectory (4.17)-(4.20) as
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described in Appendix C.1 for O(e) , 1− re, and T (e) , pe, it turns out that

V̇ (t, e) ≤ α1σm{KO}
2 ‖e(t)‖22 + 2α2σm

{
1
2KT

}
‖e′(t)‖22 (4.22)

≤ max

{
σm{KO}

2 , σm{KT}
}
V (t, e) ≤ 0.

where σm{KO} and σm{KT} denote the minimum singular value from KO ,KT , respectively. By the
Comparison Lemma [72, pg. 85], and considering negative definite matricesKO andKT , the closed-loop
system (4.17) with dual quaternion task-space controller (4.18)-(4.19) is exponentially stable. Moreover,
after some manipulation, we find that

d

dt
‖vec3 {Im (re)}‖2 ≤ vecT3 {Im (re)}KO vec3 {Im (re)} ,

d

dt
‖vec3 {pe}‖

2 ≤ vecT3 {pe}KT vec3 {pe} .

2

Remark 4.2. Note that there is no unique natural metric for Spin(3)nR3, similarly to the case for SE (3). The
proposed bilinear form defined in the Lyapunov function from Theorem 4.2 exploits the natural metric for H
which yields control actions along the geodesic directions for both orientation and translational errors.

In this sense, the proposed dual quaternion task-space controller (4.18)-(4.19) yields an exponential con-
vergence within the Lie algebra of the group. For being a Lie group, the Lie algebra of Spin(3) n R3 also
defines the tangent space of the unit dual quaternion manifold, which is a differentiable Riemannian manifold.
Therefore, the obtained exponential convergence can be defined in the real vector space R6 corresponding to
the unit dual quaternion tangent space. The inner product of the dual quaternion error on the tangent space at
each point that varies smoothly from point to point, and from (4.21), the dynamics of the smooth variation can
be described in the real vector space R6 as

ė = diag (KO , KT ) e, (4.23)

where e =
[
vecT3 {Im (re)} vecT3 {pe}

]T
.

In this sense, instead of directly addressing the complex nonlinearities inherent from (4.17), we exploit the
exponentially stable controller from Theorem 4.2 in order to optimize the exponential gains KO ,KT within
the Lie algebra of unit dual quaternions. The optimization of the exponential gains is performed at the tangent
space of the dual quaternion task-space, which in turn is mapped to the geodesic direction for rotation and
translation—since the proposed bilinear form from the Lyapunov function of Theorem 4.2 exploits the natural
metric for H which yields control actions along the geodesic directions for both orientation and translational
errors.2

The optimal control policy is therefore based on the aforementioned mapping and provides a tool to opti-
mize the task trajectory error at the tangent space of the unit dual quaternion space and the controlled twist upon
the end-effector. To explicit the control output vector that we seek to optimize, consider the error dynamics in
the tangent space to be described as

ė = u, (4.24)
2As previously stressed, there is no geodesic direction for SE (3)nor for any of its cover spaces
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where u must satisfy the following constraint

u = diag (KO , KT ) e. (4.25)

Note that using the error dynamics in the unit dual quaternion tangent space, we are actually studying the
convergence of a vector space which has the desired properties for optimal control analysis. The optimal
exponential controller can therefore be extracted from the following cost function

F = 1
2e

T (tf )Se(tf ) + 1
2

ˆ tf

t0

(
eT (τ)Qe(τ) + uT (τ)Ru(τ)

)
dτ (4.26)

where S, Q, R are gain matrices defined in R6×6 satisfying S ≥ 0, Q(t) ≥ 0 and R(t) > 0. The matrix
S is the weight of the final error norm, the time-varying matrix Q weighs the error cost along the trajectory,
and the time-varying matrix R weighs the control effort in terms of end-effector velocity norm. As long as
Jω is well conditioned, an increase in R will lead to an overall decrease in joint velocities. The optimization
of (4.26) leads to an optimal feedback in unit dual quaternion tangent space without excessive expenditure of
control energy while optimizing the the exponential convergence of the dual quaternion error function.

To solve the optimization problem, we introduce the costate variable p, which acts as a Lagrange multiplier
for the state equations. Hence, using the equality constraint defined in (4.24), the function (4.26) can be
rewritten as

H = F +

ˆ tf

t0

pT (u− ė)dt. (4.27)

According to [106] and to distribution theory applied to optimality conditions, we have ∂H/∂u = 0 and
∂H/∂e = 0 as necessary conditions for the optimal trajectory. Hence,

∂H

∂u
= 0 =⇒ Ru+ p = 0

=⇒ u = −R−1p. (4.28)

In order to satisfy (4.25) as to obtain a error dynamics described in (4.23), we propose a costate function [106]
of the form

p(t) = P (t)e(t), (4.29)

where P is a time-varying proportional gain. To fully satisfy the constraint (4.25), we still need to consider R
and P as block diagonal matrices, that is,

R = diag (R1 R2) and P = diag (P 1 P 2) ,

where R1,R2, are positive semidefinite 3 × 3 matrices and P 1,P 2 are positive definite matrices of the same
size. The derivative of (4.29) yields

ṗ(t) = Ṗ (t)e(t) + P (t)ė(t)

= Ṗ (t)e(t)− P (t)R−1P (t)e(t). (4.30)

As a necessary conditions for the optimal trajectory, we still need to consider ∂H/∂e = 0. However, let us
first use the Leibniz integral rule in (4.27) as to obtain

−
ˆ tf

t0

pT ėdt = −
ˆ tf

t0

(
d

dt

(
pTe

)
− ṗTe

)
dt

= pT (t0)e(t0)− pT (tf )e(tf ) +

ˆ tf

t0

ṗTedt.
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By replacing the left term of the equation in (4.27), we find

∂H

∂e
= 0 =⇒ ṗ = −Qe. (4.31)

Using (4.31), and considering that P do not depend on the initial error, we compare the resulting equations
in (4.30) to find

Ṗ = PR−1P −Q (4.32)

Since we are constraining P and R to be block diagonal, then it is needless to prove that Q also needs to be
block diagonal. The boundary conditions to solve (4.32) are obtained using the final time, tf , of our trajectory.
From (4.29), we find that ∂H/∂e(tf ) = 0 yields P (tf ) = S. We can then numerically solve the differential
Ricatti equation P (t) backwards in time.

Therefore, from (4.28) and (4.29) the optimal control is given by u(t) = −R−1P (t)~e(t). Comparing the
result with (4.25), we find that the exponential gains for the dual quaternion end-effector convergence is given
by the equality

diag (KO , KT ) = −R−1P (t),

where R−1P (t) yields a block diagonal matrix. Using the resulting 3 × 3 matrices KO and KT , we find a
dual quaternion based task-space controller as described in (4.18), which has been shown to be exponentially
stable, with

uc = −R−1P (t)e. (4.33)

Combining (4.18) with (4.33), the dual quaternion based task-space controller can be simplified to the following
joint velocity inputs

θ̇ = J+
ω

[
−R−1P (t)e+ vec6 (xeωdx

∗
e)
]

(4.34)

Theorem 4.3 Optimal quadratic controller in dual quaternion space

The dual quaternion task-space controller (4.34) with gain matrices Q, S, R satisfying
S ≥ 0, Q(t) ≥ 0 andR(t) > 0, defines an optimal quadratic controller for the closed loop
system (4.17),(4.34) with positive definite matrix P being derived from (4.32).

4.3 COMPUTATION AND PARAMETER SELECTION

Both controllers from Theorems 4.1 and 4.3 respectively depend on the solution of the system (4.13) and
(4.32). Still the systems containing the Ricatti equation are nonlinear, and the closed-form solution may not be
found for all cases. As a consequence, finite differences approximations are normally used; that is,

d

dt
P (t) ≈ P (t+ τ)− P (t)

τ

for a small sampling time τ that directly affects the approximation precision.

Replacing the Euler based discretization in (4.13) and (4.32), we use an algebraic Ricatti equation solver to
find P (tf−1) using a known value for P (tf ). Using a backward algorithm, we can then apply the same solver
to find the value of P (ti) using previously calculated P (ti+1)—the recursion is then applied up to P (0).
The same can be applied to find an approximate solution for ξ(t), by also considering c(t), in (4.13). Another
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solution is to begin with P (tf ) and use the derivative approximation backwards in time using the known values
of A(t), which depends only on the desired trajectory, up to P (0). All these calculations can be done before
the system starts to operate.

The design parameters of the optimal controllers are the matrices gainsQ, S andR. The matricesQ and S
are related to the cost of tracking a desired state. Particularly, S weights the final error norm, whereas the time-
varying matrices R weighs the error cost along the task trajectory. Since the system input is the end-effector
velocities, a proper choice of the elements of R allows the designer to define an explicitly trade-off between
the control effort in terms of the velocity norm and the convergence rate at the optimal geodesic trajectory.

An interesting characteristic of the optimal control design is the ability to define time-varying weights in
the optimization process. For instance, we may devise a trajectory that begins far from the end effector initial
position. To avoid large joint velocities when the error is expected to be large, we may assign a smaller Q at
the beginning of the trajectory.

4.4 NUMERICAL EXAMPLES AND SIMULATIONS

This section presents two set of different task conditions and scenarios devised to study and to numerically
illustrate the effectiveness of the dual quaternion optimization criteria proposed in this chapter in comparison
with classic controllers3 used for robot manipulation. The first task was implemented numerically at Matlab
without a physics engine simulation, while the second was devised and implemented in the Virtual Experimen-
tation Platform (VREP) from Coppelia Robotics GmbH (see, [90]) using Bullet Physics Library4 as the physics
engine.

4.4.1 Numerical example: Comau SMART SiX robot using Matlab

This example demonstrates the behaviour of the dual-quaternion based controller mapped to R8 manifold
derived in Section 4.1. To this aim, a simulated task was devised using the six degree of freedom COMAU
Smart Six manipulator with the the DQ_robotics toolbox5 and the Robotics Toolbox6 in MATLAB. The task
trajectory was construct considering the following periodic end-effector translation and rotation along time

td(t) = (0.99707+0.1 cos(πt)) ı̂+ (0.1+0.1 cos(πt)) ̂+ (1.075+0.1 sin(πt)) k̂,

rd(t) = cos

(
φ

2

)
+ sin

(
φ

2

)
cos(πt)̂ı+ sin(πt)̂+ (sin(πt)− 2)k̂√

1 + (sin(πt)− 2)2
,

with φ = 0.25 sin(πt) + π. The resulting task trajectory thus stems from the coupled motion, that is, xd(t) =

rd(t) + ε 12td(t)rd(t).

The robot initial configuration was set given the joint configuration: θ0 =
[
0 0 −π/2 0 π/2 0

]T
,

with the end effector placed 40 cm away from the desired trajectory. The initial configuration ensures that the
desired task trajectory is well-defined within the manipulators reachable space.

3Proportional controller and proportional controller with feedforward term (for further details, see Appendix B.1).
4http://www.bulletphysics.org/
5http://dqrobotics.sourceforge.net
6http://petercorke.com/Robotics_Toolbox.html
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Figure 4.1: [Numerical example] End-effector translation (left) and orientation (center), the control effort (top-
right), and end-effector trajectory (bottom-right); using the optimal controller from Theorem 4.1 with different
control parameters. The trade-off between error and control effort is noticeable, and the end-effector motion
shows no steady-state phase shift in relation to the reference.

In this numerical example, three different optimal controllers based on Theorem 4.1 were designed so that
their performance can be evaluated. In order to simplify the choice of parameters, we define s, q, r ∈ R, such
that

S = sI, Q = qI, R = rI,

where I is an identity matrix. The choice of parameters is closely intertwined with the task specificities. For
instance, we supposed that the end-time error is not of higher importance than the error in the remainder of the
trajectory by setting s = 0. By knowing that the end effector starts far from the desired trajectory, we designed
a trajectory error weight q that begins small and increases over time: q = 0.001 for t ≤ 0.5, linearly increasing
to q = 1 for t ∈ (0.5, 1.0], q = 1 otherwise. All three controllers share the same s and q.

In order to compare control performance performance, we distinguished the three controllers by choosing
a decreasing weight for the control effort parameter, that is r ∈ {0.1, 0.01, 0.001}. The overall behavior of
the three optimal controllers can be seen in Figure 4.1. In all controllers, the choice of q allows a well-behaved
initial motion. Moreover, there is no noticeable phase shift after 1.0 s, when q reaches its final value. The effect
in the decreasing of r is also clearly shown in Figure 4.1, that is, a higher control effort yields smaller trajectory
error.

The performance of the optimal controller with r = 0.001, in comparison with classic controllers: pro-
portional (K) and proportional with a feedforward term (K+FF) with gain k = 10 is shown in Figure 4.2. It
is noticeable that whereas the K controller shows the expected phase shift in spite of the high control effort,
the propose criterion with r = 0.001 closely resembles the K + FF controller, but without the initial peak ve-
locity. This allows the optimal controller from Theorem 4.1 to send smoother joint velocities when compared
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Figure 4.2: [Numerical example] End-effector translation (left) and orientation (center), the control effort (top-
right), and end-effector trajectory (bottom-right); comparing the optimal quadratic controller from Theorem 4.1
with the proportional gain controllers. The initial peak velocity using the proportional controllers is noticeable.
Moreover, without the prediction term, the proportional controller has an inherent phase shift in relation to the
desired trajectory.

to the abrupt velocities seen in the K and K + FF controllers. It also yields smaller accelerations at the end-
effector which, among other benefits, prevents damages to the manipulator and reduces the discomfort during
human-robot interaction [102].

4.4.2 Simulated scenario: Kuka LBR iiwa using V-REP

To better assess the effectiveness and differences between classic controllers and the optimal controllers
proposed in this chapter, a task simulation was devised and implemented in the Virtual Robot Experimentation
Platform (V-REP) from Coppelia Robotics GmbH—using Bullet Physics Library as the physics engine—with
a KUKA LBR iiwa arm, a lightweight seven-link manipulator from Kuka Robotics. The simulated task sce-
nario is illustrated in Figure 4.3. All V-REP simulations were performed using a 30 ms sampling time and
the proposed controller was implemented using the DQ_robotics toolbox in C++ and using ROS.7 The task
trajectory defines a 5 cm radius circle along the XZ-plane with a θ0 = [0, π/3, 0, π/2, 0, π/3, 0, 0] initial
joint vector configuration. The initial configuration was set such that the trajectory lies within the end-effector
reachable space. To simplify the choice of parameters, the gain matrices were defined using s, q, r ∈ R+, such
that S = sI,Q = qI,R = rI, where I is an identity matrix.

First, we compare the performance between classic controllers, the dual quaternion optimal controller based
on R8 mapping, Theorem 4.1, and the optimal controller in dual quaternion space from Theorem 4.3. To inves-
tigate control performance, reliability, and to minimize the possibility of simulated results outliers, the same

7http://www.ros.org/
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initial pose

Figure 4.3: [V-REP Simulation] Screenshot of the simulated circular task trajectory using KUKA LBR iiwa.

circular trajectory was executed ten times with exactly the same conditions and control parameters. Classic
controllers—proportional (K) and proportional with a feedforward term (K+FF)—were implemented using a
feedback gain of k = 50, whereas the dual quaternion based optimal controllers—Theorems 4.1 and 4.3—were
implemented with the following gains s = 0, q = 20, and r = 0.01. Tables D.1 to D.6 in Appendix D.1 show
all results for the 10 simulations for each controller. A summary of the results are presented in Table 4.1 with
the mean values after ten simulations and the standard deviation for each controller.

Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)

Mean Std.Dev. Mean Std.Dev. Mean Std.Dev. Mean Std.Dev.

Error 201.8 325.6 445.0 472.1 24.3 4.5 14.9 2.7

Joint Velocity 61.6 0.9 61.3 0.9 105.7 13.0 58.3 0.4

Transl. Velocity 431.0 9.6 430.7 10.0 786.7 92.3 396.6 7.8

Rotat. Velocity 191.7 46.0 206.3 42.7 712.3 241.2 140.1 33.2

Transl. Acceleration 20.85 0.58 20.5 0.47 43.0 5.1 19.3 1.6

Rotat. Acceleration 10.5 2.5 11.2 2.1 37.4 10.9 8.2 2.1

Table 4.1: [V-REP Simulation] Comparison of integral norm (×10−3) of the trajectory error, joint velocity,
and end-effector translation and rotational velocities and accelerations between classic proportional and pro-
portional with feedforward term, and optimals controllers: Theorems 4.1 and 4.3

From Table 4.1, it is clear that the optimal controller in dual quaternion space—Theorem 4.3—provided
superior results for any given criteria, that is, both in the sense of control effort and error reduction—compared
to classic controllers and also compared to Theorem 4.1. In other words, the proposed optimal controller
in dual quaternion space successfully reduces the control error along time with smaller control efforts—in
terms of end-effector and joint configuration velocities—which, among other benefits, prevents damages to the
manipulator and reduces the discomfort during human-robot interaction [102].

More importantly, Table 4.1, as well as Tables D.1 to D.6 in Appendix D.1, clearly illustrate the reliability
and consistence from dual quaternion optimal controllers in contrast to the poor reliability obtained from classic
controllers—particularly, considering the trajectory error along time. In other words, despite presenting some
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few successful results in the sense of small trajectory errors and control effort, classic controllers may behave
unexpectedly with large errors and even larger joint velocities and accelerations—which are also reflected on
larger velocities and accelerations in task-space. For instance, the integral norm of the trajectory error from the
K and K+FF controller may vary from 0.0131 to 0.78 and from 0.0113 to 1.0132, respectively, as shown in
Table D.1 in Appendix D.1. In contrast, the error from Theorem 4.3 varies from 0.0137 to 0.0149.

Therefore, by using the proposed optimal controllers, the control design, in addition to properly set the
trade-off between control effort and tracking error along the trajectory, can also expect more trustworthy results.
There are no unexpected results which in turn reduces the risk of problems, improves the confidence over the
controller, and increases its applicability—particularly, within human-robot interaction scenarios.

To better understand the control performance differences, the task trajectory from one of the simulations is
also graphically depicted in Figures 4.4 to 4.7. The error norm evolution along time is illustrated in Figure 4.4
whereby it is easy to see the advantages that stems from using optimal controllers. The reduced error is even
more relevant when we observe that the controller from Theorem 4.3 presents smaller control efforts. In other
words, as depicted in Figures 4.5 and 4.6, the optimal controller in dual quaternion space considerably reduces
the overall end-effector and joint configuration velocities and velocities spikes, which in turn also reflects in
better acceleration behaviour as shown in Figure 4.7.

Indeed, it is clear that classic controllers are more suitable to present abrupt velocities and accelerations
which may damage the manipulator and reduces the feasibility (and validity) of using a kinematic controller.
The proposed optimal controllers on the other hand send smoother joint velocities with smaller accelerations
at joint and task-spaces. These advantages are graphically illustrated in Figures 4.4 to 4.7 which combined
with the reliability of results shown in Table 4.1 highlight the effectiveness and advantages from the proposed
optimal control formalism derived in this chapter.
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Parameter selection for optimal controller in dual quaternion space

From previous simulations, it is clear that the choice of parameters is closely related to the controller
performance and control effort. The trade-off between effort and error minimization depends on the task
specificities and varies according to the choice of parameters. In this sense, and in order to elucidate the
influence of the control parameters with regard to the trade-off between trajectory error and control effort, we
implemented the same circular trajectory for the KUKA LBR iiwa arm8 with varying values for q, r ∈ R+,
such thatQ = qI,R = rI.

The results are illustrated in Figure 4.8. Clearly, the larger the value of q, the smaller the control error
along time. Increasing the value of q reduces the trajectory error norm exponentially. Still, a reduced control
error is only obtained in the presence of a smaller r since it limits the task-space velocity. Higher values of r
render smaller overall velocities—as consequence, also reduces the control effort in task-space—but prevents
a fast stabilization which in turn increases the overall tracking error. On the other hand, when r → 0, the
large velocities cause spikes on the trajectory which increase slightly the integral norm of the trajectory error—
despite presenting a faster convergence rate.

In this sense, and considering the reliability and consistence from the proposed optimal controllers, the
choice of parameters can be defined in accordance to particular task specificities and the desired trade-off
between control effort and tracking error along the trajectory with higher confidence on the expected results.

4.5 REAL ROBOT EXPERIMENTS

This section presents practical experiments for an evaluation of the proposed optimization-based kinematic
controllers at task-space using a Meka A2 compliant arm from Meka Robotics, see Figure 4.9. The motivation
of using an anthropomorphic compliant arm lies in their use with collaborative robots, human-robot interaction,
and the importance of evaluating existing control techniques within these scenarios. Moreover, compliant
robots are inherently designed with lower stiffness, thus classic feedback controllers for stiff manipulators
may behaves differently than expected and experimentation is needed. In this sense, this section, driven by
the theoretical advantages of the proposed dual quaternion based optimal controllers and by the challenge of of
controlling a compliant robot with higher precision, presents the results from real experiments with a compliant
robot manipulator.

Task Definition

In order to demonstrate the controllers behavior under different set of parameters, two different task tra-
jectories on the Meka A2 Arm from Meka Robotics manipulator with seven degrees of freedom (DOF) were
devised: a circular trajectory around a initial configuration and a squared trajectory. The controllers were im-
plemented using the DQ_robotics toolbox9 in C++ and using ROS10 to establish communication with the real
robot.

The motivation for the repetitive task trajectories lies in the need to accomplish repetitive tasks while work-
ing alongside humans. Therefore, we check the ability of the robot to follow simple trajectories. Due to an-

8The simulations were performed using the same configurations—Bullet Physics Library and DQ_robotics toolbox in C++ with ROS.
9http://dqrobotics.sourceforge.net/

10http://www.ros.org/
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Figure 4.9: [Real robot experiment] Meka A2 compliant arm with seven degrees of freedom (DOF) from Meka
Robotics.

thropomorphic arm joint limitations we considered initial robot configurations that allows the robot to execute
the whole trajectory.

Experiments using dual quaternion optimal controller based on R8 mapping–Theorem
4.1

First, we compare the dual quaternion optimal based controller defined in R8 manifold from Section 4.1
against classic controllers, that is, proportional and proportional with feedforward term. In this part, both circle
and square trajectories were implemented. The circle chosen has 10 cm radius and was drawn on theXZ-plane
while maintaining Y constant. The robot initial configuration were defined by the initial joint configuration
θ0 = [0, π/3, 0, π/2, 0, π/3, 0, 0]. The square trajectory was also set at the XZ-plane with 10 cm side,
with Y constant and initial configuration given by θ0 = [0, π/4, 0, π/2, 0, π/4, 0, 0]. The trajectories are
independent from each other and were run separately.

In order to simplify the choice of parameters for Theorem 4.1, we defined the gain matrices using s, q, r εR
such that S =sI,Q = qI, R =rI, where I εR is the identity matrix. Classic controllers, that is, the propor-
tional and proportional with feedforward term, were implemented with constant gain k = 50. Due to the lack
of reliability from classic controllers—as observed from the simulations in the previous section—and to allow
a fairer comparison, we executed each trajectory five times with exactly the same control proportional gain
(only for K and K+FF controllers) and extracted the median value for each attribute, as the median is a robust
estimator and efficient to exclude outliers. In addition, a decoupled proportional controller—which regards the
rotation and translation end-effector motion separately—was implemented for the circular trajectory.

To compare performance, we implemented the dual quaternion based controller with distinguished values
for the r, that is, with different weight values for the control effort, r ε {0.01, 0.1, 0.5, 1}. Table 4.2 shows the
results for the circular trajectory and Table 4.3 shows the squared trajectory results.

