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Abstract

Background: Neotropical primates are important sylvatic hosts of Trypanosoma cruzi, the etiological agent of Chagas
disease. Infection is often subclinical, but severe disease has been described in both free-ranging and captive primates.
Panstrongylus megistus, a major T. cruzi vector, was found infesting a small-primate unit at Brasília zoo (ZooB), Brazil.
ZooB lies close to a gallery-forest patch where T. cruzi circulates naturally. Here, we combine parasitological and
molecular methods to investigate a focus of T. cruzi infection involving triatomine bugs and Neotropical primates at a
zoo located in the Brazilian Savannah.

Methods: We assessed T. cruzi infection in vectors using optical microscopy (n = 34) and nested PCR (n = 50). We used
quantitative PCR (qPCR) to examine blood samples from 26 primates and necropsy samples from two primates that
died during the study. We determined parasite lineages in five vectors and two primates by comparing glucose-6-
phosphate isomerase (G6pi) gene sequences.

Results: Trypanosoma cruzi was found in 44 vectors and 17 primates (six genera and eight species); one Mico
chrysoleucus and one Saguinus niger had high parasitaemias. Trypanosoma cruzi DNA was detected in three primates
born to qPCR-negative mothers at ZooB and in the two dead specimens. One Callithrix geoffroyi became qPCR-positive
over a two-year follow-up. All G6pi sequences matched T. cruzi lineage TcI.

Conclusions: Our findings strongly suggest vector-borne T. cruzi transmission within a small-primate unit at ZooB – with
vectors, and perhaps also parasites, presumably coming from nearby gallery forest. Periodic checks for
vectors and parasites would help eliminate T. cruzi transmission foci in captive-animal facilities. This should
be of special importance for captive-breeding programs involving endangered mammals, and would reduce
the risk of accidental T. cruzi transmission to keepers and veterinarians.
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Background
About one third of all protozoan parasite species de-
tected in non-human primates can also infect humans;
Trypanosoma cruzi, the etiological agent of Chagas dis-
ease, is among the most epidemiologically relevant ones
[1–3], [see also http://www.mammalparasites.org]. Cha-
gas disease is endemic throughout Latin America, where

about six million people are infected with T. cruzi [4–6].
Trypanosoma cruzi, a parasite of mammals, is transmitted
primarily through the faeces of blood-sucking triatomine
bugs; less often, infection can be acquired congenitally,
through blood transfusion or organ or bone marrow
transplantation, by consuming contaminated food or bev-
erages, or accidentally in the laboratory [4, 5]. Seven
highly diverse T. cruzi lineages circulate among mammals
(at least eight orders and over 50 genera) and triatomines
(over 140 species) in all continental American countries
except Canada [3, 7, 8].
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Carlos Chagas was the first to describe experimental
(Callithrix spp.) and natural (Saimiri sciureus) T. cruzi
infections in primates [9, 10]. Since then, the infection has
been recorded in free-ranging individuals of 12 genera and
over 30 species in all four Neotropical primate families –
tamarins, marmosets, pygmy marmosets, squirrel monkeys
and capuchins (Cebidae); titis, sakis and uakaris (Pithecii-
dae); night monkeys (Aotidae); and spider and howler mon-
keys (Atelidae) [3], [see also www.mammalparasites.org].
Lion tamarins (Leontopithecus spp.) can