The choice of q for all simulations using Theorem 4.1 allows a well-behaved initial motion. The effect in
decreasing r as shown in Table 4.2 yields a higher control effort and a slight increase in r results in a smaller
control effort. The influence of modifying r is also explicit in Table 4.3 for the squared trajectory. As expected,
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Dual quaternion optimal controller – Theorem 4.1 K K+FF Decoup.
Q 20 250 350 80

k = 50 k = 50 k = 0.375
R 0.01 0.1 0.5 1

Error 4.77 4.45 6.78 16.77 4.47 4.45 52.47

Control signal 7.82 8.16 6.31 5.46 8.24 8.22 22.71

Joint velocity 0.12 0.12 0.07 0.09 0.12 0.12 0.22

End-effector velocity 1.06 1.06 0.62 0.94 1.07 1.05 1.20

End-effector acceleration 23.03 22.89 19.86 21.31 23.12 26.21 27.56

Table 4.2: [Real robot experiment] Comparison of integral norm of the trajectory error, control signal, joint ve-
locity, and end-effector velocities and accelerations between classic proportional and proportional with feedfor-
ward term, decoupled controller and dual quaternion based optimal controller from Theorem 4.1—experimental
results obtained from the Meka A2 arm for the circular trajectory

DQ optimal controller – Theorem 4.1 Proportional (K) FF-Prop. (K+FF)
Q 20 250

k = 50 k = 50
R 0.01 0.1

Error 2.47 2.23 2.63 2.63

Control signal 3.82 4.42 4.99 4.96

Joint velocity 0.06 0.07 0.09 0.09

End-effector velocity 0.51 0.58 0.68 0.68

End-effector acceleration 10.90 13.74 18.95 19.22

Table 4.3: [Real robot experiment] Comparison of integral norm of the trajectory error, control signal, joint ve-
locity, and end-effector velocities and accelerations between classic proportional and proportional with feedfor-
ward term, decoupled controller and dual quaternion based optimal controller from Theorem 4.1—experimental
results obtained from the Meka A2 arm for the squared trajectory

one can see that the control effort in task-space is reduced for a higher value of r with a fixed q. Meanwhile, the
K and K+FF controllers have higher control signals and it cannot be directly adjusted by specific parameters.
Both are bounded to the overall effect of the proportional gain k. Furthermore, classic controllers generally
have larger errors even when larger control signals are applied—for instance, for the squared trajectory, the the
error from the K+FF controller is up to 18% higher than the error from Theorem 4.1 even with larger control
efforts (control signals and joint velocities are up to 28% and 12% higher for the K+FF controller).

The control behaviour, particularly, the control effort as the norm from the joint velocities, is also graph-
ically depicted in Figure 4.10 for the circular trajectory. It is interesting to highlight that we distinguished
the real robot joint velocities along time from the control signal defined as the joint velocity reference inputs
for the low level controllers of the manipulator. The motivation for distinguishing both values stems from the
joints velocities limitation that we have imposed over the real robot manipulator in order to prevent damages
to the robot actuators and structure. Hence, in contrast to numerical simulations, the real joint velocities are
considerably lower than the ones expected from the control signal—as explicit in Figure 4.10.

In the beginning of the circular trajectory, the manipulator needs to converge to the initial pose for the
circular task trajectory which yields a large initial error. The larger error in turn renders a very large control
signal and joint velocities for the K and K+FF controllers due to the nature of their constant exponential
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(r = η + µ1 ı̂+ µ2̂+ µ3k̂) (b) trajectory along time for the circular trajectory with r = 0.5 and q = 350.

convergence—as shown in Figure 4.10. In contrast, the proposed dual quaternion based optimal control strategy
minimizes the overall trajectory error and control effort which in turn prevents such spikes while maintaining
similar errors along the trajectory and smaller control effort, as shown in Figures 4.10-4.13. The decoupled
proportional controller strategy is also shown in mentioned figures. They show not only higher error, control
effort and velocities as seen in Table 4.2, but can also lead the robot to singular configurations which may
damage the actuators and joints.

Experiments using optimal controller in dual quaternion space–Theorem 4.3

Motivated by the theoretical properties described in Section 4.2 and by simulation results from Section 4.4,
hereafter we will investigate the implementation and effectiveness of the optimal controller derived in dual
quaternion space from Theorem 4.3 applied to a real robot compliant platform, the Meka A2 Arm from Meka
Robotics. The proposed controller is compared with classic controllers in the literature, that is, proportional
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(b) for the circular trajectory with r = 0.5 and q = 350.
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Figure 4.13: [Real robot experiment] Control effort in task-space: norm of end-effector velocities (a) and norm
of its accelerations (b) for the circular trajectory with r = 0.5 and q = 350.
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Proportional Proportional w/ Theorem 4.3
controller feedforward term (optimal in dq-space)

Error 4.863 4.854 4.386

Joint velocity 0.118 0.119 0.119

End-effector velocity 2.919 2.917 2.835

End-effector acceleration 99.564 99.686 95.621

Table 4.4: [Real robot experiment] Comparison of integral norm of the trajectory error, joint velocity, and end-
effector velocities and accelerations between classic proportional and proportional with feedforward term, and
dual quaternion based optimal controller from Theorem 4.1—experimental results obtained from the Meka A2
arm
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Figure 4.14: [Real robot experiment] Comparison of the error norm between classic proportional (red line)
and proportional with feedforward term (green line) with the optimal controller in dual quaternion space from
Theorem 4.3 (dark blue line).

controller and proportional controller with feedforward term. The devised task is based on the previously
described circular trajectory with the same initial joint configuration θ0 = [0, π/3, 0, π/2, 0, π/3, 0, 0], but
drawing a 8 cm radius on the XZ-plane.

For practical implementation, we configured the proportional and proportional with feedforward term con-
trollers with constant gain of k = 50. Similarly to previous experiments, they were executed five times with the
same control configurations due to their lack of reliability. We extracted the median value for each attribute, as
the median is a robust estimator and efficient to exclude outliers.

To compare performance with classic controllers, we implemented the dual quaternion optimal controller
from Theorem 4.3 with gain matrices defined by S = 0, Q = 35I, R = 0.01I . The gains were manually
selected as to obtain similar control effort in terms of the norm from the joint velocity vector. A summary of
the obtained results is shown in Table 4.4. From the results, one can see that in addition of being more reliable
and providing a tool to balance more conveniently the end effector error and its task-space velocity, the optimal
controller has a better error performance even with smaller end-effector velocities and accelerations.
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The differences in control performance between each controller, considering the described task trajectory,
are graphically depicted in Figures 4.14 to 4.17. The task trajectory error norm along time is shown in Figure
4.14 and highlights the advantages from using and optimal controller in the sense of error reduction throughout
the trajectory. The control performance is even more relevant if we observe the control effort in terms of
joint velocities and task-space end-effector velocities described in Figure 4.15 and Figure 4.16, respectively.
From Figure 4.15, it is clear that classic controllers are more suitable to present abrupt velocities with sharp
increases in magnitude which in turn may damage the manipulator. On the other hand, the dual quaternion
optimal controller from Theorem4.3 send smother joint velocities to low level controllers. In fact, the optimal
controller in dual quaternion space reduces the number and the magnitude of velocities spikes in joint and
task-space which also renders better behaved acceleration characteristics as shown in Figure 4.17.
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H∞ SINGULARITY AVOIDANCE TECHNIQUE
USING DUAL QUATERNIONS

1/r2 has a nasty singularity at r = 0, but it did not bother Newton–the
Moon is far enough – Edward Witten

Singularities play a significant role in design and control of rigid body motion, particularly in the context
of robot manipulators. The robot configuration—position and orientation—in task-space is represented in a
non-Euclidean manifold which has a topological obstruction that prevents global stability using a continuous
feedback, regardless the representation of rigid motion (see Chapter 6). Particularly, if a minimal representation
(for instance, Euler angles for rotation) is adopted, then the topological obstruction yields a singularity, referred
as representation singularity [108]. In this case, many different poses are mapped onto a single configuration
within the minimal representation which fails to be well-behaved in the sense that small changes close to the
singularity causes large changes in the rigid body motion.

A representation singularity is not directly related to the true motion capabilities of the manipulator structure
[108]. Indeed, the unit dual quaternion framework—similarly to unit quaternions for pure rotations—provides
a escape for utterly describing the coupled kinematics without representation singularities. On the other hand,
the dual quaternion representation has two elements for every pose in SE (3) (see (2.21) in Subsection 2.5.1)
which causes the unwinding phenomenon. A detailed description and solution for this phenomenon that stems
from the topological obstruction is presented in Chapter 6.

Still, regardless the rigid motion representation, manipulator tasks are liable to kinematic singularities.
Some specific joint configurations may render the differential FKM to be ill-posed—that is, the Jacobian matrix
that represents the transformation mapping from the joint velocity vector to the task-space end-effector velocity
loses rank—which implies in losing one or more degree-of-freedom (DOF). To study and avoid kinematic
singularities of a manipulator is of great importance since at the neighborhood of these configurations several
problems arise due to the rank loss [75, 109, 110]:

• Manipulator mobility is reduced, that is, some motions at the end-effector may not be feasible;

• Infinite solutions to the inverse kinematics problem may exist;

• Small velocities in the task-space may lead to large and unbounded torques in the joint-space;

• The task-space control may chatter or even provide infeasible joint velocities which degrades the control
performance and endangers the manipulator;

In this context and in order to ensure proper manipulability throughout the whole end-effector task-space,
this chapter addresses the problem of singularity avoidance for robot manipulators. First, we introduce existing
solutions for singularity avoidance in the literature. Most of these solutions are based on the assumption
of an Euclidean representation of the task-space. Therefore, they can be directly applied when using the
dual quaternion based end-effector pose Jacobian (Jvec) that maps the n-joint velocity vector to changes in
the task-space mapped to an R8 manifold (see Subsection 2.7.2). Nonetheless, this is not the case for the dual
quaternion Jacobian (Jω) described in Subsection 2.7.3 that maps changes in the n-joint configuration to the
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end-effector twist ωE, that is, a mapping of the form Rn 7−→ H0 ⊗ D. It is important to emphasize that the
generalization of existing techniques defined for the Euclidean space does not necessarily follow by principle
of transference. Indeed, counterexamples shown in [67] illustrate examples of failures of the transfer principle
outside the algebraic realm. In this sense, and to ensure a proper manipulability without singularities when
using the dual quaternion Jacobian (Jω), Section 5.2 addresses solutions within the dual quaternion space for
singularity avoidance of redundant and non-redundant arms. Particularly, for redundant manipulators, we prove
that existing techniques based on the self-motion can be extended when using the dual quaternion Jacobian (Jω)
and, for non-redundant manipulators, we propose a new singularity avoidance strategy based on the H∞ dual
quaternion controller derived in Section 3.3, suitable for the non-Euclidean task-space manifold, that explicitly
regulates the trade-off between exactness of the solution and avoidance effort for inescapable singularities and
non-redundant arms based on the H∞ theory.

5.1 SINGULARITY CLASSIFICATION AND EXISTING AVOIDANCE
TECHNIQUES

This section first provides the reader with a basic classification of different singularities that may occur in
the Jacobian analysis for redundant manipulators. Afterwards, it is presented an overview of existing solutions
for singularity avoidance in the literature for redundant and non-redundant manipulators.

Why redundant manipulators?

Control requirements and assignments for a manipulator are usually defined in task-space. A arbitrary full
pose transformation—position and orientation—demands six degrees of freedom to be feasible through the
differential kinematics described in Chapter 2. Considering a transformation to the Euclidean space, the linear
mapping requires the control of at least six joints of a n-joint serial robot manipulator structure in order to
enable the inverse differential kinematics calculation.

For the case when n > 6, the manipulator is considered to be redundant. In this case, inverse differential
kinematics calculation can be performed using the right pseudoinverse of the Jacobian. Due to the linear
transformation from Rn to R6, with n > 6, we have an infinite number of solutions to this problem. The main
advantage of redundant arms over non-redundant arms is exactly the existence of multiple solutions that enable
self- motion [110]. Self-motion (or null motion) are feasible movements of the links which do not disturb the
end effector trajectory [109]. In this sense, singularities can be classified according to the possibility of self-
motion. The occurrence of self-motion in redundant arms depends upon the existence of a nonzero vector in
the kernel of the Jacobian [109,110], which does not exist for non-redundant manipulators at regular points. In
non-redundant arms, there exists no relative motion of the links which recover the manipulator to a nonsingular
posture without disturbing the end-effector configuration, i.e., all singular configurations are inescapable.

The most common classification regarding singular configurations are based on the possibility of reconfig-
uration into a nonsingular posture using self-motion [109, 110]:

1. Self-motion does not exists (inescapable or unavoidable singularities);

2. Self-motion exists but it only allows movement along a set of singular configurations (inescapable or
unavoidable singularities);
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Figure 5.1: Comparison between singularities and a nonsingular configuration (d) for a 3-DOF manipulator
(only 2-D position control): the boundary singularity in (a) prevents movements in self-motion since any joint
will displace the end-effector pose; the joint configuration in (b) permits different joints movements without
perturbing the end-effector position (that coincides with the base) but the movements are performed along the
singular region; the manipulator configuration in (c) can be reconfigured via the self- motion.

3. Self-motion exists and can be used to recover the manipulator to a non-singular configuration (escapable
or avoidable singularities).

A very common cause of the first type of singularity regards the case in which the end-effector position lies on
its workspace boundary. In this case, the singularity is called saturation singularity (or boundary singularity)
[75, 109]. In this case, there can be no relative motion of the links which does not disturb the end-effector
configuration. Boundary singularities occur when the manipulator is outstretched and may be considered a less
significant problem since they can be avoided on condition that the manipulator is not driven to the boundaries
of its reachable workspace [75].

The second and third types of singularities are called internal singularities, since their occurrence lies inside
the reachable workspace. They are generally caused by the alignment of two or more axes of motion, or else
by the attainment of particular end-effector configurations. These singularities can be encountered anywhere
in the reachable workspace and are particularly hard to identify. Internal singularities are divided according to
whether escape by null motion is possible [109].

The types of singularities are illustrated in Figure 5.1.
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5.1.1 Overview on singularity avoidance strategies

5.1.1.1 Singularity avoidance by self-motion

In redundant arms, the manipulator may recover from escapable singularities using self-motion. The idea
is to optimize some manipulability function—that quantifies the proximity of a singular configuration. The
optimization is projected onto the nullspace (also known as kernel) of the Jacobian matrix (see, for instance,
[111–117]) which ensures that the end-effector trajectory is not influenced by the movements stemming from
the nullspace optimization.

Consider a generic differential kinematics described in Euclidean space by ẋ = Jθ̇, where ẋ ∈ Rp is
the decoupled angular and linear velocities of the end-effector, θ ∈ Rn is the joint vector, and J ∈ Rp×n is
the Jacobian mapping. The control law using the inverse of the differential kinematics yields the following
controller

θ̇ = J+x,

where J+ = JT (JJT )−1 is the right pseudoinverse of the Jacobian matrix. The attractiveness of this solution
lies on the least square property of the pseudoinverse J+ that generates minimum norm joint velocities for
a given trajectory. However, [118] proved that joint velocities are only instantaneously minimized and can
become arbitrarily large near singular configurations. In this sense, if n > p (more joints than the DOFs
required for the task to be performed) then a more general solution for the inverse differential kinematics is

θ̇ = J+x+
(
I − J+J

)
y, (5.1)

where I is a n × n identity matrix and y ∈ Rn is an arbitrary joint vector. Note that main task trajectory
remains unchanged since J

(
I − J+J

)
→ 0 which defines the nullspace.

If we combine the differential forward kinematics with (5.1), it turns out that
(
I − J+J

)
y represents the

projection of y onto the nullspace of J [111]. As a consequence, if we set y , α∇y, where α is a given
scalar and∇y = ∂y

∂θ is the gradient of a smooth scalar function y over θ, then the nullspace solution forces y to
decrease.1 Indeed, in the particular case where x→ 0, then the solution is identical do the gradient projection
method [111]. Different cost functions can be used as long as they are differentiable and expressed in terms of
the joint variables (for instance, [111] exploits cost functions for joint limits avoidance). In this context, [113]
introduced a online singularity avoidance technique based on the gradient of an manipulability function over
the nullspace of the Jacobian of a redundant manipulator. A manipulability function quantifies the proximity
of a singular configuration—usually, by means of the determinant or using the minimum singular value. The
manipulability used in [113] was proposed in [119]:

y =

√
det
{
JJT

}
. (5.2)

It is easy to see that y is a non-negative scalar with zero value only when the Jacobian is not full rank—JJT not
invertible. For redundant manipulators with square Jacobians, a simpler measurement could be y =

√
det [J ].

This manipulability measure is perhaps the most common criterion for setting calculating singularity distance.
The major justifications for its popularity are the fact that it is numerically simple to compute2 and that its zeros
coincide with the singularities of the Jacobian [120]. The gradient of the manipulability function (5.2) over θ

1It is interesting to highlight that the gradient of y decreases only locally since the result is based on instantaneous kinematics [112]
2There is a easy solution using Cholesky decomposition of the Jacobian matrix, for further details, see [113].
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described in [113] can be inferred using Jacobi’ s formula:

∇y =
∂
√

det{JJT}
∂θ = det

{
JJT

}
tr
(
∂J
∂θ J

+
)
, (5.3)

where the tr (S) is the trace of a generic matrix S. Hence, we can exploit the manipulator self-motion to
optimize the manipulability function as to escape singularities.

The idea of optimizing a secondary task have been extended in [121] to multiple tasks—such as manip-
ulability and distance to joint limits—switching dynamically (for further results, see [114–117]). Different
solutions in this context are summarized in [115].

5.1.1.2 Planning singularity free trajectories

Instead of recovering from singularities, a different strategy is to consider all possible singularities before
planning the desired trajectory. With a priori knowledge of joint configurations that cause kinematic singular-
ities within the reachable workspace and considering boundary singularities, we can define different solutions
for planning the trajectory avoiding such undesired configurations.

In [122–127], singularity configurations are estimated offline using artificial intelligence techniques such as
genetic algorithms and artificial neural networks. Alternatively, singularity detection algorithms can also be de-
rived from classic branch-and-prune algorithms combined with genetic algorithms and/or particular heuristics
to improve classification of singularity free configurations against undesired singular poses [128–130].

Such strategies can be combined with the use of potential functions to online avoid previously known
singularities [131] or with the use of path planning algorithms based on the knowledge of singularity free
and singularity-in configurations. The configurations are thereafter connected solely on the singularity free
workspace.

Since the overall strategies rely in planning and executing a singularity free trajectory, aforementioned
methods can be used for both redundant and nonredundant manipulators.

5.1.1.3 Trajectory modification

With no previous knowledge of all possible existing singularities, the planned task trajectory might pass
through a singularity region. In the case of non-redundant arms or inescapable singularities, there is only
one feasible joint configuration for each pose in task-space. Hence, there can be no self-motion and the task
trajectory must inevitably be modified in order to escape from singularities. In other words, avoidance is
therefore achieved to the detriment of the planned task trajectory. In this sense, singularity avoidance relies
on either offline replanning the trajectory based on the knowledge of all singularities (using aforementioned
techniques) or on online modification of the differential kinematics based on the proximity to singular config-
urations [5, 6, 132, 133]. The strategy of modifying the differential kinematics yields a new task trajectory for
the end-effector and consequently for the error along time.

Singularity robust inverse: using damping factors

In this scenario, the most classic technique is the singularity robust inverse (SRI) from [132], which intro-
duces a damping factor to the least-square inverse. The method relies in a singularity robustness analysis by

106



introducing a damping factor (λ>0) to the least-square pseudoinverse, that is,

J+
DLS = JT

(
JTJ + λI

)−1
.

The properties of the damped least-square solution may be studied using the singular value decomposition. The
SVD of the Jacobian J , order m× n, can be represented in the form

J =

min(m,n)∑
i=1

σiuiv
T
i , (5.4)

where ui,vi denote the output and input singular vectors, and σi denotes the singular values (ordered from
largest to smallest). The number of nonzero singular values is equal to the rank of J . Hence, in the presence
of singularities, one or more singular values will be zero. The traditional least-square inverse of J can be
represented in the form

J+ = JT
(
JTJ

)−1
=

min(m,n)∑
i=1

1

σi
viu

T
i . (5.5)

Note that the singular vectors are orthogonal matrices. Therefore, if one of the singular values are zero, we
will have J+ → ∞. Using a damping factor (λ) ensures a good conditioning in the whole manipulator’s
workspace, since

J+
DLS = JT

(
JTJ + λ2I

)−1
=

min(m,n)∑
i=1

σi
σ2
i + λ2

viu
T
i .

With this new damped least-square (DLS) inverse, we may consider three scenarios:

• When σi≫ λ, we have σi
σ2
i+λ

2 ≈ 1
σi

, which is similar to ordinary least-square inverse. Thus, the DLS
solution has little effect, i.e., in scenario far from singularities, it behaves similarly to ordinary least-
square inverse J+

DLS . The norm of the DLS inverse in this case is about ||J+
DLS ||2 ≈ ||J+||2 ≈ 1

σi
≪

1
λ . In this case, the original trajectory is remains unchanged;

• When σi are on the same order of λ, we have σi
σ2
i+λ

2 ≈ λ
λ2
i+λ

2 ≈ 1
2λ . Hence, the norm of the DLS

inverse, ||J+
DLS ||2 ≈ 1

2λ , is about half of the norm obtained from the ordinary least-square solution,
||J+||2 ≈ 1

λ . In this case, the original trajectory is slightly modified as the Jacobian gets closer to the
singular region;

• For σi smaller than λ, we have σi
σ2
i+λ

2 ≈ 0. Hence, it turns out that the norm of the DLS inverse tends
to zero as the Jacobian gets closer to the singular region. On the other hand, the trajectory is largely
different from the planned trajectory.

Figure 5.2 illustrates the norm damping effect. Summarizing, singular values on the on the order of (or
smaller than) λ, the factor ’damps’ the potentially high norm of the component solution, so that

max(|||J+
DLS ||) ≈

1

2λ
.

The advantage of the nonnull damping factor is that it ensures continuity and good conditioning of the
solution, even when J loses rank (σi → 0). On the other hand, singularity avoidance is obtained at the expense
of an increased reconstruction error due to the damping [6]. The task Jacobian is modified as it gets closer to
singularities.
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Figure 5.2: A comparison of the damped and undamped least-square solutions as a function of the singular
value showing the norm of the joint velocity for a component in the direction for the singular vector associated
with the plotted singular value.

The error can be reduced by both lowering the damping factor far from kinematic singularities and avoiding
unnecessary damping along the feasible velocity components. In this context, an adaptive damping factor
is defined in [134] based on the manipulability function of the Jacobian, and improved in [5, 6] to regard
the minimum singular value of the Jacobian. In [6, 120], in addition to consider a varying damping factor
that depends on the minimum singular value, they also considered the damping action only in the singularity
direction through the use of the output singular vector:

J+
SRI = JT

(
JTJ + λSRIuu

T
)−1

with an adaptive damping factor defined as

λSRI =

0, if σm ≥ ε,

(1−
(
σm
εSRI

)2
)λ2SRI.max, if σm < ε,

where σm defines the minimum singular value from the Jacobian, ε defines the size of the singular region, and
λmax sets the maximum value of the damping factor, which is used to escape the singularity.

Truncated SVD pseudoinverse

A different solution relies in removing small terms in the minimum singular value analysis. In other words,
the ordinary least-square inverse described in (5.5) is modified to accommodate the following discontinuity
concerning minimum singular values:

J+ =

min(m,n)∑
i=1

1

σ̃i
viu

T
i ,
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where σ̃i equals the minimum singular value from (5.5) if its value is above a given threshold εTSVD and zero
otherwise, that is,

σ̃i =

σi, if σi ≥ εTSVD,

0, if σi < εTSVD.

In other words, one would remove the i-nth element that corresponds to a singular value σi smaller than
a given threshold. The contribution of the minimum svd σi would be null, instead of ∞. The method main
advantage is the needless of predefined parameters, on the other hand, the method lacks continuity when the
singular value becomes smaller than the given threshold which in turn causes errors and chattering as seen in
Figure 5.2.

Direct task modification using auxiliary functions

It is interesting to highlight that both singularity robust inverse—as well as its variations—and the truncated
SVD strategies rely on modifying the pseudoinverse of the Jacobian matrix. To avoid the situation of the
Jacobian rank deficiency, both techniques changes the linear mapping relation between the joint velocity vector
and the task end-effector velocity space [133].

In this sense, the authors in [133], propose a method to make the task trajectory bypass the singularities and
avoid the failure of the pseudoinverse of the Jacobian matrix. The basic idea is to influence the task velocity
with an auxiliary function that depends on the singular direction vectors uS , that is, the set of output singular
vectors from (5.4) belonging to the singular space where the corresponding minimum singular values lie below
a given threshold. The auxiliary function must limit movements towards the singularity. To this aim, the
authors propose a modified task velocity:

∂ (vec e)mod = ∂ vec e− k · α · (uTS∂ vec e)× uS ,

where k is a characteristic function of σmin, i.e., k = 1 if σmin is below a given threshold and k = 0, otherwise.
The function α is the weighting function that varies from 1 to 0 according to the value of σmin (it assures the
continuity of the function).

The method can also be seen as a disturbance along the original task which may lead to unstable situations,
particularly due to the ad-hoc characteristics of the design function. The main drawback of the method concerns
exactly the fact that there is no stability criterion to analyze the feasibility of the method, nor a stabilization
technique to provide a suitable controller.

5.1.1.4 Other singularity avoidance strategies

In [135,136], it is proposed an hybrid approach for singularity avoidance. According to a singular minimum
value manipulability function that defines the distance to singularities from the current pose, the avoidance
technique relies on the switching between three different controllers: one based on the inverse of the Jacobian,
one based on the pseudoinverse calculation, and one based on the inverse kinematics for the singularity region.

In [137–139], it is proposed a singularity avoidance technique based on virtual joints. The task Jacobian
is augmented in order to consider virtual joints that only exist computationally, not physically, and a nullspace
optimization prevents forces/velocity of the virtual joints. With the augmented Jacobian, its rank is increased
which in turn allows control in the region of singularity but preventing movements in the singularity direction.

Recently, novel singularity avoidance techniques have also focused on designing algorithms to dynami-
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cally estimate the inverse of the Jacobian matrix—instead of considering its pseudoinverse. In [140, 141],
for instance, the dynamics of the inverse estimative stems from the error between its value and the Jacobian
whereby the convergence is shown to be exponential in the case of a constant Jacobian. The main advantage
of the proposed strategy is the absence of finite escapes due to convergence time of the estimator. On the other
hand, as avoidance is not explicitly considered, slow convergence may still lead the arm to a singular pose.

5.2 DUAL QUATERNIONH∞ SINGULARITY AVOIDANCE CONTROL

In preceding chapters, we derived novel results on exponential stability, H∞ control, tracking and opti-
mal control of the end-effector pose using dual quaternion framework which describes the rigid body cou-
pled rotation and translation kinematics in a compact and complete way without representation singularities.
Nonetheless, the proposed criteria strongly rely on the assumption that the pseudoinverse of the Jacobian ma-
trix is well-defined at any given configuration, that is, it never meets singular points. Therefore, due to the
problems that arise from the loss of degree of freedom and to ensure proper manipulability throughout the
whole end-effector task-space, we are also interested in investigating robustness properties against kinematic
singularities.

Herein, we are interested in a general solution that can be applied to any serial manipulator without the
need of preprocessing for each application or robot manipulator. Hence, among aforementioned techniques
for singularity avoidance, this section exploits the feasibility of solutions using self-motion in the case of a
redundant manipulator and trajectory modification for inescapable singularities in redundant and non-redundant
manipulators.

5.2.1 Redundant arms

Redundant arms may avoid and recover from singular poses using self-motion. As stressed in Section 5.1,
a secondary task optimization can be defined in the nullspace of the Jacobian (5.1). In the context of singularity
avoidance strategies, the task to optimized is the gradient a given manipulability function as in (5.2)-(5.3).
Since the optimization is performed along the joint velocity vector, singularity avoidance strategies based on
self-motion can be directly extended to control results herein as long as they are defined in the nullspace of the
task Jacobian—in other words, as long as they have no influence on the task trajectory.

The solution when using the dual quaternion based end-effector pose Jacobian (Jvec) is straightforward as
the Jacobian maps changes in the n-joint serial configuration to changes in the task-space mapped to an R8

manifold—Subsection 2.7.2.

When using the dual quaternion Jacobian (Jω)—Subsection 2.7.3—we are interested in the map from the
Rn joint velocity to the rigid body twist of the end-effector in H0⊗D. Still the Jacobian defines such mapping
through the isomorphism from R6 to H0 ⊗ D—Definition 2.12. In this sense, a secondary optimization can
also exploit the nullspace of the task Jacobian Jω. The resulting movement from this optimization has no
influence upon the error trajectory defined in Spin(3) n R3. Indeed, it yields a nullvector in R6 which, from
the isomorphism mapping from H0 ⊗ D to R6, represents a null twist upon the end-effector trajectory. In this
sense, classic self-motion techniques (see Section 5.1) can be straightforwardly applied within the proposed
dual quaternion based framework.
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5.2.2 Non-redundant arms and inescapable singularities

In the case of non-redundant arms or inescapable singularities, there is only feasible joint configuration for
each pose in task-space and the trajectory must inevitably be modified in order to escape from singularities.
Avoidance is therefore achieved to the detriment of the planned task trajectory.

Despite the large literature on trajectory modification for singularity avoidance (see Section 5.1), the re-
quirement for task modification however contrasts with the lack of results concerning their influence upon
non-Euclidean manifolds. There are no studies on the modification of the task trajectory at a non-Euclidean
manifold such as the dual quaternion space. In fact, there are no results in the literature concerning any tech-
nique for singularity avoidance within dual quaternion space.

Due to the isomorphism mapping from R6 to H0 ⊗ D, robust inverse techniques could be used to limit the
norm of the pseudoinverse of the Jacobian Jω. Nonetheless, there is no mathematical foundation that ensures
stability or justify the use of existing techniques within a dual quaternion manifold task-space.

In this sense, we define a new singularity avoidance strategy that exploits the dual quaternion H∞ perfor-
mance criterion—as well as the lack of representation singularities—to establish stability properties and bound
the worst-case influence of the modification technique over the task trajectory more straightforwardly than [6].

At the vicinity of singular configurations, we introduce an induced exogenous twist acting upon the dual
quaternion spatial difference, (3.46) and (3.53), such that the trajectory escapes unachievable components of
the task velocity. The strategy is similar to the one proposed in [133] for Euclidean manifolds. Nonetheless,
in contrast to [133], the influence of the induced signal upon the trajectory error is bounded and the robust
stability and performance of the end-effector trajectory are ensured.

The design of the induced exogenous twist must be proportional to a given manipulability function. Note

that the most-widely employed function y=

√
det
{
JTJ

}
—whereby a singular point is represented by y=0

(see Section 5.1)—lacks monotonicity and, consequently, poorly quantifies the proximity to singularities. For
instance, given two positive matrices A= diag (100, 0.02) and B=I . The matrix A is closer to its singularity
and to lose rank, still det {A}>det {B}. Moreover, if we assume a time-varying matrixA(t) withA(t1) = A

andA(t2) = diag (300, 0.01). Clearly, the matrixA(t) is moving towards the singularity—minimum singular
value changes from 0.02 to 0.01—but from inspection one can see that the determinant has increased from 2 to
3. It turns out that the determinant is actually not monotonic with regard to the singularity proximity.

In this sense, we shall consider herein a more appropriate choice for manipulability based on the minimum
singular value of Jω, i.e., σm

{
Jω

}
. The singular value decomposition is the most powerful tool to investigate

the singularity of the robot manipulators—nonredundant or redundant [142]. Hence, the following induced
twist, which ensures continuity and a good shape for the solution, is be adopted

vs.a. = ς(σm
{
Jω

}
) · um

{
Jω

}
, (5.6)

where um
{
Jω

}
represents the output singular vector corresponding to the minimum singular value σm

{
Jω

}
.

The function ς denotes the magnitude of the disturbance, which is given by

ς(σm
{
Jω

}
)=


ςmax ·

(
1−
√

σm{Jω}
ςs

)
, if σm

{
Jω

}
≤ςs,

0, otherwise.

(5.7)

where ςmax is the maximum value for the induced twist and ςs defines the size order of the singular region
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(σm
{
Jω

}
>ςs yields a null twist). The magnitude of ς(σm

{
Jω

}
) and, consequently, the influence of the singu-

larity avoidance disturbance is monotonically decreasing, that is, it increases as σm
{
Jω

}
→ 0.

In terms of control law, the induced vector (5.6) can be viewed as an exogenous disturbance over the task
trajectory. Hence, the modified task trajectory can be defined by

ẋe =

(
1

2

∑n−1

i=0
j
i
θ̇s.a.,i + vs.a.

)
xe − 1

2xeωd (5.8)

where ωd is the twist for the desired pose in inertial frame and xe=re + 1
2εpere. Using Theorem 3.7 and

Corollary 3.1 from Section 3.3, we can bound the influence of the induced vector (5.6) over the control error
while ensuring stability properties.

Theorem 5.1 H∞ Singularity Avoidance Technique

For prescribed positive scalars γO , γT , ςmax and ςs, the task-space controller that yields
joints velocities inputs

θ̇s.a. =J+
ω

[
KOvecT3 (Im (re)) −KT vecT3 (pe)

]
T

+ J+
ω

(
1
2 vec6 (xeωdx

∗
e)
)
, (5.9)

with KO≥2γO
−1 and KT ≥

√
2γT

−1 ensures exponential stability for the closed-loop sys-
tem (5.8)-(5.9) with an attenuation upper bounded,γO , γT , between the singularity avoid-
ance twist and the trajectory rotational and translational errors in the H∞ sense.

proof.

First, let us define a error function similarly to (3.7), that is, e = 1 − xe = e + εe′. If we address, as
variable of interest, the orientation and translational errors from (5.8) considering the above-defined error
definition e, that is, O(e) , 1− re, and T (e) , pe, then (5.9) equals to the task-space controller defined
in (3.54)—Theorem 3.8. Hence, using exactly the same procedures from Theorem 3.7 and Corollary 3.1,
the closed loop system (5.8)-(5.9) achieves exponential stability with minimum control effort and ensures
H∞ attenuation in the sense of Definition 3.3 between the end-effector pose error and the norm of the
singularity avoidance twist . 2

Remark 5.1. The differential equation (5.8) is well-posed [89, Prop. 2.1] as vs.a. lies in the Lie algebra of
Spin(3) nR3.

Using (5.6) in Theorem 5.1, we can escape singular configurations while controlling the exactness of the
solution in the sense of Definition 3.3, that is, the exact influence of the induced twist over the orientation and
translational errors. Since um{J} in (5.6) stems from an unitary matrix, we have

∥∥um{Jω

}∥∥
2

=1 whereby we
conclude that ‖vs.a.‖2 ≤ ςmax.

Hence, the worst-case influence from (5.6) over ‖O(e)‖2 and ‖T (e)‖2 is respectively attenuated with pre-
scribed performance gains γO , γT , such that the trajectory errors are always smaller than γO ςmax and γT ςmax.
Also, x converges exponentially to xd at points removed from singularities, that is, vs.a. ≡ 0. To the best
of the authors knowledge, the proposed dual quaternion based H∞ singularity-avoidance strategy is the first
criterion to explicitly specify a maximum value for the trade-off between exactness and avoidance feasibility.
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Figure 5.3: Joint velocities for a trajectory in the presence of singularities: controller from Theorem 3.3 and
Corollary 3.1 without singularity avoidance consideration (green dashed and orange point-dashed lines) com-
pared to Theorem 5.1 (solid black line).

5.3 SIMULATIONS

This section assesses the effectiveness and advantages of the proposed dual quaternion singularity avoid-
ance technique for inescapable singularities based on the H∞ criteria presented in Section 3.3. To this aim,
we devise a realistic scenario similarly to the one presented in Examples 3.3 and 3.4 from Section 3.4 using
the Virtual Experimentation Platform (VREP) from Coppelia RObotics GmbH (see, [90]) with Bullet Physics
Library3 as the physics engine, and the DQ_Robotics toolbox4 for control implementation.

In this scenario, the tracking task trajectory should lead the manipulator through multiple singularities.
Initially, the desired configuration for the end-effector pose is set close to a singular configuration, which is
unknown beforehand. The proposed tracking trajectory should take the arm through this unknown singularity,
where the arm may lose several degrees of freedom, to a regular pose in the reachable workspace and then back
to the initial pose—going through the singularity.

The lack of a proper singularity avoidance strategy and its consequences are illustrated in Figure 5.3 and
compared to the proposed singularity avoidance solution in Theorem 5.1. The singularity avoidance controller
was implemented using ςmax=0.01 and ςs=10−5. The results highlight the importance of an avoidance tech-
nique and how essential it is to prevent joint chattering and large velocities and accelerations in the vicinity of
singular configurations.

Moreover, in order to compare the performance of the proposed technique with classic singularity avoidance
techniques, we implemented the singularity robust inverse method with adaptive damping rate adjustment from
[6]. Since the task trajectory modification from the SRI algorithm has not yet been studied within the dual
quaternion space and there is no mathematical foundation that ensures stability in this context, we chose to

3http://www.bulletphysics.org/
4http://dqrobotics.sourceforge.net
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Controller from Theorem 3.3
using adaptive SRI from [6]
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Figure 5.4: Joint velocities for a trajectory in the presence of singularities: controller from Theorem 3.3 with
adaptive SRI from [5, 6] (magenta dashed line) compared to Theorem 5.1 (solid black).

implement the technique with the controller from Theorem 3.3 that is defined using the Jacobian mapping (Jvec)
to an R8 manifold. The adaptive SRI algorithm is particularly sensitive to parameters selection, thus we have
tried several combinations. The parameters with better performance were λ2SRI.max=10−5 and εSRI=3 · 10−4.

The comparison is shown in Figure 5.4 and clearly illustrates that despite the adaptive SRI successful
improvement compared to the lack of an avoidance method, the proposed dual quaternion based avoidance
technique yields better performance results in the sense of reducing joint velocities and chattering in the vicinity
of singularities.
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HYBRID ROBUST KINEMATIC CONTROL FOR
GLOBAL STABILITY USING DUAL
QUATERNIONS

When we learn how to deal effectively with systems that contain interacting
groups of entities or processes of distinct characteristics, we will probably stop

calling them “hybrid systems,” because at that stage the distinct character of
the system’s parts will be of no importance or significance anymore and there

will be no need any longer for the hybrid nature to be stressed in a name. That
is, success will bring the loss of identity! This is of course only a conjecture –

Panos J. Antsaklis And Anil Nerode [143]

The work and contributions presented in this thesis are based on dual quaternion representation of rigid
body motion. Nonetheless, in scenarios where the state space of the dynamical system is not the Euclidean
space Rn but a general differentiable manifoldM—which is exactly the case of SE (3) and Spin(3) n R3—
some difficulties to design a stabilizing closed-loop controller may arise. In fact, if M has the structure of
a vector bundle over a compact manifold L, then no continuous vector field on M—indeed, nor in L—has
a globally asymptotically stable equilibrium [42]. In particular, this means that it is impossible to design a
continuous feedback that globally stabilizes the pose of a rigid body, as in this case the closed-loop system
state space manifold is a trivial bundle over the compact manifold SO (3). The same topological obstruction is
also present in the group of unit dual quaternions since its underlying manifold is a trivial bundle over the unit
sphere S3 (see Theorem 2.2).

Due to the two-to-one covering map Spin(3) n R3 → SE (3), the unit dual quaternion group is endowed
with a double representation for every pose in SE (3) (see (2.21) in Subsection 2.5.1)—similarly to unit quater-
nions [144, p. 190]. Neglecting the double covering yields to the problem of unwinding whereby solutions
close to the desired pose in SE (3) may travel farther to the antipodal unit dual quaternion representing the
same pose [59]. There are scarce works on unwinding avoidance in the context of pose stabilization using unit
dual quaternions [52, 58–60]. All of them are based on a discontinuous sign-based feedback approach.

As shown by [43] for the particular case of Spin(3), the discontinuous sign-based approach may however be
particularly sensitive to measurement noises, and despite achieving global stability, global attractivity properties
may be detracted with arbitrarily small measurement noises. As one would expect, the same happens with
Spin(3) nR3.

In Spin(3) nR3 the lack of robustness is even more relevant as the discontinuity of the controller not only
affects the rotation, but may also disturb and deteriorate the trajectory of the system translation—as verified in
Section 6.1. In this context, arbitrary small noises may lead to chattering, performance degradation—and in
the worst case, prevent stability.

Summing up, despite the solid contributions in the literature on dual quaternion based controllers and the
contributions presented in this thesis, it is important to emphasize that existing pose controllers are either stable
only locally, or sensitive to arbitrarily small measurement noises. In other words, the topological constraints
from Spin(3)nR3, most of them inherited from SE (3), still poses a challenge and there exists no result in the
literature that ensures robust global stability.
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In this context, using dual quaternion formalism, this chapter addresses the problem of globally stabilizing
a rigid body pose. An hybrid strategy is used to design a switching control law with hysteresis in such a
way that the global asymptotic stability of the closed-loop system is guaranteed and such that the controller is
robust against arbitrary small perturbations. The resulting controller is written in terms of the rigid body twist
within unit dual quaternion formalism. Moreover, we adapt the proposed hybrid criterion to global stability
in the context of robot manipulators and using the proposed controllers from previous chapters. Last, using
numerical simulations, we illustrate the problems that arise from neglecting the double cover—as unwinding
and chattering—and verify the effectiveness of the proposed controller to solve the robust global pose stability
problem.1

6.1 DUAL QUATERNION BASED DISCONTINUOUS CONTROL LAW
FOR POSE STABILIZATION

Due to the topological constraint described in Theorem 2.2, there is no continuous state feedback controller
on S that can globally asymptotically stabilize the rigid body motion (2.26):

ẋ =
1

2
ωx, (6.1)

to a rest configuration, where ω = ω + ε (ṗ+ p× ω) is the generalized twist expressed in inertial frame with
ω and ṗ being the angular and linear velocities expressed in the inertial frame.

Indeed, the two-to-one covering map from Spin(3) n R3 to SE (3) renders a closed-loop system with
two distinct equilibria xe and −xe (see (2.21) in Subsection 2.5.1). Since both ±xe correspond to the same
configuration in SE (3), solutions neglecting the double cover (see, for example, [36, 49, 61–63]) may exhibit
the unwinding phenomenon [42]. In this case, solutions starting arbitrarily close to the desired pose in SE (3)—
represented by both stable and unstable points in Spin(3) n R3—may travel to the farther stable point instead
to the nearest unstable point (see, for example, Figure 6.5). The sole contributions in the sense of avoiding
the unwinding and stabilizing (2.26) to the set {±1} are based on a pure discontinuous control law introduced
in [58–60]. In terms of the components of x = η+µ+ ε

(
η′+µ′

)
, this discontinuous control law is given by2

ω=

−2k
[
acos(η) µ

‖µ‖+ε (ηµ′−η′µ−µ× µ′)
]
, if η≥0,

−2k
[
(acos(η)− π) µ

‖µ‖+ε (ηµ′−η′µ−µ× µ′)
]
, if η<0,

(6.2)

where k is a proportional gain.

Albeit this control law avoids unwinding, a careful look reveals a strong sensitivity around attitudes that
are up to π away from the desired attitude about some axis—that is, η = 0. In view of Theorem 2.6 of [145],
one can see that such control law lacks robustness in the sense that arbitrarily small measurement noises can
force η to stay near to 0 for initial conditions within its neighborhood. Indeed, similar to Theorem 3.2 of [43],
one can even exhibit an explicit noise signal to persistently trap the system about a fixed pose, thus preventing
its stability. To illustrate the sensitivity of pure discontinuous state feedback controllers, we introduce a simple

1It is important to underline that the work described in this chapter was developed in collaboration with Hugo Tadashi Kussaba, a PhD
student from University of Brasilia.

2The discontinuous kinematic control law in [58–60] contains a typo that have been fixed in [52]. Different from (6.2), in [52, 58–60]
the controller is expressed in terms of the logarithm of an unit dual quaternion.
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Figure 6.1: (a) Trajectory of the rotation unit quaternion r in terms of η andµ (dashed line) with switches along
time between the control laws in (6.2) represented by s(t). (b) Trajectory of the thee-dimensional translation
elements p = p1 ı̂+ p2̂+ p3k̂.

case study in which the trajectory of the system kinematics (6.1) is simulated using the discontinuous control
law (6.2) in the presence of a small random measurement noise3—the results are shown in Figure 6.1.

The trajectory of the closed-loop system exhibits chattering in the neighborhood of the discontinuity—that
lies in η = 0—as a result of the measurement noise. The performance degradation stems from infinitely fast
switches in (6.2). Furthermore, the chattering influence over the system is not restricted to the attitude error and
may also impact on the resulting trajectory of the translation, as shown in Figure 6.1(b). In this sense, the lack
of robustness of a discontinuous solution may lead to chattering in orientation and to additional disturbances in
the translation of the rigid motion in the presence of arbitrarily small random noises.

6.2 HYBRID CONTROL LAW FOR ROBUST GLOBAL RIGID BODY
STABILIZATION

In this section, we address the control design problem for globally stabilizing a rigid body coupled rota-
tional and translational kinematics with no representation singularities. The proposed solution copes with the
topological constraint inherent from the Spin(3) n R3 parametrization while also ensuring robustness against
measurement noises.

To avoid the unwinding phenomenon and the lack of robustness from pure discontinuous solutions, we
appeal to the hybrid system formalism of [146]. A hybrid system is given by the constrained differential
inclusions

ẋ ∈ F (x) , x ∈ C,

x+ ∈ G (x) , x ∈ D,
(6.3)

where x+ denotes the next state of the hybrid system after a jump. The flow map F and the jump map G are
set-valued functions, respectively, modeling the continuous and the discrete time dynamics of the system. The

3The simulation has been performed in accordance with the procedures described in Section 6.3.
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flow set C and the jump set D are the respective sets where the evolutions occur. The following concepts of
set-valued analysis will also be used: a set-valued mapping F is outer semicontinuous if its graph is closed and
F is locally bounded—that is, if for any compact set K, there exists m > 0 such that F (K) ⊂ mB, where B
is the closed unit ball in the Euclidean space of the convenient dimension [147]. For more details, the reader is
referred to [146, 148].

To solve the problem of robust global asymptotic stabilization of (6.1), we propose a generalization to
the hysteresis-based hybrid control law of [43] that extends the attitude stabilization to render both coupled
kinematics—attitude and translation—stable. The controller is designed as a general controller for rigid body
stabilization, hence it is described as a dual quaternion twist. The general purpose control law is thus proposed
as

ω , hω1 + εω2, (6.4)

where ω1 and ω2 are pure quaternions and h ∈ {−1, 1} is a memory state with hysteresis characterized by a
parameter δ ∈ (0, 1). The memory state h has its dynamics defined by

ḣ , 0, when (x, h) are such that hη ≥ −δ,

h+ ∈ sgn (η) , when (x, h) are such that hη ≤ −δ,
(6.5)

where sgn is the set-valued function defined as

sgn (s) ,


{1} , s > 0,

{−1} , s < 0,

{−1, 1} , s = 0.

In terms of the hybrid formalism (6.3), the closed loop system made by (6.1), (6.4), and (6.5) is characterized
as

F (x, h) =

(
1

2
ωx, 0

)
,

G (x, h) ∈ (x, sgn (η)) ,

C =
{

(x, h) ∈
(
Spin(3) nR3

)
× {−1, 1} : hη ≥ −δ

}
,

D =
{

(x, h) ∈
(
Spin(3) nR3

)
× {−1, 1} : hη ≤ −δ

}
.

(6.6)

Based on the dual quaternion mapping to R8 defined in (2.14) and based on the Hamilton operators (2.15),
the maps F and G of (6.6) induce the function ~F : R9 → R9 and the set-valued mapping ~G : R9 ⇒ R9 given
by

~F (~x, h) =

(
1

2

−
H (x) vec8 (ω) , 0

)
~G(~x, h) ∈ (~x, sgn (x1)) ,

(6.7)

where ~x = (x1, . . . , x8) ∈ R8 and h ∈ R. Similarly, the sets C and D of (6.6) induce the subsets ~C and ~D of
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R9 given by4

~C =
{

(~x, hr) ∈ R8 × R : (~x, hr) ∈ S × {−1, 1} and hrx1 ≥ −δ
}
,

~D =
{

(~x, hr) ∈ R8 × R : (~x, hr) ∈ S × {−1, 1} and hrx1 ≤ −δ
}
.

(6.8)

The following lemma proves that the hybrid system induced by (6.1), (6.4) and (6.5) satisfies some proper-
ties which helps to prove the stability of the system and its robustness.

Lemma 6.1

The maps ~F and ~G defined on (6.7) and the sets ~C and ~D defined on (6.8) satisfy the
following properties:
1. ~C and ~D are closed sets in R9.
2. ~F : R9 → R9 is continuous.
3. ~G : R9 ⇒ R9 is an outer semicontinuous set-valued mapping, locally bounded and
~G (~x, h) is nonempty for each (~x, h) ∈ ~D.

proof.

The proof is based on Lemma 5.1 of [43]. Setting δ ∈ (0, 1), consider the continuous map τ : R9 → R
given by τ (x1, . . . , x8, hr) = hrx1 + δ. The restriction of this map to S × {−1, 1}, τ |S×{−1,1} :

S × {−1, 1} → R is also continuous (Theorem 8 of [149]). Moreover, by the definition of the sets ~C and
~D, we have that

~C = τ |−1S×{−1,1} ([0,+∞)) ,

~D = τ |−1S×{−1,1} ((−∞, 0]) .

Since the pre-image of a closed set under a continuous mapping is closed, ~C and ~D are closed in S ×
{−1, 1} (with respect to the subspace topology). We also have that S × {−1, 1} is closed in R9. In fact,
consider the continuous functions p, d : R8 → R given respectively by

p(η, µ1, µ2, µ3, η
′, µ′1, µ

′
2, µ
′
3) = [η, µ1, µ2, µ3][η, µ1, µ2, µ3]T − 1,

d(η, µ1, µ2, µ3, η
′, µ′1, µ

′
2, µ
′
3) = [η, µ1, µ2, µ3][η′, µ′1, µ

′
2, µ
′
3]T .

By the definition of p and d, S = p−1({0}) ∩ d−1({0}). Since {0} is a closed set of R, the sets p−1({0})
and d−1({0}) are closed and their intersections are closed. Thus, S is closed in R8. Moreover, the set

4Using the vector isomorphism described in (2.14), the maps ~F , ~G and the sets ~C e ~D are explicitly described in the vector space as

~F (η,µ, η′,µ′, h) =
1

2


−hωT1 µ

hηω1 + ω1 × µ
−ωT2 µ− hωT1 µ′

ηω2 + hη′ω1 + ω2 × µ+ hω1 × µ′

0

 ,
~C =

{
(η,µ, η′,µ′, h) ∈ S × {−1, 1} : hη ≥ −δ

}
,

~G(η,µ, η′,µ′, h) = (η,µ, η′,µ′, h, sgn (η)),

~D =
{
(η,µ, η′,µ′, h) ∈ S × {−1, 1} : hη ≤ −δ

}
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{−1, 1} is closed in R, therefore the Cartesian product S ×{−1, 1} is closed in R9. Since S ×{−1, 1} is
closed in R9, ~C and ~D are also closed in R9.

On the account that each component of ~F is a polynomial, the map ~F is continuous.

The graph of the function ~G is given by
{

(~x, hr, z) | z ∈ ~G (~x, hr)
}

= R8 × R × R8 × {−1, 1}.

Since this set is closed, it follows by definition that ~G is outer semicontinuous.a Furthermore, ~G is locally
bounded because given any compact set K⊂ R9, ~G(K) ⊂ K × {−1, 1} and thus ~G(K) is bounded.
Finally, ~G(~x, h) is nonempty for every (~x, h) ∈ ~D.

2
aThe graph of a set-valued mapping F : X ⇒ Y is defined by {(x, y) ∈ X × Y : x ∈ X, y ∈ F (x)}. F is outer semicontin-

uous if its graph is a closed set of X × Y [150].

Theorem 6.1 Dual quaternion hybrid global stabilizing controller

For prescribed positive scalars k1, k2, and using the memory state h defined in (6.5), the
proposed control lawa

ω , −hk1 Im (r)− εk2 (p) , (6.9)

with r and p being the quaternion representation of the rigid body orientation and position,
ensures the equilibrium points of the closed loop system (6.1), (6.9) to be ±1 and the set
{±1} to be exponentially stable.

aIn terms of the components of x = η+µ+ ε
(
η′ +µ′

)
, the dual quaternion controller (6.9) can be rewritten

as ω = hω1 + εω2, with ω1 = −hk1µ and ω2 = −k2 (ηµ′−η′µ+µ× µ′).

proof.

To study the stability of the closed loop system (6.1), (6.9), let us first find the equilibria where ẋ = 0.

Investigating the closed-loop system (6.9)-(6.5),(6.1) in terms of the dual quaternion components

ẋ = η̇ + µ̇+ ε
(
η̇′ + µ̇′

)
where

η̇ =
1

2
k1h ‖µ‖2 , η̇′ =

1

2
(k1h+ k2η) 〈µ,µ′〉, µ̇ = −1

2
ηk1hµ,

µ̇′ =
1

2

[
−η′k1hµ−η2k2µ′+ηη′k2µ−ηk2µ× µ′−k1hµ× µ′−k2ηµ′ × µ−k2 (µ× µ′)×µ

]
,

(6.10)

turns out that the ẋ = 0 implies µ = 0. From the unit sphere constraint (see, Definition 2.18), it also
follows that η = ±1 whereby we can find that µ′ = 0. In this context, the constraint P

(
q
)
D
(
q
)

=0 in
Definition 2.18 also renders η′ = 0. Hence, the set of equilibrium points of (6.10) is the set {±1}.

To study the stability of the set of equilibrium points {±1}, let us regard the Lyapunov candidate
function

V (t,x, h) = 2 (1− hη) + η′2 + ‖µ′‖2 . (6.11)

Since η ∈ [−1, 1] and h ∈ {−1, 1}, one has that (1− hη) ≥ 0. Therefore, V is a positive semidefinite
function. The condition V = 0 implies 0 ≤ 2 (1− hη) = −η′2 − ‖µ′‖2 ≤ 0 which yields η′ = 0, µ′ = 0
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and hη = 1, that is, x = ±1. Hence, V is a positive definite function. The time-derivative of (6.11) yields

V̇ = −2hη̇ + 2η′η̇′ + 2〈µ′, µ̇′〉. (6.12)

Taking the closed-loop system (6.9)-(6.5),(6.1) in terms of the dual quaternion components (6.10), and
after some calculationa we have

V̇ = −h2k1 ‖µ‖2 − η2η′2k2 − η2 ‖µ′‖
2
k2 ≤ 0.

In addition, V̇ = 0 if and only if x ∈ {±1}. Moreover, V also decreases over jumps of the closed loop
system since for hη < −δ < 0 one has that

V (x, h+)− V (x, h) = 4hη < 0.

Thus, asymptotically stability of the set {±1} follows from Lemma 6.1 and by Theorem 20 of [146].
It is also important to highlight that the closed-loop differential equation is well-posed [89, Prop. 2.1] as
ω is in the Lie algebra of Spin(3) nR3. 2

aThe derivation of (6.12) follows the same procedure detailed described in Appendix C.1 if we we take α1 and α2 to be the
memory state (6.5) and the identity element, respectively, andKO to be hk1 andKT to be the identity k2I , with k1, k2 ∈ R∗+.

Remark 6.1. At a first glance one could imagine that due to the transference principle [67], the extension of
rotation stabilizers (e.g., the ones of [41, 43]) to full rigid body stabilizers would be trivial, only requiring
substitution of adequate variables as in (2.23) and (6.1). However, for stability analysis based on Lyapunov
functions, this supposition doesn’t even make sense, since a Lyapunov function is a real-valued function and
never a dual-number valued function. As a consequence, stabilization in Spin(3) n R3 using dual quaternions
required one independent study from the quaternion stabilization analysis in Spin(3). The necessity of different
procedures for quaternion and dual quaternion is also inferred by remembering that due to the fact that SO (3)

is compact and SE (3) is not, it was required one controller design procedure for each case in [55].

Similarly to the rotation controllers proposed in [43], the proposed pose controller doesn’t exhibit Zeno
behavior [146]. This is shown in the next theorem.

Theorem 6.2 Absence of Zeno behaviour

For any compact set K ⊂ S×{−1, 1}, if x is a solution of (6.1), (6.4) and (6.5) with initial
state in K, then the number of jumps is bounded.

proof.

Similar to Theorem 5.3 of [43]. 2

The stability robustness will be characterized by its resistance against α-perturbations: given α > 0, the

121



α-perturbation of the hybrid system given by ~F , ~G as in (6.7), and ~C, ~D as in (6.8), is given by

~Cα ,
{
x ∈ R9 : (x+ αB) ∩ ~C 6= ∅

}
,

~Fα (x) , co ~F
(

(x+ αB) ∩ ~C
)

+ αB, for all x ∈ ~Cα,

~Dα ,
{
x ∈ R9 : (x+ αB) ∩ ~D 6= ∅

}
,

~Gα (x) ,
{
v ∈ R9 : v ∈ g + αB, g ∈ ~G

(
(x+ αB) ∩ ~D

)}
, for all x ∈ ~Dα,

where coX denotes the closure of the convex hull of the set X . These perturbations, as illustrated in [146],
include both measurement and modeling error.

The lack of sensitivity to these perturbations will be expressed in Theorem 6.3 bounding the Lyapunov
function using a class-KL function.5

Theorem 6.3 Robustness against perturbations

Let V be as in (6.11). Then there exists a class-KL function β such that for each compact
set K ⊂ S × {−1, 1} and ∆ > 0 there exists α∗ > 0 such that for each α ∈ (0, α∗], the
solutions xα from K of the perturbed systemHα = (~Cα, ~Fα, ~Dα, ~Gα) satisfy

V (xα (t, j)) ≤ β (V (xα (0, 0)) , t+ j) + ∆, ∀ (t, j) ∈ domxα

proof.

We have that V is a proper indicator functiona of the compact set {(1, 1), (−1,−1)} in S × {−1, 1}.
From [146, Theorem 14], there exists a class-KL function β such that for all solutions x of S × {−1, 1},

V (x (t, j)) ≤ β (V (x (0, 0)) , t+ j) , ∀ (t, j) ∈ domx.

From this and from Lemma 6.1, the KL bound on V (xα (t, j)) follows now by [146, Theorem 17]. 2

aFollowing [148, p. 145], a proper indicator function of a compact set A in an open set O ⊇ A is a continuous function on O
which is positive definite with respect toA and such that it tends to infinity as its argument tends to infinity or to the boundary ofO.

Remark 6.2. Differently from the Lyapunov function proposed in [43] for its hybrid kinematic controller,
the proposed Lyapunov function (6.11) exploits the non-compactness of S to be a proper indicator function,
enabling the direct proof of Theorem 6.3.

6.2.1 Hybrid control law applied to robot manipulators

The hysteresis-based hybrid control solution presented herein is designed for global and exponential sta-
bilization of general rigid body pose. Nonetheless, the criterion has been designed such that extensions to
different scenarios are straightforward. Particularly, we are interested in practical applications using robot
manipulators taking into account the specificities inherent to the manipulator description. In this sense, this
subsection addresses the proposed hybrid control strategy in the context of robot manipulators using the dual

5A class KL function is a continuous function β : R≥0 × R≥0 → R≥0 such that for each fixed s, the function β (r, s) is strictly
increasing and β (0, s) = 0; and for each fixed r, the function β (r, s) is decreasing and lims→∞ β (r, s) = 0.
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quaternion Jacobian (Jω) derived in Subsection 2.7.3 that maps changes in the n-joint configuration to end-
effector twist ω.

First, recalling the result derived in Section 2.7, the n-joint serial manipulator description relies on the
forward kinematics that relates the configuration of all joints to the configuration x of the end-effector; that
is, x = x0

1x
1
2 . . .x

n−1
n , and the differential forward kinematics is hence given by ẋ =

∑n−1
i=0 x

0
i ẋ

i
i+ix

i+1
n .

Because xii+1 is a function of θi, i.e., xii+1 = f
i
(θi), where f

i
: R → Spin(3) n R3, we have that ẋii+i =

f ′
i
(θi) = wiθ̇if i(θi) with wi ∈ H0 ⊗ D. Explicitly considering the dual quaternion differential FKM to be

well defined within the unit dual quaternion group, we have a differential FKM described as in (2.42)-(2.48),
that is,

ẋ =
1

2

n−1∑
i=0

j
i
θ̇ix

=
1

2
vec6

(
Jωθ̇

)
x, (6.13)

where vec6

(
Jωθ̇

)
describes the end-effector twist in dual quaternion space, θ = [θ0 . . . θn−1]T is the mea-

sured vector of joint variables and Jω is the Jacobian, which can be found by using Algorithm 2.2.

In Section 3.3, particularly in Theorem 3.7, to solve the exponential stabilization of the dual quaternion
error function defined by e = 1 − x (for further details on the error function, see Section (3.1)), we proposed
the dual quaternion task-space controller (3.47) with joint velocity inputs:

θ̇ = J+
ω

[
KO vecT3 (Im (O(e))) −KT vecT3 (T (e))

]T
where KO ,KT are positive definite 3 × 3 matrices. The variables O(e) and T(e) are defined in Section
3.3 as O(e) = 1 − r and T (e) = p where r and p are the unit quaternion representation of the orientation
and position of the end-effector. If Jω ∈ R6×n is well-posed, then the closed loop differential kinematics is
therefore given by

ẋ =
1

2
vec6

[
KO vecT3 (Im (O(e))) −KT vecT3 (T (e))

]T
x

=
1

2
vec6

[
−KO vecT3 (Im (r)) −KT vecT3 (p)

]T
x. (6.14)

In Appendix C.1, we prove that the closed-loop system is stable with exponential convergence given by
σm{KO} and σm{KT}, where σm{s} denotes the minimum singular value from a given matrix s. Hence, tak-
ing the minimum singular value fromKO andKT , the closed-loop system (6.14) yields ẋ = − 1

2 (k1 Im (r) + εk2p)x,

where ω = −k1 Im (r)− εk2 (p) with k1 = σm{KO} and k2 = σm{KT}.

Now, if we were to take a task-space controller explicitly considering the memory state (6.5) as in (6.9)
instead of the one derived in (3.47), then we can extend the proposed hybrid strategy in the context of robot
manipulators. Indeed, considering a dual quaternion task-space controller given by

θ̇ = J+
ω

[
hKO vecT3 (Im (O(e))) −KT vecT3 (T (e))

]T
, (6.15)

where h is the memory state (6.5), and taking the minimum singular value from the gain matrices, the closed-
loop system (6.14) yields

ẋ =
1

2
ωx,

where ω = −hk1 Im (r) − εk2 (p) with k1 = σm{KO} and k2 = σm{KT}. Note that the closed-loop
system is exactly the same described in Theorem 6.1. Hence, the equilibrium points of the closed loop system
(6.13),(6.15), is ±1 and the set {±1} is globally exponentially stable.
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Figure 6.2: (a) Trajectory of the rotation unit quaternion r in terms of η and µ (dashed line). (b) Trajectory of
the thee-dimensional translation elements p = p1 ı̂+ p2̂+ p3k̂.

6.3 NUMERICAL SIMULATIONS

In this section, the effectiveness of the proposed hybrid technique for robust global stabilization of the rigid
body motion is demonstrated under different conditions.

We first demonstrate the proposed controller global stability and robustness against measurement noises. To
this aim, a simulation is performed using the hybrid feedback controller (6.4), with hysteresis parameter δ=0.2,
and the the pure discontinuous controller (6.2)—using the same proportional gain k = 2. For this particular sce-
nario, we assume an initial condition, x0=0.001+ ı̂0.78+ ̂0.57+ k̂0.28+ε

(
−1.28 + ı̂1.50−̂2.44 + k̂0.77

)
,

located in the neighborhood of η=0, and a zero mean Gaussian measurement noise over η with a 0.1 standard
deviation. Figure 6.1 illustrates the result from the discontinuous controller (6.2) whereby one can clearly see
the problematic noise influence—for instance, the excess of switches causing chattering for over 3 seconds and
the consequent convergence lag. In contrast, the proposed hybrid feedback controller ensures a robust perfor-
mance without chattering as shown in Figure 6.2. The absence of chattering and the performance improvements
are better illustrated in Figure 6.3, which presents the results from both controllers.

To illustrate the influence of the design parameter δ over the switches along time of the closed-loop system
(6.1), a set of simulations is performed using the hybrid controller (6.4) with different values for δ. For these
simulations, we assume the same initial condition, control gain, and measurement noise as defined in the
former scenario. As shown in Figure 6.4(a), larger hysteresis parameters yield smaller number of switches, as
one would expect. As shown in Figure 6.4(b), it is also interesting to highlight that the number of switches tend
to decrease along time as η converges to the equilibrium.

Lastly, to elucidate the influence of the hysteresis parameter δ with regard to the unwinding phenomenon,
a different scenario is simulated using (6.4) with δ=0.15 and δ=0.95 and with a proportional gain k=5. We
assume an initial state with η close to −1 and h=1. As shown in Figure 6.5, very large values of δ may induce
the stabilization to η=1, which leads to needless motions and control efforts compared to the case of δ=0.15.
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SWITCHING STRATEGY FOR FLEXIBLE TASK
EXECUTION AND ITS APPLICATIONS TO
BIMANUAL MANIPULATION WITHIN THE
COOPERATIVE DUAL TASK-SPACE

In Chapter 6, we have addressed the importance of self-motion (i.e., motions of the robot links that do not
disturb the end-effector configuration [109]) for kinematic singularity avoidance. Briefly, the technique lies in
the optimization of a manipulability function projected on the Jacobian nullspace. The same nullspace can also
be used to perform different secondary tasks (see, for instance, [117,151–154]). In this sense, self-motion based
control strategies are paramount to unfold online task flexibility and reactiveness for unforeseen scenarios, such
as obstacles and unknown singularities. Still, even seemingly simple problems demand a number of DOFs. For
instance, controlling the end-effector orientation and position requires all degrees of freedom from a six-DOF
robot manipulator, leaving no room for self-motion. In this context, this chapter focuses on a novel strategy for
enlarging the use of self-motion even to redundant manipulators by relaxing the task constraints and switching
to control tasks with lesser degrees of freedom whenever possible. To illustrate the importance and effectiveness
of enlarging the nullspace to allow further self-motion operations, herein, this chapter concerns a two-arm
manipulation operation. Due to the higher need—and also availability—of DOFs, multi-arm manipulation is
indeed the main motivation for the proposed technique. Still, for the sake of simplicity, herein, we will consider
a bimanual application which also illustrates both the need for further DOF and the advantages of the proposed
technique.

Cooperative Manipulation and Flexible Task Execution

Research in robotic systems has given considerably attention to the study of multi-arms systems in the past
thirty years [155]. Indeed, cooperative manipulation raises a broad set of practical applications that would be
restricted in a single manipulator framework, such as lifting heavy and/or large payload, complex assembly,
and different tasks in an unstructured environment [155]. Nonetheless, the integration of two or more arms in a
complex real robot system context is not trivial and adds significant complexity to the analysis of the resultant
system [1].

In this sense, an extensive amount of research has focused on designing models and specific frameworks
to cope with the complexities stemming from multi-arm manipulation. Recently, a new framework proposed
in [4] has enriched the analysis and description of the cooperative task space using unit dual quaternion rep-
resentation to describe rigid body motion and cooperative elements without representation singularities and
without decoupling orientation and translation dynamics.

The cooperative dual task-space (CDTS) representation introduced in [4] has many advantages compared
to previous techniques. The description of the cooperative space using unit dual quaternions, which is easily
extendable to multi-arm manipulation and to human-robot interaction (for instance, see [156]), enlightens and
eases the definition of robot objectives to be performed in the same task space. It is also more connected to
the sensor space, which improves control law robustness and accuracy [157]. Using unit dual quaternions also
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makes it easier to extract geometric parameters related to the bimanual manipulation [4]. In this context, the
framework is indeed considerably more intuitive and attractive from the control point of view.

Integrating multi-arms in a cooperative task-space environment significantly increases the complexity of
real applications, and the control technique should make sure to avoid undesirable configurations from the
arms that could degrade the overall performance—e.g., joint limits, singular configuration, etc. Undesirable
poses are seldom known a priori, thus it is useful to regard secondary constraints which provide more reactive
solutions during execution [153]. Particularly, from the pioneer work from [111], there has been a great amount
of research on solutions exploiting kinematic redundancy, that is, the additional degrees of freedom (DOF)
not required by the main task. As stressed in Chapter 5, we can exploit the degrees of freedom from the
nullspace of the task Jacobian to avoid kinematic singularities. Moreover, the same space can be used to
perform different secondary tasks (see, for instance, [117, 151–154]). Nonetheless, very few results related
to kinematic redundancy have been extended to the cooperative/multi-arm framework, despite the obvious
advantages for such a complex robotic framework stemming from a reactive self-motion.

In this chapter, we extend the results from the cooperative dual task-space [4] by adding new geometric task
primitives for the cooperative space, and by explicitly decoupling the free remaining motions from task primi-
tives in order to optimize secondary constraints. The strategy alone considerably improves the cooperative dual
task space applicability to real world practical problems as they yield, in conjunction with suitable controllers,
to a much more robust and reactive scenario for the cooperative manipulation.

Still, the main contribution of this chapter lies on a novel proposal for task execution. Herein, we focus
on bimanual task execution within the cooperative dual task-space, but the strategy is more general and can
be applied to single manipulators or extended to multiple arm manipulation. The goal is to cope with highly
complex task descriptions, which are common in a cooperative manipulation scenario, while enlarging the
self-motion space. This is performed by relaxing control requirements within regions of interests, and thus
adding additional DOF for a secondary task. To ensure stability to the desired region of interest, we propose
a hysteresis-based switching control strategy which aims to reduce the complexity of the main task while
maintaining the pose (i.e., position and orientation) within the valid region.

7.1 COOPERATIVE DUAL TASK-SPACE: DESCRIPTION AND CON-
TROL

This section presents the results concerning the cooperative dual task-space derived in [1] to provide the
reader basic concepts and a brief background required to the main application from this chapter, namely the
flexible task execution applied to bimanual manipulation. Moreover, we also introduce the concept of control-
lable sets in the context of the proposed task primitives and a brief analysis on task primitives stability.

Consider a two-arm robot where x1 and x2 represent—with respect to a common coordinate system—the
dual position of left and right end-effectors, respectively, as illustrated in Figure 7.1. The relative dual position
determines the configuration of the left end-effector with respect to the right one, whereas the absolute dual
position corresponds to a frame located between the end-effectors [4]. The formal definition is given in the
following.
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Figure 7.1: Cooperative dual task-space representation: the absolute and relative dual positions xa and xr
completely describe the manipulation task [1].

Definition 7.1. (From [1, 4]) The relative and absolute dual positions can be defined as

xr , x∗2x1 (7.1)

xa , x2xr/2, (7.2)

where xr/2 is the transformation that corresponds to half of the angle φr around the axis nr =

ı̂nx+ ̂ny + k̂nz of the quaternion P (xr) and half of the translation between the two arms [4].
The dual quaternions xa and xr are called cooperative variables. The relative and absolute
dual positions, xr and xa, respectively, are shown in Figure 7.1.

As shown in [1, 4], the relative dual quaternion Jacobian1 satisfies the relation vec8 ẋr = JxrΘ̇, where

Θ ,
[
θT1 θT2

]T
(7.3)

is the vector composed of the joint variables of the first and second arms and Jxr is the relative cooperative
task-space Jacobian. The relative Jacobian is a function of the individual Jacobians from the first (Jx1

) and
second arm (Jx2

) described by

Jxr =
[

+

H (x∗2)Jx1

−
H (x1)J∗x2

]
. (7.4)

Analogously to the relative dual quaternion Jacobian, Adorno et al. [4] showed that the absolute dual quater-
nion Jacobian satisfies the relation

vec8 ẋa = JxaΘ̇. (7.5)

The absolute dual quaternion based Jacobian is described by

Jxa =
−
H
(
xr/2

)
Jx2ext

+
+

H (x2)Jxr/2 ,
(7.6)

where Jx2ext
=
[
08×dim θ1 Jx2

]
, with dimθ1 corresponding to the dimension of the joint vector θ1, and

Jxr/2 =

 1
2

−
H4

(
r∗r/2

)
JP(xr)

1
4

(
−
H4

(
rr/2

)
Jpr +

+

H4 (pr)JP(xr/2)

)


1In this chapter, all presented task Jacobians describe the mapping between the joint velocities vector to an Euclidean representation of
the corresponding unit dual quaternion—similarly to Jvec described in (2.38)-(2.41). Herein, we will drop the ’vec’ subscript associated to
this particular mapping. The slight abuse of notation herein stems from the necessity to represent a number of different task Jacobians and
to use the subscript to describe the corresponding task in a simplified manner.
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Control primitive utask Task Jacobian

Dual position x = r + ε (1/2)pr Jx (Eq. (7.4) and (7.5))
Cartesian position p Jp (Eq. (7.7))
Orientation r JP(x) (four upper rows of Jx)
Square distance ‖p‖2 Jd (Eq. (7.8))

Table 7.1: Control primitives and correspondent task Jacobians.

with JP(xr/2)
corresponding to the four upper rows of the relative dual quaternion Jacobian Jxr (7.4).

Proposition 7.1. Consider a unit dual quaternion x with vec8 ẋ = Jxθ̇. Let p be the translation quaternion
related to x, then [1]

vec4 ṗ = Jpθ̇, (7.7)

where Jp = 2
−
H4 (P (x∗))JD(x) + 2

+

H4 (D (x))J∗P(x).

Proposition 7.2. Let p be a translation that satisfies (7.7). The square distance Jacobian Jd is the Jacobian
that satisfies

ċ = Jdθ̇, (7.8)

where c , ‖p‖2 and Jd = 2 (vec4 p)
T
Jp [1].

In the context of Definition 7.1 and the geometric primitives derived from the cooperative dual task-space,
the forward kinematics model (FKM) of all feasible bimanual tasks must be directly related to the kinematics
from both manipulators and, consequently, they are function of the augmented joint vector Θ defined in (7.3).
In this sense, any task primitive utask (e.g., relative/absolute distance, translation, orientation or pose) in the
cooperative dual task space can be described as the function utask = f task(Θ), and the differential kinematics
related to each task primitive yields

vec8 ẋtask = J taskΘ̇, (7.9)

where J task is a predefined Jacobian that relates the augmented joint vector (7.3) with the derivative of the task
primitive. The task primitives are summarized in Table 7.1.

7.1.1 Primitive controllable sets

Among the vast number of tasks a cooperative manipulation between two arms has to offer, we shall focus
on some few geometric primitives that would be useful to most interactions: relative distance between arms,
relative Cartesian position, orientation, absolute orientation and position, and combinations between relative
and absolute primitives. Each task primitive requires different degrees of freedom from the two-arm system
(e.g., 1 for the relative distance, 3 for the relative position, 6 for the relative pose, etc) and, as previously
discussed, it would be interesting to perform such task with less degrees of freedom as possible. The idea of
reducing the number of DOF used for a given task is to allow the self motion to perform secondary tasks such
as collision avoidance, joint limit control, and so on.

In this sense, we define geometric controllable sets which stem from the desired task primitives on the
cooperative dual space, that is, intuitive geometric spaces that are controllable from each task definition.
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Definition 7.2. For a given set S ⊆ Spin(3) nR3, the following proper subsets can be drawn
from geometric structures of interest with regard to this set,

Rd (S) =
{
d ∈ R | d =

∥∥T (xg)∥∥ , xg ∈ S
}
,

Rt (S) =
{
t ∈ H0 | t = T

(
xg
)
, xg ∈ S

}
,

Ro (S) =
{
r ∈ Spin(3) | r = P

(
xg
)
, xg ∈ S

}
,

where T
(
xg
)
, 2D

(
xg
)
P
(
xg
)∗

is the translation corresponding to the pose xg and H0 is
the set of all pure quaternions, which is algebraically isomorphic to R3 (see Definition 2.9).

In order to better specify the geometric primitives inside the CDTS, let us consider the spaces Rrw,Raw ⊂
Spin(3)nR3 which correspond to the space of controllable relative poses and absolute poses, respectively.
Henceforth, we will also consider regions defined by proper subsets of Rrw and Raw that correspond to the
relative/absolute distance, orientation and position.

From the relative distance primitive, it is clear that we can only control the distance of one arm with respect
to the other, which results in the controllable region

R1 = {dr ∈ Rd (Rrw) | drm ≤ dr ≤ drM},

where dm and dM are the boundaries of the feasible distance. Those boundaries are defined by the bimanual
task to be executed. In this context, all relative distances belong to the set R1, the radius of a ball in the set R2

that defines all relative position between arms; as a consequence R1 is clearly a proper subset of2

R2 = {tr ∈ Rt (Rrw) | trm � tr � trM},

where trm and trM are the boundaries of the relative position. The controllable region that arises from the
primitive that corresponds to the relative orientation is described by the set

R3 = {rr ∈ Ro (Rrw) | rr = cos(φ/2) + sin(φ/2)n

0 ≤ 〈m,n〉 ≤ ‖cosβr‖ , ‖m‖ = 1, φrm ≤ φ ≤ φrM} ,

where the operation 〈m,n〉 is the dot product between pure quaternions m and n (analogous to the inner
product between two vectors in R3 as seen in Definition 2.9) that, together with the opening angle βr, provides
the solid cone in which the rotation axis n lies. In addition, φrm and φrM are the boundaries for the feasible
rotation around axis n.

Analogously, the controllable sets associated with the absolute position and absolute orientation are de-
scribed by R4 and R5, that is,

R4 = {ta ∈ Rt (Raw) | tam � ta � taM},

and

R5 = {ra ∈ Ro (Raw) | ra = cos(φ/2) + sin(φ/2)n

0 ≤ 〈m,n〉 ≤ ‖cosβa‖ , ‖m‖ = 1, φam ≤ φ ≤ φaM} ,
2Given two translation quaternions t1 and t2, the relation t1 � t2 implies that all elements of t1 are less than or equal to the

corresponding elements of t2.
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Task primitive ui
Error Required Vector ζ describing

description number of DOF the required controllable sets

Relative distance e1 1 ζ1 =
[R1

1
R2

0
R3

0
R4

0
R5

0
]

Relative position e2 3 ζ2 =
[

1 1 0 0 0
]

Relative orientation e3 3 ζ3 =
[

0 0 1 0 0
]

Relative pose e4 6 ζ4 =
[

1 1 1 0 0
]

Absolute position & relative distance e5 4 ζ5 =
[

1 0 0 1 0
]

Complete position e6 6 ζ6 =
[

1 1 0 1 0
]

Complete orientation e7 6 ζ7 =
[

0 0 1 0 1
]

Absolute position & relative pose e8 9 ζ8 =
[

1 1 1 1 0
]

Absolute orientation & relative pose e9 9 ζ9 =
[

1 1 1 0 1
]

Complete dual pose e10 12 ζ10 =
[

1 1 1 1 1
]

Table 7.2: Summary of tasks primitives and the corresponding controllable sets

where tam and taM are the boundaries of the absolute position whereas φam and φaM are the boundaries for
the feasible rotation around axis n. The operation 〈m,n〉 together with the opening angle βa, provides the
solid cone in which the rotation axis n lies.

The regions R2 ∪ R3 and R4 ∪ R5 define the controllable sets related to the relative pose and absolute
pose in the cooperative space, respectively. Hence, R2 and R3 are proper subsets of the space of controllable
relative poses Rrw and, similarly, R4 and R5 are proper subsets of the space of controllable absolute poses
Raw.

The sets Ri, i={1, . . . , 5}, define the controllable regions, which can be combined and related with coop-
erative tasks, in such a way that we can easily define which task primitive should be controlled in order to fulfill
a specific geometric task objective.

To summarize the results from the task primitives with their respective controllable sets, Table 7.2 describes
the specifications for task primitive definition, error description, the required number of DOFs, and the vector
description that characterizes the task required controllable sets.

7.1.2 Task primitive stability

In this subsection, we address the stability analysis and control design strategy for the error dynamics
related to the task primitives ui presented in Table 7.2, that is,

ėi = −J iΘ̇, (7.10)

where i={1, . . . , 10}, the error is defined as ei=ui,d−ui with u̇i,d=0. Each J i is given as in Table 7.1 or
stacked depending on the task primitive. For instance, the task primitive of the relative position is u2 = vec4 pr
and the correspondent Jacobian is J2 = Jp, which in this case is calculated using (7.7) using xr and Jxr ; for

the complete dual pose, u10 =
[

vec8 x
T
r vec8 x

T
a

]T
and J10 =

[
JTxr JTxa

]T
.

Let us choose as Lyapunov function candidate, for each task primitive i, the positive definite quadratic
function Vi=(1/2)eTi ei. The time-derivative with respect to t along the trajectory (7.10) yields V̇i = −eTi J iΘ̇.
It is clear that ėi is a stable vector field within its particular controllable set, and the least-square solution
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Θ̇ = J+
i Kei, where J+

i is the right pseudoinverse of J i and K is positive definite, ensures the stability of
(7.10). As a preliminary approach, we assumed a very simple error definition, but the strategy can easily be
extended to invariant errors and errors defined directly at the dual quaternion space.

It is also important to highlight that the least-square solution is a particular result. Among the range of
feasible solutions for (7.10), we are obviously interested to regard solutions that exploit existing redundancy
from the manipulators as to perform secondary tasks. In this sense, a more general solution for (7.10), which
is used to derive redundancy-based controllers, is given by [111, 158]

Θ̇ = J+
i Kei + P iz2, (7.11)

where z2 is an arbitrary control input, which will be used to apply a secondary task, and P i = I − J+
i J i is

the operator that projects z2 onto the nullspace of J i.

The secondary task will be performed at the best using the self-motion of the cooperative dual space, that is,
using the the movements of the links (from both manipulators) which do not disturb the configuration trajectory
of the resulting main cooperative task. Therefore, the vector input z can be defined to optimize a secondary
constraint using least-square, similarly to the solution of the main task.

In this context, given any secondary task ṡ = JsΘ̇ and the redundancy-based controller (7.11), we can
easily track its dynamics along the nullspace of the first task with the input z2, that is,

ṡ = JsJ
+
i Kei + JsP iz2,

such that the minimal solution for
∥∥∥ṡ− JsΘ̇∥∥∥, yields

z2 = (JsP i)
+ (
ṡ− JsJ+

i Kei
)
. (7.12)

Remark 7.1. The redundancy-controller (7.11) can be easily extended to exploit recent self-motion strategies,
such as [152] to regard k levels of the hierarchical subtasks or as in [153] to regard a directional nullspace
approach.

7.2 SWITCHING CONTROL SCHEME FOR FLEXIBLE COOPERA-
TIVE TASK EXECUTION

This section proposes the novel switching control scheme for flexible task execution in the CDTS. The idea
is to extend the results from Section 7.1, reduce control effort and provides the self-motion optimization with
additional degrees of freedom by relaxing the control requirements in accordance to user-defined geometric
task objectives.

7.2.1 Less restricted controller design

The redundancy-controller defined in (7.11) ensures stability of the primitive task variable dynamics within
the task controllable set. In this sense, converging to an element within R1, which corresponds to controlling
the relative distance between arms, for example to hold a box of tools, requires the stabilization of the error e1.
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Figure 7.2: Illustration of controllable sets from primitive tasks.

Furthermore, to take the box from a point A to a drop region B, without dropping its contents, we must
control the cooperative variables xa and xr, which yields an equilibrium within the controllable set R2∪R3∪
R4 ∪R5.

The more complicate the main task is, the more degrees of freedom it uses, and the more difficult it is to
apply the secondary constraints [153]. If the execution requires all the available DOFs, it yields a nonredundant
bimanual system, and the task leaves no room for self-motion in (7.11).

In practice, however, a closer look at the task definition reveals that it usually can be satisfied even if the
exact configuration has not been met, that is, it does not converge to the desired set-point but remains stable
inside a surrounding region. In this context, the main idea is to define bounded geometric regions, instead of
a complete pose configuration. For instance, in our example the rotation axis of the box does not need to be
aligned with the z-axis from the base frame; however, it must be within a valid region around this equilibrium,
particularly a region defined by a cone, as depicted in Figure 7.2.

Inside the valid region, which respects given bounds for the orientation and position, the control can be
relaxed as the orientation is already satisfied. By switching to a task primitive that requires less DOF, we
enlarge the self-motion space, which can be used to hold or reduce the orientation error while optimizing a
secondary task. Both peripheral objectives compete for the enlarged self-motion in accordance to the proximity
of the boundary region or with a given criterion defined by the secondary task.

The competition for the motion in the nullspace may be defined hierarchically [117,152] or within a convex
context as described in [154]. The latter technique will be used throughout this chapter, as it provides a better
enlightenment of the competition process. Therefore, inside a valid region, the resulting controller yields

Θ̇ = J+
i Kei + ΘESM, (7.13)

where the enlarged self motion (ESM) dynamics is projected upon the vector input ΘESM, such that

ΘESM = χzOT + (1− χ)zST , (7.14)

with χ∈[0, 1] being any smooth function that describes the competition scenario and yields importance to either
the original primitive task zOT (from Table 7.2) or to the secondary task zST , which are competing for the
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nullspace motion, that is,

zOT = (JkP i)
+ (
ėk − JkJ+

i Kei
)
,

zST = (JsP i)
+ (
ṡ− JsJ+

i Kei
)
,

(7.15)

where k∈{2, . . . , 10} is the index of the current more restricted primitive task ek (with regard to the active
task ei). In other words, the more restricted primitive task is the one that requires additional DOF from the
cooperative space compared to the active primitive task ei, i∈{1, . . . , 9}. The secondary task to be optimized
and its corresponding Jacobian are denoted respectively by ṡ and Js. Throughout this thesis, we shall assume
a linear χ defined within the hysteresis region with bounds corresponding to the boundaries of the valid region
and the hysteresis region.

7.2.2 Hysteresis-based switching strategy

This subsection presents a new switching strategy that reduces the required number of DOF for a given task,
thus enlarging the self-motion space, subjected to a set of geometric constraints upon the cooperative variables.

The switching rule relies on the pertinence of the current pose within sets of interest, I, which are regions
that respect some bounds for the orientation and/or position. These regions of interest must be designed as
subsets from the primitive controllable sets Ri, i={1, . . . , 5}, as depicted in Figure 7.3.

The choice of the task primitive to be executed is therefore given in accordance to the required control-
lable sets to satisfy the regions of interest. As we reach a valid region, we may withdraw the controllable
set requirement corresponding to that region (e.g., as pose A is driven towards pose B, in Figure 7.3). The
switching therefore aims to reduce the required number of DOFs, whereas maintaining the relative and abso-
lute configurations at the valid region. Now, if the nullspace motion from the less-restricted3 controller acts as
a disturbance, pushing the task variable to the boundary of the valid region, we must switch back to a more-
restricted controller, in the sense of acting upon more DOF, to ensure that the trajectory will stabilize inside the
valid region.

Proposition 7.3 (Hysteresis-based switched controller). Given a task objective defined within regions of inter-
est I`⊆R`, `={1, . . . , 5}, we investigate if an element h` is amid I`, where h` stems from a given parameteri-
zation from the active primitive task into the set R`.

To ease the supervisor definition, we define a vector σ=
[
σ1 σ2 σ3 σ4 σ5

]
from characteristic piece-

wise constant functions σ`∈{0, 1}, such that,

σ` =


0, if h` ∈ δI`,

1, if h` 6∈ I`,

σ`, otherwise, h`∈I` and h` 6∈δI`,

where δ∈[0, 1] is the hysteresis parameter which yields, with a slight abuse of notation, the subset δI` with
respect to the region geometric bounds. In other words, σ` = 0 if h` lies within the smaller subspace δI`, that
is, if the relaxed task is being fully satisfied. On the other hand, σ` = 1 if the task lies outside the region of
validity I` and needs to be activated to drive the pose to a valid region. The space between δI` and I` ensures
slow switching.

3In the sequel, to ease description, we refer to less or more-restricted controllers with respect to the number of DOF required.
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Figure 7.3: Given a task defined through the regions of interest, Ii, Ij , the valid region (in blue) is amid Ri∪Rj .
For example, if the initial pose satisfies only Ii (as in pose C), the active task primitive must be controllable at
Rj , but may relax the constraint upon Ri which can be optimized within the nullspace.

The less restricted controller (7.13)-(7.15) is switched along tasks primitives. Hence, the active task i lies
within a controllable set characterized by the vector ζi such that the required controllable set σ is a subset of
the active task controllable set. Thus,

i = arg min DOF {ei} , subject to σ�ζi,

k = arg min DOF {ek} , subject to ζi�ζk,
(7.16)

where k is the task with higher hierarchy from the active task i; that is, it defines the task primitive more
restricted than ei (active task with less DOF requirements). In the particular case when the task i is given by
e10, there is no k that satisfies (7.16), thus the peripheral task zOT is null, and χ→ 0.

The advantage of using the hysteresis-based switched controller of Proposition 7.3 is that, given the hystere-
sis region defined by the region designed between Ii and δIi, as depicted in Figure 7.3 (pose D), the hysteresis
strategy enforces state-dependent constraints, ensuring slow switching. This strategy eliminates the possibility
of infinite switches on a finite interval, that is, it excludes chattering, or Zeno solutions [159].

Taking the worst case from the scenarios given in Table 7.2, we ought to recur to the complete cooperative
task e10 which ensures stability4 for any equilibrium in the manipulator workspace. In this sense, the switch-
ing strategy is completely controllable, as the controllable set is directly related to the sets from individual
subsystems [160].

Moreover, all task primitives are derived from the dual pose e10 and can be regarded as a particular case
from the complete dual pose task with different equilibria. Note that all equilibria from any task primitive can
be assessed from e10 since the set of equilibria from all controllable sets are subsets of the equilibria from e10.
Nevertheless, stability analysis in the literature of hybrid and switched systems has generally been restricted to
a single equilibrium point common to all subsystems [161]. Indeed, to the date, the literature for stability of
multi-equilibria has been mostly restricted to the excel results from [161–164].

4In this chapter, we are neglecting the drawbacks from the double cover of Spin(3) n R3 over SE(3), which may lead to unwinding
effects at the end-effector [42, 43]. Nonetheless, an extension for the hybrid controller from Chapter 6 would suffice to ensure global
stability.
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As the stability of an equilibrium in the classic sense does not apply as the equilibrium switches during
execution, a new definition is proposed in [163] to analyze the convergence to a compact set instead of an
equilibrium. It can be stated as follows:

Definition 7.3. The switching equilibria system has a Stable Average Equilibrium if, for an
arbitrary initial condition, the trajectory converges to a ball around the equilibrium with radius
M , [163].

In this context, as we define a desired region for a given task objective, the center of each valid set corre-
sponds to the equilibrium for the corresponding most-restricted task primitive. For any arbitrary pose external
or at the boundary of the combined valid sets, the most restricted controller for the task primitive is activated,
which ensures convergence to the valid region. Therefore, the switching strategy in Proposition 7.3 is stable
in the sense of Definition 7.3 with respect to the pose at the center of the valid sets, with radius defined by the
boundaries of those regions.

7.3 NUMERICAL EXAMPLES

To demonstrate the effectiveness of the proposed switching criterion to enlarge the self-motion space in the
cooperative dual task-space, we designed in simulation a context with two seven-DOF KUKA LWR manipula-
tors performing a cooperative manipulation, and derived the forward kinematics in the CDTS and the Jacobian
matrices for primitive cooperative tasks with the aid of the with the DQ_robotics toolbox5 and the Robotics
Toolbox6 in MATLAB.

In the proposed scenario, both arms must hold a box while transporting it to another location. Besides
controlling the complete pose of the attached coordinate system, in a practical application the task would
demand the control of the relative pose, as solely the distance control could cause undesired twists and internal
forces upon the box.

Nonetheless, such phenomena could be avoided by simply enforcing a valid region for the relative position.
Moreover, we could relax the description for the absolute orientation, since we just want to avoid sharp slant
or obliquity.

With given requirements, a traditional cooperative framework [4] would require full dual pose control
(twelve DOF), which makes more difficult to satisfy secondary tasks.

In contrast, the flexible framework could relax several constraints and enlarge the self-motion space by
using switching rules proposed in Section 7.2. In this sense, besides controlling the relative distance and
orientation together with the absolute position of the manipulated box, we design regions of interest for the box
absolute orientation and for the relative position between arms,

I2 = {tr ∈ R2 | (0.95) t0�tr� (1.05) t0}

I5 =
{
ra ∈ R5 |m = k̂, 0≤〈m,n〉≤ cosβm

} (7.17)

5http://dqrobotics.sourceforge.net
6http://petercorke.com/Robotics_Toolbox.html
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Figure 7.4: Evolution of the error norm for the switched main task ei.

where I2 define a cubic region covering the original relative position t0, and I5 define a cone with opening
angle of βm = 25◦ around axism, as depicted in Figure 7.2.

Let us regard a subtask that consists in avoiding joint limits, which is the secondary constraint to be opti-
mized. Given the vector of joint variables Θ for the two-arm system, the functional is given by

s =

n∑
i=1

1
2 (θi − θ̄i)2, (7.18)

with θ̄i = 0.5 (θi,max+θi,min), and differential forward kinematics given by ṡ = JsΘ̇, where Js = ∇s =(
θ1 − θ̄1, · · · , θn − θ̄n

)
.

The results from the described scenario are shown in Figures 7.4 to 7.6. Besides the switching strategy, it
is clear that the error ei from the task execution converges to zero. The overshoot experienced around 0.8 s is
due to the switching rule that augments the error vector with the orientation error vector.

Once the pose achieves a desired region in (7.17), the switching controller acts to enlarge the nullspace
while maintaining the pose within (7.17). After the transient switches, the steady-error for the angle β between
the rotation axis of the box and m is only 6◦. In addition, the secondary task (7.18)—i.e., the joint limit
optimization—performs considerably superior compared to the traditional cooperative framework, which yields
an error about 45% higher than the proposed flexible framework. The result enlightens the importance of
the new flexible framework for the exploitation of the self-motion dynamics, particularly when performing
bimanual tasks.
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CONCLUSIONS

This manuscript has focused on the study of advanced kinematic control techniques in the perspective of robust-
ness, optimality and flexibility and their applications to robot manipulators. These features have been central
to this thesis and are cornerstones to support the challenges that arise from the robots of tomorrow, which are
expected to perform sophisticated tasks deployed at increasingly less controlled scenarios. Moreover, since
rigid body representation is paramount to the general kinematic control problem, herein we found unit dual
quaternion formalism to be a rewarding alternative for representing finite rigid body transformations in space.
Therefore, throughout this manuscript dual quaternion algebra has been the common tool used in proposed
contributions.

Among the multiple dimensions concerning the control of robot manipulators, we first addressed their
liability to modeling errors, uncertainties, and exogenous disturbances. With a detailed investigation on their
sources and effects over the robot orientation and translation kinematics, we extracted an intuitive connection
between their detrimental influence and performance over the task trajectory. Adapting classic H∞ theory—
suitable only for additive noises—to the algebra of dual quaternions, we derived easy-to-implement closed
form H∞ control criteria. The proposed solutions cope with robustness requirements, disturbance attenuation
and performance properties with minimal control gains.

Moreover, to address the increasing requirements for manipulation accuracy in the context of compliant
robots and reduced velocity profiles for multiple arms and human robot interaction, we proposed novel control
strategies based on optimization theory adapted to dual quaternion space. The criteria derived herein differs
from classic solutions in the sense that we focused on the optimization of task-space variables, e.g., the trajec-
tory error with respect to the end-effector velocity. In addition to prevent drifts and overshoots, the analysis is
particularly relevant in scenarios that require precise and safe interaction in contrast to convergence speed. For
instance, the literature shows that, in human-robot interactions, controlled speed at task-space largely influences
the human acceptance of the contact and reduces stress.

As the kinematic approach is liable to structure singularities regardless of the rigid body representation,
we also addressed solutions to ensure proper manipulability throughout the whole task-space. First, we proved
that classic self-motion techniques for redundant arms can be extended to the proposed dual quaternion control
formalism. At the same time, we derived a novel singularity avoidance technique using the dual quaternion
algebra for non-redundant arms that explicitly regulates the trade-off between the effort of avoiding inescapable
singularities with respect to the error associated to the inherent trajectory modifications.

Moreover, the topological obstruction inherent to any rigid body representation that prevents global stabil-
ity with a continuous control law has also been investigated. The topological restriction—that renders the un-
winding phenomenon within unit dual quaternions—has been addressed using an hybrid control strategy. The
criterion based on a switching control law with hysteresis ensures robust global stabilization for the closed-loop
system.

Finally, a novel criterion based on switched control theory applied in a different context is introduced
to enrich the self-motion of the manipulator as to cope with additional reactiveness requirements from more
complex control tasks. A novel concept, namely, flexible task execution was introduced to relax control speci-
fications according to the end-effector’s pose pertinence to regions of interest where fewer degrees of freedom
are controlled. Hence, the task Jacobian nullspace is enlarged with additional DOFs to perform and improve
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self-motion tasks. The strategy was introduced in the context of bimanual manipulation since the control of
multiarms better illustrate the necessity for additional DOFs and reactiveness, while the two-arm approach
maintains the simplicity of the analysis.

For all the proposed approaches herein, rigorous mathematical evidence have been provided both to ensure
accuracy and consistency and to provide means for proper practical applications and future comparison. Fur-
thermore, several illustrative examples and simulations have been provided throughout this thesis to highlight
the resulting criteria efficiency and reliability. Additional experiments have also been deployed in the context
of multi-arm manipulation and optimization within compliant manipulators.

Substantial effort has been made to properly approach these problems in the field of kinematic control of
robot manipulators using the algebra of dual quaternions and to unfold the tools for enabling sophisticated task
execution. Despite the encouraging results in this thesis, there are further contributions that could be addressed
in future research. Among possible improvements and further extensions, we highlight the following.

From the optimal control results within the algebra of dual quaternions presented in Chapter 7, a further step
would be to consider additional optimization criteria with respect to the task-space variables. For instance, to
consider minimal time optimal control by adapting classic works from [98, 100] to task-space framework with
respect to optimal end-effector velocities. Additional task-space constraints such as obstacles and joint-limits
could also be addressed within the control specifications.

All techniques proposed in this thesis concern non-redundant and redundant manipulators. As a conse-
quence, a different strategy would be required for the case of underactuated manipulators. In this sense, a
further contribution to be addressed would be to extend the switching control result presented in our previous
work [165] to the context of stabilization at nonequilibrium points from [162]. Therein, a switching strategy
is provided to stabilize the state of the system to points different from the set of subsystems equilibria. The
dual quaternion formalism and the controllable sets from task primitives [1, 165] combined with the results
from [162] unfolds control tools for underactuated manipulators to stabilize unreachable poses, that is, points
outside the range space from available task primitives. Still at the context of our previous work [165], to incor-
porate a higher level switching supervisor based on automata, Petri net, or Dioid algebra theories is the natural
next step towards the automation of the flexible manipulation strategy.

Moreover, to address a particular set of problems that arises from novel scenarios concerning surgical
robotics and teleoperation, and that have been neglected herein, an important future contribution would be to
extend our previous work [166] on networked control of quaternion based attitude subjected to unknown time-
varying delays to the control analysis of a complete rigid body transformation using dual quaternion algebra.
The work would be a first step towards a formal theory for the control of manipulators liable to time-delays.
The analysis is also crucial for robust robotic manufacturing scenarios and service robots where bi-manual
operation or human-robotic interaction with delayed human response are required.

Last, we have started some work towards extending the control results herein to filtering and estimation
context within unit dual quaternion. The work in collaboration with Prof. Henrique Marra Menegaz from the
University of Brasilia is a first step towards the study of a general separation principle theory within unit dual
quaternion in the context of rigid body motion in robotics.
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RESUMO ESTENDIDO EM LÍNGUA
PORTUGUESA

O objetivo principal deste trabalho é contribuir para a compreensão e para o avanço das técnicas de controle
para robôs manipuladores a partir da exploração da álgebra de quatérnios duais. O presente trabalho fornece
soluções para uma série de problemas relevantes e desafiadores para o controle cinemático de robôs manipu-
ladores no espaço de tarefas com ênfase na precisão, robustez, otimização e flexibilidade. Estas características
são essenciais para o desenvolvimento de ferramentas que permitam robôs executarem tarefas sofisticadas em
cenários cada vez menos controlados.

A contínua investigação e pesquisa nas áreas de controle, cibernética e automação trouxeram o campo da
robótica à beira de uma nova mudança de paradigma. O futuro da robótica está sendo estudado hoje e move-
se em direção de capacitar robôs para execução de tarefas mais complexas do que as puramente repetitivas
em linhas de montagem. Desta forma, os robôs tendem a participar ativamente da vida cotidiana dos seres
humanos, a partir de uma interação mais fluída e robusta com outros robôs e com seres humanos em ambientes
menos restritos.

Desde a revolução industrial no século 18 até os dia atuais, a relação humana com as máquinas mudou
profundamente e rapidamente. Desde os primeiros robôs digitalmente operados e programáveis da Unimation
nos anos cinquenta até o estado-da-arte mais recente, a robótica desempenhou—e ainda desempenha—um
papel significativo nesta mudança de atitude que trouxe as máquinas para mais perto de seres humanos. Com
o avanço das técnicas de controle baseadas em Lyapunov, das teorias de estimação baseadas em Kalman, e
no desenvolvimento das técnicas de realimentação e cibernética de Wiener, a robótica floresceu como uma
ciência voltada à compreensão e manipulação do mundo físico através de dispositivos mecânicos baseados em
computador1.

Ainda há muito a ser feito em robótica e estamos muito longe do cenário futurista idealizado por Karel
Čapek e Isaac Asimov2, mas a robótica é um campo com um enorme potencial transformador e capaz de mudar
a forma como interagimos com o mundo e com nós mesmos. Apesar de ser um campo relativamente novo de
estudo, a robótica tornou-se um campo inter e multidisciplinar de estudo, estimulando pesquisas e atraindo
engenheiros de diversas áreas—como, por exemplo, controle, automação, mecânica, informática, elétrica,
cibernética—cientistas, matemáticos , médicos, psicólogos, entre outros. Robôs estão atualmente presentes
em diversos aspectos da construção da vida moderna, seja na fabricação industrial, na robótica de serviços,
em carros autonomamente dirigidos, em braços manipuladores que auxiliam cirurgiões e outros dispositivos
referentes a robótica médica, ou em plataformas robóticas para exploração aquática e planetária.

Não obstante, a maioria das aplicações que envolvem robôs—particularmente, em ambientes industriais—
ainda estão usualmente limitadas pelas seguintes características: por segurança, os robôs trabalham em ambi-
entes isolados de humanos, eles operam em ambientes que são bem estruturados e totalmente conhecidos, e são
ainda condicionados a execução de tarefas simples e repetitivas.

1De acordo com a concepção de robótica apresentada por Thrun et al. [7]
2O termo do “robô” (do inglês, Robot) foi utilizado pela primeira vez na peça chamada “Robôs Universais de Rossum–RUR” (do inglês,

Rossum’s Universal Robots) escrita pelo autor Tcheco Karel Čapek no qual ele descreve máquinas inteligentes que se assemelham a seres
humanos e executam tarefas complexas e indesejáveis para seres humanos. Na década de quarenta, Asimov cunhou o termo “robótica” (do
inglês, robotics) e postulou as famosas três leis da robótica.
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Em contrapartida, espera-se que os robôs do amanhã sejam capazes de implementar e executar tarefas em
ambientes cada vez menos estruturados e controlados, nos quais robustez e flexibilidade tornam-se caracterís-
ticas primordiais para o sucesso de cada operação. Neste cenário, espera-se que os robôs compreendam mu-
danças de ambientes e diferentes contextos, naveguem em ambientes povoados e não estruturados, e trabalhem
com outros robôs e com os seres humanos. Investigando com maiores detalhes estes problemas, observa-se
que mesmo problemas aparentemente simples como, por exemplo, a interpretação e medição de distância a
partir de um sensor a laser, tornam-se bastante desafiadores devido à complexidade de lidarmos com ambientes
realistas e as incertezas inerentes a este contexto. Estas incertezas são propagadas para problemas de decisão,
planejamento e controle—exigindo respostas robustas para cada problema.

Esta tese foi motivada pelos novos desafios que surgem a partir do cenário idealizado acima e pela quan-
tidade considerável de trabalho ainda a ser feito para alcançarmos tais características e funcionalidades. A
tese foi desenvolvida no contexto do projeto Towards Robust Robotic Manufacturing do grupo Model-based
Embedded and Robotic Systems group (MERS) do laboratório Computer Science and Artificial Intelligence
Laboratory (CSAIL) da universidade Massachusetts Institute of Technology (MIT) em parceria com o grupo
de pesquisa Mechatronics, Control, and Robotics research group (MACRO) da Universidade Federal de Minas
Gerais (UFMG) e do Laboratório de Automação e Robótica (LARA) da Universidade de Brasília.

O projeto financiado pela Boeing, e a parceria pelo CNPq-MIT MISTI Global Seed Funds, destina-se a
promoção do estado-da-arte em robótica e o desenvolvimento de ferramentas necessárias para o florescer de
uma nova robótica, a robótica do amanhã. Neste contexto, espera-se que equipes de robôs atuem como pares
colaborando a fim de alavancar suas diferentes habilidades na realização de tarefas complexas e elaboradas de
forma robusta e eficiente em ambientes de trabalho semi-estruturados e, da mesma forma, sejam capazes de
executar tarefas com auxílio humano.

Dentre as múltiplas dimensões deste projeto, o objetivo deste trabalho é contribuir para o entendimento
e para o avanço das técnicas de controle para robôs manipuladores no sentido de robustez, otimização e
flexibilidade—recursos essenciais para o nível esperado e necessário de desempenho e de autonomia robótica.
Devido à necessidade de robôs operarem em diferentes condições e ambientes, e executarem tarefas complexas
e variantes no tempo, as estratégias de controle também devem permitir reatividade. Assim, o presente trabalho
foca-se em estratégias de controle cinemáticas no espaço de trabalho. Neste ponto, é essencial ressaltar que
este nível de manipulação robótica ainda é um grande desafio e essencial para o florescer do cenário robótico
idealizado.

A fim de estudar e projetar técnicas de controle robusto, ótimo e que permitam a flexibilização de tarefas
para robôs manipuladores, esta tese explora as vantagens da álgebra de quatérnios duais para modelar e con-
trolar a cinemática acoplada, rotação e translação, do robô manipulador no espaço de tarefas. Neste sentido,
esta tese também pode ser vista como uma sequência do trabalho e da obra de Adorno [1] com referência
a utilização da álgebra de quatérnios duais para a robótica. De fato, o uso de quatérnios duais unitários em
robótica pode ser rastreado até as obras de [8–11], contudo apenas a partir do trabalho de Adorno uma estrutura
completa para modelagem cinemática de robôs por meio de quatérnios duais unitários foi estabelecida e devida-
mente normalizada. Uma análise cuidadosa sobre as contribuições decorrentes do trabalho [1] lançam alguma
luz sobre a mudança de paradigma promovida no sentido de representação de corpos rígidos no contexto de
robótica. Desta forma, este trabalho, além de lidar com os desafios inerentes ao projeto Towards Robust Robotic
Manufacturing, também objetiva estabelecer as bases de controle na álgebra de quatérnios duais e formalizar a
teoria de controle na álgebra. Para tanto, esta tese também aborda e soluciona problemas intrínsecos à álgebra
de quatérnios dual e à estrutura cinemática de robôs manipuladores—fornecendo ferramentas que permitam
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tarefas complexas e sofisticadas serem realizadas de forma robusta e eficiente.

Contribuições

A partir do formalismo de quatérnios duais unitários, esta tese apresenta soluções para uma série de prob-
lemas relevantes e difíceis que surgem no campo de controle cinemático para robôs manipuladores. Particu-
larmente nesta tese, estamos interessados em estudar e solucionar os desafios mencionados na seção anterior
que desempenham um papel importante em direção de uma robótica industrial robusta e o avanço de robôs
de serviço. Além disso, os aspectos teóricos e práticos da álgebra de quatérnios duais são considerados e es-
tudados em profundidade. Assim, esta tese também produz resultados no sentido de sistematizar técnicas de
controle a partir da álgebra de quatérnios duais.

Primeiramente, o capítulo 2 fornece ao leitor um prelúdio das contribuições a fim de introduzir o leitor
aos conceitos básicos e a base teórica matemática sobre transformações rígidas do corpo, sobre a álgebra de
quatérnios e quatérnios duais, sobre a cinemática de braços robóticos manipuladores, e a uma base da teoria de
controle utilizada. Este capítulo apresenta a estrutura necessária para entender os conceitos propostos na tese e
lança uma luz sobre a importância de uma representação matemática adequada e as vantagens que derivam da
utilização de quatérnios duais unitários.

Para além do capítulo de introdução e do capítulo de fundamentação, as principais contribuições da tese e
sua organização são descritas da seguinte forma:

Controle cinemático robusto no sentido H∞ baseado em quatérnios duais - À luz das aplicações práticas
de robótica e motivado pelo problema de otimizar o desempenho do sistema em malha fechada, o Capítulo 3
investiga e defronta-se com a suscetibilidade de manipuladores robóticos com respeito a erros de modelagem e
incertezas, distúrbios exógenos e, mais importante, apresenta soluções robustas com base na descrição e mode-
lagem explicita dos requisitos de performance como problemas de controle H∞. Os controladores cinemáticos
propostos são baseados na álgebra de quatérnios duais e são derivados de forma que o projeto de controle
aborde explicitamente as diferentes fontes de incertezas e perturbações e a influência destes sobre a cinemática
do efetuador (rotação e translação) no sentido H∞. A abordagem baseada na norma H∞ possui a vantagem de
relaxar as exigências relativas à descrição e modelagem da distribuição estatística dos ruídos—a representação
destes é significantemente complexa de ser caracterizada dentro de qualquer representação de movimentos de
corpos rígidos. Usando a álgebra de quatérnios duais, adaptamos técnicas clássicas de controle H∞—válidas
apenas para análise de perturbações aditivas—a fim de derivar estratégias de controle H∞ (de regulação e de
rastreamento) de forma fechada e de fácil implementação que também incorporam requisitos de robustez, aten-
uação de perturbação, e propriedades de desempenho, minimizando o esforço de controle exigido. Assim, a
partir dos critérios H∞ baseados em quatérnios duais, obtemos uma vínculo intuitivo e elegante entre o es-
forço de controle, os efeitos de desempenho sobre a trajetória do efetuador e diferentes fontes de incertezas e
perturbações. A eficiência dos controladores propostos são avaliadas em cenários simulados em Matlab e no
ambiente de experimentação virtual V-REP (do inglês, Virtual Robot Experimentation PLatform) da empresa
Coppelia Robotics GmbH.

Rastreamento de trajetória ótimo baseado em quatérnios duais - A fim de capacitar o manipulador
robótico para diferentes perfis de operação e equilibrar de forma mais eficiente a precisão de manipulação com
esforço de controle, particularmente no contexto de robôs complacentes, o Capítulo 4 aborda o problema de
projeto de controladores no espaço de tarefas de robô manipuladores a partir de quatérnios duais unitários e no
contexto da teoria de controle ótimo. Novas estratégias de controle no espaço de tarefas são propostas a a fim

145



de encontrar uma trajetória ótima para o efetuador no espaço de quatérnios duais, fornecendo uma ferramenta
para equilibrar de forma mais conveniente o erro do efetuador com sua velocidade no espaço de operação. O
controlador ótimo estende os resultados dos controladores baseados na álgebra de quatérnios duais propostos—
compartilhando as vantagens de inerentes da representação—e fornece ao projetista um conjunto mais intuitivo
de índices de performance, e amplia a gama de aplicações do formalismo de quatérnios duais em robótica.
Em contraste a técnicas clássicas de controle ótimo, a otimização proposta foca em variáveis do espaço de
tarefas do manipulador, simplificando consideravelmente a implementação do controlador. Como consequên-
cia, objetivamos um controlador ótimo para a velocidade do efetuador no espaço de tarefas. Esta análise é
essencial ao lidarmos com tarefas avançadas de manipulação—como, por exemplo, a manipulação em ambi-
entes perigosos ou não estruturados e manipulação com múltiplos braços—que exigem interação com maior
precisão e segurança em contraste com a velocidade de convergência. Este é o caso por exemplo, da interação
entre homem-robô na qual a velocidade do efetuador influencia largamente a aceitação humana ao contato e
reduz o estresse e desconforto que surgem a partir da interação. A velocidade controlada no espaço de tare-
fas também evita derrapagens e sobrepassos causados por grandes requisitos de acelerações nos controladores
de baixo nível do manipulador. Por fim, a fim de ilustrar a eficiência e a confiabilidade dos critérios ótimos
propostos baseados em quatérnios duais, apresentamos um conjunto de exemplos numéricos e simulações em
diferentes cenários e avaliamos os controladores experimentalmente em um manipulador complacente (Meka
A2).

Prevenção de singularidades cinemática pelo critério H∞ descrito em quatérnios duais - A fim de asse-
gurar capacidades de manipulação adequadas em toda a área de trabalho do efetudor, o Capítulo 5 investiga o
problema de prevenção de singularidades de robôs manipuladores. As singularidades desempenham um papel
significativo na concepção e controle de corpos rígidos, em particular, no contexto de robôs manipuladores. A
abordagem baseada em quatérnios duais unitários—de forma semelhante ao grupo de quatérnios para rotação
pura—oferece uma solução para o modelamento cinemático completo acoplado (rotação mais translação) sem
singularidades de representação. Não obstante, independentemente da representação movimento rígido, as
tarefas de manipulação a partir de um braço manipulador são susceptíveis a singularidades cinemáticas onde
configurações específicas das juntas tornam a cinemática direta diferencial mal-posta o que implica conse-
quentemente na perda de um ou mais graus de liberdade. O estudo e a prevenção de singularidades cinemáticas
de um manipulador é de grande importância uma vez que na vizinhança destas configurações podem surgir
vários problemas devido à perda de posto matricial da Jacobiana. Contudo, dado que a maioria das soluções de
prevenção de singularidades cinemáticas na literatura assumem que o espaço de tarefas é representado por um
espaço Euclideano, nos focamos em fornecer ferramentas que possam ser utilizadas e prevenir singularidades
cinemáticas dentro espaço de quatérnios duais. No caso de manipuladores redundantes, provamos que as téc-
nicas existentes com base no movimento no espaço nulo da Jacobiana (isto é, movimentos projetadas no seu
espaço nulo) podem ser estendidos no formalismo de quatérnios duais proposto e nas Jacobianas aqui derivadas
e, no caso de manipuladores não-redundantes, propomos uma nova estratégia de prevenção de singularidades
utilizando critérios e o controlador H∞ derivado na álgebra de quatérnios duais. Assim, a solução proposta,
além de ser adequada para o espaço de operação não-Euclideano, regula explicitamente a compensação entre
a exatidão do rastreamento de tarefas e o esforço de prevenção de singularidades inevitáveis (e para braços
não-redundantes) com base na teoria H∞.

Estabilidade global robusta baseada em controle híbrido utilizando a álgebra de quatérnios duais - As
abordagens discutidas acima e as contribuições propostas nesta tese são baseadas em quatérnios duais unitários
para a representação acoplada e compacta da cinemática de rotação e translação da movimentação do manip-
ulador sem singularidades de representação. No entanto, qualquer representação adequada para movimento
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de corpos rígidos apresenta uma obstrução topológica para a estabilização global por meio de um controlador
contínuo. A representação por meio de quatérnios duais unitários não é uma exceção. De fato, cada pose
(orientação e translação) de um corpo rígido pode ser representado por um par de quatérnios duais unitários
antipodais o que por sua vez causa o fenômeno conhecido como unwinding—no qual um corpo rígido próximo
à pose desejada pode convergir para o ponto antipodal mais distante que por sua vez representa a mesma pose.
Neste contexto e utilizando o formalismo de quatérnios duais unitários, o Capítulo 6 aborda o problema da
estabilização global da pose de um corpo rígido. Uma estratégia híbrida de controle é utilizada na derivação
de um controlador chaveado baseado em histerese de modo que a estabilidade assintótica global do sistema em
malha fechada é assegurada, e de tal forma que o controlador seja robusto contra pequenas perturbações arbi-
trárias. O controlador resultante é descrito em termos de transformações de corpos rígidos dentro da álgebra
de quatérnios duais. Ademais, utilizando simulações numéricas ilustramos os problemas decorrentes de negli-
genciar a cobertura dupla—como, por exemplo, unwinding e vibrações indesejadas—e verificamos a eficácia
do controlador proposto no sentido de solucionar o problema de estabilização robusta global da pose de um
efetuador robótico.

Flexibilização de tarefas baseada na álgebra de quatérnios duais aplicada para manipulação bimanual -
Além de estudar o problema de controle cinemático no espaço de tarefas a partir da álgebra de quatérnios duais
no sentido de otimizar a trajetória de uma tarefa e incrementar a robustez do manipulador quanto a incertezas, a
perturbações, as singularidades cinemáticas e, até mesmo, a obstruções topológicas inerentes a representações
de corpos rígidos, neste trabalho investigamos também um novo paradigma de execução de tarefas robóticas.
O contexto deste novo paradigma surge da necessidade de um nível adicional de reatividade para o manipu-
lador em cenários dinâmicos. Em tarefas modernas de manipulação, além de satisfazer uma trajetória também
estamos interessados em satisfazer restrições secundárias como, por exemplo, evitar singularidades, limites de
juntas, obstáculos, entre outras poses indesejadas—usualmente, não conhecidas a priori. Neste sentido, movi-
mentos no espaço nulo da tarefa principal são primordiais para a flexibilização e reatividade do manipulador
quanto a cenários imprevistos, permitindo a realização de movimentos nas juntas do manipulador serial que
não perturbem a trajetória principal do efetuador. Não obstante, mesmo problemas aparentemente simples po-
dem exigir todos os graus de liberdade disponíveis no manipulador, não deixando espaço para movimentos no
espaço nulo. Neste contexto, o capítulo 7 apresenta uma nova estratégia que permite o alargamento do espaço
nulo sobre a Jacobiana da tarefa principal, relaxando especificações de controle de acordo com a pertinência
da pose do efetuador em regiões de interesse—nas quais são necessários menos graus de liberdade.A fim de
ilustrar a eficácia da estratégia proposta referente à ampliação do espaço nulo permitindo a execução de mais
tarefas projetadas no espaço nulo da Jacobiana, consideramos o contexto de manipulação cooperativa com dois
braços. O contexto de múltiplos braços manipuladores melhor ilustra a necessidade de mais graus de liberdade
para execução de tarefas, contudo a execução de tarefas bimanual mantém o problema simples o suficiente para
destacar as vantagens da técnica proposta.

Por fim, é essencial ressaltar que os resultados propostos são validados por uma exploração matemática
rigorosa a fim de garantir precisão e síntese adequada para aplicações práticas. Assim, o trabalho formaliza a
teoria de controle na álgebra de quatérnios duais e aprimora o estado-da-arte de controle para manipuladores—
contribuindo com o esforço contínuo para o desenvolvimento da robótica do futuro.
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SUMMARY OF DUAL QUATERNION BASED
CONTROLLERS

This appendix provides the reader with a summary of control strategies proposed in this thesis for robot ma-
nipulators which are ready to be implemented. Moreover, we also revise classic control solutions—herein—
described within dual quaternion algebra.

The solutions proposed in this thesis for the kinematic control of robot manipulators are basically based on
the spatial difference between the current pose x and desired pose xd defined within unit dual quaternions by

xe = xx∗d = re + ε 12pere, (B.1)

where re denote the orientation error in Spin(3) and pe the position error in H0. Hence, xe is a function of the
form xe :

(
Spin(3) nR3

)
×
(
Spin(3) nR3

)
→ Spin(3) n R3. From the spatial difference, we also define an

invariant dual quaternion error function of the form e : Spin(3) nR3 7−→ H⊗ D, given by

e = 1− xe = e+ εe′. (B.2)

In this sense, when x converges to xd, the dual quaternion error function e→ 0. Analogously, to stabilize e to
0 yields the end-effector convergence to the desired pose.

B.1 CLASSIC CONTROL SOLUTIONS

The characteristics of classic controllers and their application in the context of robot manipulators can be
summarized as follows:

Proportional controllers – K controllers

Classic proportional control strategies exponentially reduce the error between the current state of a general
linear system and a given desired state. In the context of robot manipulators, they can be seen as the result of
a least square minimization which locally minimizes1 the required control effort—defined as the joint velocity
vector norm—based on the task-space differential kinematics. For the simulations presented throughout this
thesis, we will consider the following proportional controller (also called K-controllers herein)K = kI, k ∈ R+

θ̇ = N+K vec8 e,

where θ̇ is the task-space controller that yields the joint velocity input, and the error is defined in (B.2) with
differential kinematics given by ė = −Nθ̇. The matrix N+ is the pseudo-inverse of the Jacobian N =
−
H (x∗d)Jvec for a given representation based on the analytical dual quaternion based Jacobian, which can be
found by using Algorithm 2.1, and using the Hamilton operator described in (2.15) and the vec8 mapping
described in (2.14).

1It is important to emphasize that the joint velocity is minimized only locally since the result is based on instantaneous kinematics [112]

148

B



Proportional controllers with feedforward term – K-FF controllers

Note that proportional controllers neglect the influence of a moving reference—that is, this class of con-
trollers ignores the context when the end-effector is tracking a desired trajectory instead of a fixed point. To
better address this particular context, a classic control solution is to add a feedforward term to the proportional
controller (K+FF), that is, K = kI, k ∈ R+

θ̇ = N+(K vec8 e− eff ),

where the feedforward term eff stems from the differential kinematics when ẋd 6= 0. For instance, eff =

vec8(xẋ∗d) for a dual quaternion based error mapped to R8 manifold where the differential kinematics is given
by ė = −Nθ̇ − vec8(xẋ∗d).

B.2 DUAL QUATERNION BASED H∞ CONTROL SOLUTIONS

Dual quaternion based H∞ controller in R8 manifold

Considering the analytical dual quaternion based end-effector Jacobian Jvec described in (2.38)-(2.41) and
the influence of different sources of uncertainties and exogenous disturbances over the system, the differential
kinematics of the robotic manipulator is given by (3.10):

vec8 ẋ = Jvecθ̇ +B vec8 v

where θ = [θ0 . . . θn−1]T is the measured vector of joint variables, Jvec is the analytical dual quaternion based
Jacobian, which can be found by using Algorithm 2.1, B is a known matrix concerning x and v is the dual
quaternion that describes both the uncertainties and the exogenous disturbances, whose influence we want to
minimize. Note that v actually belongs to the set of pure dual quaternions H0 ⊗D which in turn is isomorphic
to R6.

In accordance to Theorem 3.3, a dual quaternion based H∞ controller can be stated as following.

For a prescribed γ > 0, a task-space H∞ controller that stabilizes the error dynamics vec8 ė =

−Nθ̇ −Bvv, whereas ensuring disturbance attenuation properties in the sense of Definition 3.1, is
given by

θ̇ = N+K vec8 e,

whereN+ is the pseudo-inverse ofN =
−
H (x∗d)Jvec,Bv =

−
H (x∗d)B, and

K =
1

γ

(
BvB

T
v +

[√
2

4
BT
vBv

]
I

)
α√

BT
vBv

√
2
, (B.3)

is the minimum norm control gain for any scalar α > 1. The norm of K is given by ||K||2 =
1
γα
√

1
2 (1+

√
8)BT

vBv.

Further details concerning the above controller can be found in Theorem 3.3 and in Subsection 3.2.1.
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The discrete-time tracking controller alternative for the proposed H∞ controller—considering the dis-
cretization error—that also minimizes the norm of the control gain is derived in Theorem 3.6.

For a prescribed performance parameter γ > 0, a control strategy with minimum norm for the control
gain that ensuresH∞ tracking performance γ for the system (3.25) with exogenous disturbances and
errors in the sense of Definition 3.2 is given by

θ[k+1] = θ[k] +N+
((
I−K

)
vec8 e[k]+ vec8 xtrk[k]

)
, (B.4)

where N+ is the pseudo-inverse of N =
−
H (x∗d[k + 1])Jvec with Bv =

−
H (x∗d[k + 1])B, the

feedforward term is given by vec8 xtrk[k] =
−
H (x∗d[k + 1]−x∗d[k]) vec8 x[k], and the minimum

control gain by

K = α

√
P−1 − γ−2BvB

T
v

√
P−I, (B.5)

with

P = γ

√
BvB

T
v

−1
. (B.6)

Note that Theorems 3.4 and 3.5 are particular cases of the above dual quaternion based discrete-time H∞
controller. For further details, the reader is referred to Subsection 3.2.2.

H∞ Controller in dual quaternion space

Considering the dual quaternion Jacobian Jω described in (2.42)-(2.48) and the influence of different
sources of uncertainties and exogenous disturbances over the system, the differential kinematics of the robotic
manipulator is given by (3.4):

ẋ =
1

2

(
vec6

(
Jωθ̇

)
x+ vwx+ vcx

)
where vec6

(
Jωθ̇

)
describes the end-effector twist in dual quaternion space based on the isomorphic mapping

(2.12), Jω is the twist Jacobian which can be found by using Algorithm 2.2. Moreover, vw models the twist
uncertainties and disturbances over the end-effector and vc stems from the pose configuration uncertainties—
for further details, the reader is referred to Section 3.1. As stressed in Chapter 3, the differential equation is
well-posed as vw = vw + εv′w and vc , vc + εv′c—with vw,v′w,vc,v

′
c ∈ H0—is in the Lie algebra of

Spin(3) nR3.

To address the detrimental influence of the uncertainties and disturbances in the H∞ sense explicitly in
dual quaternion space, we assume that vw,v′w,vc,v

′
c ∈ L2[0,∞) and introduce as variable of interest the

orientation and translational errors from (3.44) defined respectively as

O(e) ,1− re,

T (e) ,pe,

where the dual quaternion error e is described in (B.2) with orientation and translation errors described by the
spatial difference as in (B.1).

Hence, according to Theorem 3.8, a dual quaternion H∞ tracking controller can be stated as following.
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For prescribed positive performance scalar parameters γO1, γO2, γT 1, γT 2, the task-space controller
yielding joint velocity inputs

θ̇ =J+
ω

[
KOvecT3 (Im (O(e))) −KT vecT3 (T (e))

]
T + J+

ω (vec6 (xeωdx
∗
e)) ,

with feedforward term vec6 (xeωdx
∗
e) based on the desired end-effector twistωd described in (3.52),

and control gainsKO≥
√

2
√
γO
−2
1 + γO

−2
2 I andKT ≥

√
γT
−2
1 + γT

−2
2 I ensures exponential H∞

tracking performance with disturbance rejection in the sense of Definition 3.3 with minimum norm
control gain for the closed-loop system ẋe = 1

2

(
vec6

(
Jωθ̇

)
+ vw + vc

)
xe − 1

2xeωd with error
described by (B.2).

Note that Theorem 3.7 and Corollary 3.1 are particular cases of the above dual quaternion H∞ controller.
For further details, the reader is referred to Section 3.3.

Moreover, it is interesting to highlight that the dual quaternion based H∞ solutions derived in Chapter
3 can be straightforwardly combined with the results from Chapters 5 and 6 to ensure robustness to kine-
matic singularities—inherent to the kinematic structure of manipulators—and to the topological obstruction—
inherent to any representation of the rigid body coupled transformation.

For instance, a solution for the dual quaternionH∞ tracking problem that ensures robust global exponential
stability and singularity avoidance through self-motion can be directly extracted from Sections 3.3, 5.2 and
6.2.1:

For prescribed positive performance scalar parameters γO1, γO2, γT 1, γT 2, the task-space controller
yielding joint velocity inputs

θ̇ = J+
ω

[
hKOvecT3 (Im (O(e))) −KT vecT3 (T (e))

]
T

+ J+
ω (vec6 (xeωdx

∗
e)) +

(
I − J+

ω Jω

)
y,

where h ∈ {−1, 1} is the memory state defined in (6.5) with hysteresis—characterized by a parameter
δ ∈ (0, 1), such that, ḣ = 0 when hη ≥ −δ and h+ ∈ sgn (η), otherwise—ensures exponential H∞
tracking performance with disturbance rejection in the sense of Definition 3.3 with minimum norm

control gains defined byKO≥
√

2
√
γO
−2
1 + γO

−2
2 I andKT ≥

√
γT
−2
1 + γT

−2
2 I for the closed-loop

system ẋe = 1
2

(
vec6

(
Jωθ̇

)
+ vw + vc

)
xe − 1

2xeωd with error described by (B.2).

Moreover, since
(
I − J+

ω Jω

)
y represents the projection of y onto the nullspace of Jω, setting

y , α∇y, where α is a given scalar and ∇y = ∂y
∂θ is the gradient of a smooth scalar function y

over θ, then the nullspace solution forces y to decrease. For singularity avoidance, we can set∇y =

det
{
JωJ

T
ω

}
tr
(
∂Jω
∂θ J

+
ω

)
which optimizes the manipulability function as to escape singularities.

Note that main task trajectory remains unchanged since Jω

(
I − J+

ω Jω

)
→ 0 which defines the nullspace.

The idea of optimizing a secondary task have been extended in [121] to multiple tasks—such as manipulability
and distance to joint limits—switching dynamically (for further results, see [114–117]). Different solutions in
this context are summarized in [115].

151



In the case of non-redundant manipulators or inescapable singularities, the solution for the dual quaternion
H∞ tracking problem that ensures robust global exponential stability and singularity avoidance can be obtained
using the above strategies with the avoidance solution derived in Subsection 5.2.2.

For prescribed positive performance scalar parameters γO1, γO2, γT 1, γT 2, the task-space controller
yielding joint velocity inputs

θ̇ =J+
ω

[
hKOvecT3 (Im (O(e))) −KT vecT3 (T (e))

]
T + J+

ω (vec6 (xeωdx
∗
e)) ,

where h ∈ {−1, 1} is the memory state defined in (6.5), ensures exponential H∞ tracking per-
formance with disturbance rejection in the sense of Definition 3.3 with minimum norm control gains

defined byKO≥
√

2
√
γO
−2
1 + γO

−2
2 I andKT ≥

√
γT
−2
1 + γT

−2
2 I for the modified closed-loop sys-

tem (5.8) that explicitly considers the induced twist vs.a. = ς(σm
{
Jω

}
) · um

{
Jω

}
, where σm

{
Jω

}
is

the minimum singular value of Jω and um
{
Jω

}
the corresponding output singular vector, and

ς(σm
{
Jω

}
)=


ςmax ·

(
1−
√

σm{Jω}
ςs

)
, if σm

{
Jω

}
≤ςs,

0, otherwise.

where ςmax is the maximum value for the induced twist and ςs defines the size order of the singular
region (σm

{
Jω

}
>ςs yields a null twist).

It is also interesting to emphasize that the aforementioned control strategies can be combined in different
manners in accordance to the task requirements.

B.3 DUAL QUATERNION BASED OPTIMAL CONTROL SOLUTIONS

Motivated by the problem of optimizing the task-space trajectory of general serial-link manipulator de-
scribed in time t ∈ [0, tf ] and its velocity at the task-space, Chapter 4 presented solutions both in R8 manifold
and within dual quaternion space.

Optimal Dual Quaternion Based Controller in R8 Manifold

Summarizing the optimal control strategy proposed in Section 4.1 for the dual quaternion error trajectory
mapped to an R8 manifold, we reached to the following cost function

F = 1
2 vec8 e

T (tf )S vec8 e(tf ) + 1
2

ˆ tf

t0

(
vec8 e

T (τ)Q vec8 e(τ) + uT (τ)Ru(τ)
)
dτ (B.7)

where S,Q,R ∈ R8×8 are gain matrices satisfying S ≥ 0, Q(t) ≥ 0 andR(t) > 0, and u is the end-effector
velocity mapped R8 manifold.

The matrix S is the weight of the final error norm, while the time-varying matrices Q and R respectively
weigh the error cost along the trajectory and the control effort in terms of end-effector velocity norm. The
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constrained optimization of (B.7) leads to an optimal feedback without excessive expenditure of control energy
while keeping the error vec8 e(t) near zero [103].

Considering the analytical dual quaternion based end-effector Jacobian Jvec described in (2.38)-(2.41), the
optimal control tracking solution mapped to an R8 is stated in Theorem 4.1 as follows.

For prescribed gain matrices S,Q,R ∈ R8×8 satisfying S ≥ 0, Q(t) ≥ 0 and R(t) > 0, the
task-space controller yielding joint velocity inputs

θ̇ = N+R−1 (P vec8 e+ ξ) ,

where N+ is the pseudo-inverse of N =
−
H (xd)C8Jvec, minimizes the quadratic cost function

(B.7). In other words, the optimal controller defines the optimal trajectory along (4.3), i.e., vec8 ė =

A vec8 e−Nθ̇+ c, for the cost function (B.7). The Lagrangian matrices P and ξ are derived from
(4.13): Ṗ = −PA−ATP + PR−1P −Q

ξ̇ = −AT ξ + PR−1ξ − Pc,

whereA =
−
H (x∗dẋd), c = − vec8 (x∗dẋd), and C8 = diag (1,−1,−1,−1, 1,−1,−1,−1).

A solution for the nonlinear Ricatti equation that describes the dynamics of the Lagrangian matrices P and
ξ can be obtained by Euler based discretization of P (t) and ξ(t). Hence, given the known value of P (tf ), an
algebraic Ricatti equation solver can be employed to find P (tf−1) . Using a backward algorithm, we can then
apply the same solver to find the value of P (ti) using previously calculated P (ti+1)—the recursion is then
applied up to P (0). The same can be applied to find an approximate solution for ξ(t), by also considering c(t),
in (4.13).

Optimal Quadratic Controller in Dual Quaternion Space

Considering the spatial difference in Spin(3) n R3 between the current and desired end-effector pose, that
is, xe = xx∗d and the dual quaternion Jacobian Jω described in (2.42)-(2.48), the differential kinematics of the
end-effector trajectory error yields

ẋe =
1

2
vec6

(
Jωθ̇

)
xe − 1

2xeωd, (B.8)

where ωd being the twist of the desired pose in inertial frame, vec6

(
Jωθ̇

)
describes the end-effector twist in

dual quaternion space based on the isomorphic mapping (2.12) and Jω is the twist Jacobian which can be found
by using Algorithm 2.2.

To address the optimal trajectory tracking problem in dual quaternion space, we exploited the results form
Theorem 4.2 which yields exponential convergence of the translational and rotational errors. Hence, the optimal
control tracking solution in dual quaternion space follows from the cost function (4.5):

F = 1
2e

T (tf )Se(tf ) + 1
2

ˆ tf

t0

(
eT (τ)Qe(τ) + uT (τ)Ru(τ)

)
dτ (B.9)
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where e =
[
vecT3 {Im (re)} vecT3 {pe}

]T
, u defines the end-effector twist given tis rigid body description

within unit dual quaternions as described in Section 4.2, and S,Q,R ∈ R6×6 are gain matrices satisfying
S ≥ 0, Q(t) ≥ 0 andR(t) > 0. Moreover, the gain matrices are defined as 3× 3 block diagonal matrices.

The matrix S is the weight of the final error norm, while the time-varying matrices Q and R respectively
weigh the error cost along the trajectory and the control effort in terms of end-effector velocity norm. As long
as Jω is well conditioned, an increase inR will lead to an overall decrease in joint velocities. The optimization
of B.9 leads to an optimal feedback in unit dual quaternion tangent space without excessive expenditure of
control energy while optimizing the the exponential convergence of the dual quaternion error function.

The optimization result in dual quaternion space from the cost function is stated in Theorem 4.3.

For prescribed gain matrices S,Q,R composed of pairs of 3 × 3 block diagonal matrices and
satisfying S ≥ 0, Q(t) ≥ 0 andR(t) > 0, the task-space controller yielding joint velocity inputs

θ̇ = J+
ω

[
−R−1P (t)e+ vec6 (xeωdx

∗
e)
]
,

defines an optimal quadratic controller for the system (4.17), that is, B.8, with positive definite matrix
P being derived from (4.32), that is,

Ṗ = PR−1P −Q.

Since S,Q,R are constrained to be block diagonal, then it is needless to prove that P also needs to be
block diagonal. Furthermore, a solution for the nonlinear Ricatti equation that describes the dynamics of the
Lagrangian matrices P can be obtained by Euler based discretization of P (t) and using an algebraic Ricatti
equation solver employed backwardly.

Similarly to the proposed H∞ solutions, the dual quaternion optimal control strategies can be straightfor-
wardly combined with the results from Chapter 6 to ensure robust global stability—escaping from the unwind-
ing phenomenon inherent to the Spin(3) nR3 topological obstruction that prevents global asymptotic stability
with a continuous controller.

For prescribed gain matrices S,Q,R composed of pairs of 3 × 3 block diagonal matrices and
satisfying S ≥ 0, Q(t) ≥ 0 andR(t) > 0, the task-space controller yielding joint velocity inputs

θ̇ = J+
ω

[
−diag (hI, I)R−1P (t)e+ vec6 (xeωdx

∗
e)
]
,

where I is a 3 × 3 identity matrix and h ∈ {−1, 1} is the memory state defined in (6.5) with
hysteresis—characterized by a parameter δ ∈ (0, 1), such that, ḣ = 0 when hη ≥ −δ and h+ ∈
sgn (η), otherwise–defines an optimal quadratic controller for the system (4.17), that is, B.8, with
positive definite matrix P being derived from (4.32), that is,

Ṗ = PR−1P −Q.

The singularity avoidance strategy from Chapter 5 can also be imposed to the dual quaternion optimal
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tracking controller, however it will inherently modify the optimization result.

B.4 SWITCHING STRATEGY FOR FLEXIBLE TASK EXECUTION

In Chapter 7, we focused on bimanual task execution within the cooperative dual task-space, but the strat-
egy is more general and can be applied to single manipulators or extended to multiple arm manipulation. The
goal of the strategy is to cope with highly complex task descriptions, which are common in a cooperative ma-
nipulation scenario, while enlarging the self-motion space. This is performed by relaxing control requirements
within regions of interests, and thus adding additional DOF for a secondary task. To ensure stability to the
desired region of interest, we propose a hysteresis-based switching control strategy which aims to reduce the
complexity of the main task while maintaining the pose (i.e., position and orientation) within the valid region.

A manipulator task is hence described by task primitives. A summary of the task primitive definition,
error description, the required number of DOFs, and the vector description that characterizes the task required
controllable sets is presented in Table 7.2.

Inside the valid region, which respects given predefined bounds, the control can be relaxed as pertinence
to a valid region is satisfied. By switching to a task primitive that requires less DOF, we enlarge the self-
motion space, which can be used to hold or reduce the end-effector task primitive within the valid region while
optimizing a secondary task. Both peripheral objectives compete for the enlarged self-motion in accordance
to the proximity of the boundary region or with a given criterion defined by the secondary task. For further
details, the reader is referred to Chapter 7.

The switching strategy is defined as follows.

Given a task objective defined within regions of interest I`⊆R`, `={1, . . . , 5}, we investigate if an
element h` is amid I`, where h` stems from a given parameterization from the active primitive task
into the set R`.

To ease the supervisor definition, we define a vector σ=
[
σ1 σ2 σ3 σ4 σ5

]
from charac-

teristic piecewise constant functions σ`∈{0, 1}, such that,

σ` =


0, if h` ∈ δI`,

1, if h` 6∈ I`,

σ`, otherwise, h`∈I` and h` 6∈δI`,

where δ∈[0, 1] is the hysteresis parameter which yields, with a slight abuse of notation, the subset
δI` with respect to the region geometric bounds. In other words, σ` = 0 if h` lies within the smaller
subspace δI`, that is, if the relaxed task is being fully satisfied. On the other hand, σ` = 1 if the task
lies outside the region of validity I` and needs to be activated to drive the pose to a valid region. The
hysteresis region between δI` and I` ensures slow switching.

The resulting switched controller is defined as

Θ̇ = J+
i Kei + ΘESM, (B.10)
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where the active task ei lies within a controllable set characterized by the vector ζi such that the
required controllable set σ is a subset of the active task controllable set (ei is the task with less DOF
requirements satisfying the required controllable set σ). Thus,

i = arg min DOF {ei} , subject to σ�ζi,

k = arg min DOF {ek} , subject to ζi�ζk,
(B.11)

where k∈{2, . . . , 10} is the index of the current more restricted primitive task ek (with regard to the
active task ei). In other words, the more restricted primitive task is the one that requires additional
DOF from the cooperative space compared to the active primitive task ei, i∈{1, . . . , 9}.

The enlarged self motion (ESM) dynamics is projected upon the vector input ΘESM, such that

ΘESM = χzOT + (1− χ)zST , (B.12)

with χ∈[0, 1] being any smooth function that describes the competition scenario and yields impor-
tance to either the original primitive task zOT (from Table 7.2) or to the secondary task zST , which
are competing for the nullspace motion, that is,

zOT = (JkP i)
+ (
ėk − JkJ+

i Kei
)
,

zST = (JsP i)
+ (
ṡ− JsJ+

i Kei
)
,

(B.13)

where the secondary task to be optimized and its corresponding Jacobian are denoted respectively
by ṡ and Js. In the particular case when the task i is given by e10, there is no k that satisfies (B.11),
thus the peripheral task zOT is null, and χ→ 0.
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GENERAL PROOFS AND DEFINITIONS

This appendix provides the reader with detailed proof of theorems, lemmas and derivations used herein.

C.1 GENERAL LYAPUNOV CANDIDATE FUNCTION DERIVATIVE

In Section 3.3, particularly, in Theorem 3.7, we proposed a Lyapunov candidate function of the form1

V (t,x) = ‖x(t)‖ = α1 ‖1− x(t)‖22 + α2 ‖x′(t)‖
2
2 , (C.1)

where x = x+ εx′ = η + µ+ ε (η′ + µ′) and α1, α2 are strictly positive scalars. The time-derivative of this
general Lyapunov candidate function yields2

V̇ (t,x) = −2α1η̇ + 2α2η
′η̇′ + 2α2〈µ′, µ̇′〉. (C.2)

To investigate the exponential stability in the absence of exogenous disturbances of the closed-loop system,
let us first recall the end-effector differential kinematics represented within dual quaternion space:

x = r + ε 12pr,

ẋ =
1

2
vec6

(
Jωθ̇

)
x,

and the dual quaternion task-space controller defined in (3.47), that is,

θ̇ = J+
ω

[
KO vecT3 (Im (O(e))) −KT vecT3 (T (e))

]T
whereKO ,KT are positive definite 3×3 matrices, e = 1−x, andO (e) and T (e) are defined asO (e) = 1−r
and T (e) = p. If Jω ∈ R6×n is well-posed, then the closed loop differential kinematics is therefore given by

ẋ =
1

2
vec6

[
KO vecT3 (Im (O(e))) −KT vecT3 (T (e))

]T
x. (C.3)

Remark C.1. Note that, in addition to Theorem 3.7, the first order derivative (C.2) also appears in the proof of
Theorem 6.1, Section 6.2. Indeed, if we take α1 to be the memory state (6.5) and α2 to be the identity element,
then (C.2) yields exactly the same derivative from (6.12) (note that, although having the same derivative, the
Lyapunov function associated with Theorem 6.1 is different from C.1 and positiveness is proven in Section 6.2
even considering α1 as the memory state). Moreover, if we regardKO to be hk1 (where h is the memory state
(6.5)) and KT to be the identity k2I , with k1, k2 ∈ R∗+, then the closed loop considered in Theorem 6.1 is
exactly the same to (C.3).

Expressing (C.3) in terms of the dual quaternion components yields

ẋ = η̇ + µ̇+ ε
(
η̇′ + µ̇′

)
1Particularly, in Theorem 3.7, we regarded a Lyapunov candidate function of the form V (t, e) = ‖e(t)‖ = α1 ‖e(t)‖22 +

α2 ‖e′(t)‖22 , where e(t) = 1 − x(t). Please note that the function is exactly the same of the one described in (C.1) with a simple
variable change.

2To ease the description and for brevity, the time indexes herein.
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with
η̇ = − 1

2 〈h1,µ〉, η̇′ = − 1
2 (〈h1,µ

′〉+ 〈h2,µ〉) ,

µ̇′ = 1
2 (η′h1+ηh2+h1 × µ′+h2 × µ) ,

where h1 = vec3 (KO vec3 Im (O(e))) and h2 = −vec3 (KT vec3 (T (e))) . Replacing (C.3) within the
Lyapunov derivative yields

V̇ (t,x) = 2
(
α1

1
2 〈h1,µ〉 − α2

1
2η
′ (〈h1,µ

′〉+ 〈h2,µ〉)
)

+ 2α2

(
1
2 〈µ

′, (η′h1+ηh2+h1 × µ′+h2 × µ)〉
)

=α1〈µ,h1〉−α2 (η′〈µ′,h1〉+η′〈µ,h2〉) +α2〈µ′, η′h1〉

+α2〈ηµ′,h2〉+α2〈µ′, (h1 × µ′)〉+α2〈µ′, (h2 × µ)〉

=〈α1µ,h1〉+α2〈ηµ′−η′µ,h2〉+α2〈µ,µ′ × h2〉

=α1〈µ,h1〉+ α2〈−η′µ+ ηµ′ + (µ× µ′) ,h2〉. (C.4)

Considering minimum singular value from fromKO andKT , that is, σm{KO} and σm{KT},

V̇ (t,x) = α1〈µ, σm{KO} Im (O(e))〉

− α2〈ηµ′ − η′µ+ µ× µ′, σm{KT} T (e)〉.

Noting that 1
2T (e) =ηµ′−η′µ+µ× µ′, Im (O(e)) =− µ , we have V̇ (t,x)≤V1, where

V1 , α1σm{KO} 〈µ,−µ〉

− 2α2σm{KT} 〈ηµ′ − η′µ+ µ× µ′, ηµ′ − η′µ+ µ× µ′〉

= − α1σm{KO} 〈µ,µ〉 − 2α2σm{KT}
(
η2〈µ′,µ′〉

+η′2〈µ,µ〉+ 〈µ× µ′,µ× µ′〉 − 2ηη′〈µ,µ′〉+ 0 + 0
)

= − α1σm{KO} 〈µ,µ〉 − 2α2σm{KT}
(
η2〈µ′,µ′〉

+η′2〈µ,µ〉+ 〈µ,µ〉〈µ′,µ′〉 − 〈µ,µ′〉2 − 2ηη′〈µ,µ′〉
)
.

From the unit dual quaternion group constraint (2.18), we have that, ηη′ + 〈u,u′〉=0, which in turn yields

V1 =− α1σm{KO} ‖µ‖
2
2 − 2α2σm{KT}

(
η2 ‖µ′‖22

+η′2 ‖µ‖22 + ‖µ‖22 ‖µ
′‖22− (−ηη′)2 − 2ηη′ (−ηη′)

)
=− α1σm{KO} ‖µ‖

2
2 − 2α2σm{KT}

(
η2 ‖µ′‖22

+η′2
(
1−η2

)
+
(
1−η2

)
‖µ′‖22 + (ηη′)

2
)

=− α1σm{KO} 12
(
‖µ‖22 + ‖µ‖22

)
−2α2σm{KT}

(
‖µ′‖22

+η′2
(
1−η2

)
+η2η′2

)
=−α1σm{KO}

2

(
1−η2+ ‖µ‖22

)
−2α2σm{KT}

(
η′2+ ‖µ′‖22

)
.

For η ∈ [0, 1], it is easy to see that (1− η)
2 ≤

(
1− η2

)
. Hence,

V̇ (t,x) ≤ V1 ≤−
α1σm{KO}

2

(
(1− η)

2
+ ‖µ‖22

)
− 2α2σm{KT}

(
η′2 + ‖µ′‖22

)
,

which in turn, yields (3.49).
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C.2 LYAPUNOV CANDIDATE FUNCTION DERIVATIVE IN THE PRES-
ENCE OF DISTURBANCES

In Appendix C.1, we described how to obtain the time-derivative of the Lyapunov candidate function from
Theorem 3.7 along the closed-loop system (C.3) in the absence of exogenous disturbances. Nonetheless, if we
explicitly regard the influence of vw = vw+εv′w and vc = vc+εv′c in the end-effector differential kinematics
(3.46), the Lyapunov derivative (C.4) yields

V̇ (t, e) =α1〈µ,h1〉+ α2〈ηµ′ − η′µ+ µ× µ′,h2〉,

where h1,h2 ∈ H0, with h1 = vec3 (KO vec3 Im (O(e))) + vw + vc and h2 = −vec3 (KT vec3 (T (e))) +

v′w + v′c. Taking 1
2T (e) =ηµ′−η′µ+µ×µ′ and using the isomorphism from H0 and R3, we have

V̇ (t, e) = α1〈µ, vec3 (KO vec3 Im (O(e))) + vw + vc〉

+ α2

2 〈T (e) ,−vec3 (KT vec3 (T (e))) + v′w + v′c〉,

which is equivalent to (3.50)
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TABLE OF RESULTS

D.1 TABLE FROM V-REP SIMULATION USING DUAL QUATERNION
OPTIMAL CONTROL THEORY—SUBSECTION 4.4.2

Simulation
Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)
k = 50 k = 50 s = 0, q = 20, r = 0.01

1 0.0134 0.6914 0.0194 0.0137

2 0.7525 0.0117 0.0216 0.0140

3 0.5765 0.9969 0.0324 0.0144

4 0.0152 0.2207 0.0273 0.0147

5 0.0131 1.0132 0.0290 0.0149

6 0.0144 0.0197 0.0209 0.0138

7 0.7800 0.0125 0.0264 0.0138

8 0.0140 0.7704 0.0213 0.0137

9 0.0145 0.0231 0.0289 0.0139

10 0.0134 0.0113 0.0193 0.0143

Table D.1: Integral norm of the end-effector trajectory error

Simulation
Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)
k = 50 k = 50 s = 0, q = 20, r = 0.01

1 0.063 0.060 0.086 0.058

2 0.060 0.060 0.109 0.058

3 0.061 0.062 0.136 0.058

4 0.062 0.060 0.096 0.058

5 0.062 0.062 0.110 0.058

6 0.060 0.060 0.094 0.058

7 0.061 0.060 0.110 0.057

8 0.060 0.061 0.103 0.058

9 0.062 0.059 0.111 0.058

10 0.061 0.062 0.098 0.058

Table D.2: Integral norm of the joint velocity vector
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Simulation
Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)
k = 50 k = 50 s = 0, q = 20, r = 0.01

1 0.424 0.438 0.651 0.391

2 0.438 0.439 0.840 0.389

3 0.443 0.425 1.000 0.389

4 0.443 0.417 0.725 0.410

5 0.426 0.417 0.789 0.399

6 0.434 0.439 0.709 0.389

7 0.421 0.437 0.777 0.404

8 0.439 0.419 0.793 0.389

9 0.432 0.435 0.804 0.407

10 0.416 0.422 0.727 0.389

Table D.3: Integral norm of the end-effector translational velocity

Simulation
Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)
k = 50 k = 50 s = 0, q = 20, r = 0.01

1 0.151 0.238 0.395 0.110

2 0.235 0.238 0.513 0.110

3 0.239 0.208 1.086 0.114

4 0.235 0.135 0.675 0.191

5 0.139 0.148 1.041 0.178

6 0.218 0.237 0.624 0.115

7 0.145 0.236 0.825 0.175

8 0.237 0.143 0.530 0.110

9 0.222 0.240 1.016 0.179

10 0.144 0.204 0.593 0.127

Table D.4: Integral norm of the end-effector rotation velocity
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Simulation
Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)
k = 50 k = 50 s = 0, q = 20, r = 0.01

1 21.254 21.270 36.152 18.397

2 21.024 19.622 45.026 18.496

3 20.267 20.530 55.927 19.473

4 20.701 20.189 39.991 18.764

5 21.575 20.667 42.243 20.920

6 20.186 19.872 39.877 19.048

7 21.779 20.583 42.607 17.335

8 20.854 20.578 44.632 18.467

9 20.905 20.720 41.209 17.875

10 20.959 20.955 39.573 21.975

Table D.5: Integral norm of the end-effector translational acceleration

Simulation
Proportional Proportional Theorem 4.1 Theorem 4.3
Controller Feedforward (dq-optimal in R8) (optimal in dq-space)
k = 50 k = 50 s = 0, q = 20, r = 0.01

1 8.607 13.020 12.129 6.277

2 12.050 12.724 12.904 6.455

3 11.87 11.707 15.526 6.488

4 14.534 7.660 13.647 11.79

5 7.815 8.292 14.945 10.966

6 11.362 12.146 13.433 6.780

7 8.176 12.411 14.253 10.198

8 11.823 8.198 12.988 6.247

9 13.576 12.888 15.184 10.372

10 7.933 11.963 13.139 7.590

Table D.6: Integral norm of the end-effector rotation acceleration
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BASIC ALGEBRAIC STRUCTURES

This appendix provides the reader with a quick glance of definitions and properties of some algebraic structures
that are used throughout this manuscript.

Definition E.1 (Group). [167, p.31] A group (G, �, ε) is defined by a set G, a single binary
operation � : G × G 7−→ G (named the group operation), and a element ε ∈ G (named the
operation identity or the identity element) that satisfies the following axioms:

G1 [Associative] For all a, b, c ∈ G we have

(a � b) � c = a � (b � c) ;

G2 [Identity Operation] For all x ∈ G, we have

x � ε = ε � x = x;

G3 [Inverse Element] For all x ∈ G, there exists an inverse element in G (denoted by x−1)
such that

x � x−1 = x−1 � x = ε.

(G4) [Closure] Some authors, e.g., [35, p.24] defines the group with this additional axiom –
For all a, b ∈ G, we have

a � b ∈ G.

Remark E.1. The axiom G4 from Definition E.1 is already implied by the definition of the codomain of function
�.

To simplify notation, groups are usually defined only by the pair (G, �), and sometimes even only by the
set G. The follow properties are valid for all groups:

Proposition E.1. The identity of the group is unique.

proof.

The proof is established by contradiction. Supposing that ε2 6= ε is another identity of G, we have that
ε2 = ε2 � ε = ε. 2

Proposition E.2. For all g ∈ G, there exists an unique inverse element g−1.

proof.

It is easy to proof the uniqueness using the axioms G1 and G2 from Definition E.1. For absurd, let us
assume that ĝ and g−1 are inverses for g, then ĝ = ε � ĝ = (g−1 � g) � ĝ = g−1 � (g � ĝ) = g−1 � ε = g−1.
Thus, ĝ = g−1 must hold. 2
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Groups whose operation behave nicely with regard to commutativity have a special name.

Definition E.2 (Group Homomorphism). [167, p.58] A map φ : (G, �, ε) 7−→ (H, ◦, e) be-
tween group is called a group homomorphism if it satisfies:

H1 For all a, b ∈ G, we have φ (a � b) = φ (a) ◦ φ (b).

If the map is surjective, we call it an epimorphism and denote it by G
φ
� H; if the map is

injective, we call it a monomorphism and denote by G
φ
� H; and if the map is bijective we

call it an isomorphism and denote by G
φ↔ H;

Proposition E.3. If φ : (G, �, ε) 7−→ (H, ◦, e) is a homomorphism, then φ (ε) = e and φ
(
g−1

)
= φ−1 (g) for

all g ∈ G.

proof.

Since φ is a homomorphism we have: φ (ε � ε) = φ (ε) = φ (ε) ◦ φ (ε). From H being a group, we have
by G3 from Definition E.1 that: e = φ (ε) ◦ φ−1 (ε) = φ (ε) ◦ φ (ε) ◦ φ−1 (ε) = φ (ε). 2

Definition E.3. Two groups G and H are isomorphic if there exists an isomorphism between
G and H . If this occurs, we denote G ' H to indicate that they are isomorphic.

Definition E.4 (Subgroup). [167, p.31] A subgroup (H, �, εH) of (G, �, εG) is a subset of G
that is also a group under the same group operation – we use the notation H ≤ G to indicate
that H is a subgroup of G.
A group (G,⊗) is called an Abeliana group if for all a, b ∈ G the following property is valid:

a⊗ b = b⊗ a. (E.1)
aIn homage to the mathematician Niels Henrik Abel who studied the relationship between some groups and impos-

sibility of solving quintic equations by radicals.
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Definition E.5 (Ring). A ring is a 3-uple (R,⊕,⊗), where R is a set and ⊕,⊗ : G×G→ G

are functions such that (R,⊕) is an Abelian group and (R,⊗) is almost a group, in the sense
that satisfies only properties G1 and G2 from Definition E.1. The identity of (R,⊕) is usually
denoted by 0R and entitled as the additive identity. The identity of(R,⊗) is denoted by 1R

and called multiplicative identity.
There is also a need to satisfy a compatibility condition between ⊕ and ⊗, the so called dis-
tributive property:

a⊕ (b⊗ c) = (a⊕ b)⊗ (a⊕ c) .

Remark E.2. In the “unorthodox” literature, (R,⊗) doesn’t need to follow property G2 from Definition E.1
to be a ring. To the orthodox, this is called rng (intentionally without the letter “i”) and to the heterodox, our
definition is called an unital ring or ring with unity.

An archetype of ring is the ring of integers with⊕ being the usual sum and⊗ being the usual multiplication
of arithmetic.

Definition E.6 (Field). A field F is a ring (F,⊕,⊗) where (F− {0F} ,⊗) is also a group.

Definition E.7 (Vector Space). A vector space V over a field F is the 3-uple (V,+, ·) such that
V and the functions⊕ : V ×V → V (known as addition between vectors) and⊗ : F×V → V

(known as product by scalar) satisfies the following properties:

1. (V,⊕) is an Abelian group.

2. The scalar product must distribute with the addition between vectors, that is, for all
v, w ∈ V and α ∈ F:

α · (v + w) = α · v + α · w.

3. The operation of ⊕ in F must distribute with the scalar product also, that is, for all
α, β ∈ F and v ∈ V :

(α⊕ β) · v = α · v + β · v

4. There is a kind of associative property between the scalar product and the operation ⊗
of F, that is, for all α, β ∈ F and v ∈ V :

α · (β · v) = (α⊗ β) · v.

5. The multiplicative identity of F must satisfy for all v ∈ V :

1F · v = v.
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If the field can be implied by context, it is common to not mention it. A vector space may be equipped with
a well-behaved function that measures the size of the vector, in the sense that a vector can be greater or smaller
than other vectors.

Definition E.8 (Normed Vector Space). A normed vector space is a vector space equipped with
a function ‖·‖ : V → R denominated as norm such that the following are satisfied:

1. The norm must be positive definite, that is, for all x ∈ V

‖x‖ ≥ 0, and ‖0V ‖ = 0.

2. The norm must be compatible with the scalar product in the sense that for all α ∈ F and
x ∈ V we have

‖αx‖ = |α| ‖x‖ .

3. The triangle inequality must hold, i.e.: for all x, y ∈ V ,

‖x+ y‖ ≤ ‖x‖+ ‖y‖ .

The vector space may also have a richer structure equipping it with an operation of multiplication between
the vectors.

Definition E.9 (Algebra over a fielda). An algebra A over a field F is a vector space over the
same field equipped with a bilinear function � : A × A → A, where bilinear means that the
function must obey the following properties:

1. For all x, y, z ∈ A and α, β ∈ F we have:

(α · x+ β · y)�z = α·(x�z)+β·(y�z) and z� (α · x+ β · y) = α·(z�x)+β·(z�y) .

aThe concept of algebra over a field should not be confused with the more general concept of abstract algebra. For
instance, in abstract algebra, a set is an algebraic structure with one or more operations and axioms but not necessarily
forms an algebra over a field.

Some algebras over a field are related to Lie Groups, the so-called Lie Algebras. Their connection with Lie
Groups will be shown later.

166



Definition E.10 (Lie Algebra). A Lie Algebra g is an algebra over a field such that its mul-
tiplication between vectors, entitled by Lie Bracket and usually denoted by [·, ·], satisfies the
following additional identities:

1. (Skew-symmetry or Alternating) For every x ∈ g,

[x, x] = 0F

2. (Jacobi Identity) For every x, y, z ∈ g,

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0F

Familiar examples are the Euclidean space R3 with the multiplication given by the cross product and Fn×n

with the commutator between matrices A,B ∈ Fn×n given by [A,B] = AB −BA.

E.1 ALGEBRAIC PROPERTIES FROM MOST USED SETS AND GROUPS

This thesis exploits the geometric properties from different sets and groups. The following table summa-
rizes the most important (according to their use in this thesis) sets that—excluding the zero element 01—forms
groups under multiplication over the reals. Moreover, the corresponding nonzero groups are also smooth dif-
ferentiable manifolds and, thus, Lie groups.

1Particularly, in the case of dual quaternions—and its subsets—the group is defined for elements with nonzero primary part.
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SYSTEM DEMONSTRATIONS - AWARDS

Outstanding System Demonstration – Honorable Mention ICAPS 2014 (June, 2014)

Title: "Best Intent Recognition and Temporal Relaxation in Human Robot Assembly";

Conference: 24th International Conference on Automated Planning and Scheduling – ICAPS 2014;

Authors: Sean Burke, Enrique Fernandez, Luis F. C. Figueredo, Andreas Hofmann, Christopher Hofmann,
Erez Karpas, Steve Levine, Pedro Santana, Peng Yu, and Brian Williams;

* Link for the awarded list: http://icaps14.icaps-conference.org/index/awards.html

Figure G.1: Outstanding System Demonstration – Honorable Mention ICAPS 2014 (June, 2014).
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Figure G.2: Winner of Rethink Robotics Contest for IROS 2014 (Sept, 2014)

Winner of Rethink Robotics Contest for IROS 2014 (Sept, 2014)

Title: "Cooperative Manipulation using Cooperative Dual Task Space";

Conference: IEEE/RSJ International Conference on Intelligent Robots and Systems – IROS 2014;

Authors: Luis Felipe da Cruz Figueredo;

* Link for the awarded project: http://sdk.rethinkrobotics.com/wiki/IROS_2014

* Project had also been used by the Rethink Robotics for a short course on teleoperation with Baxter at
the NERVE (New England Robotics Validation and Experimentation) group at the University of Massachusetts
Lowell1

1http://nerve.uml.edu/ros-2014/
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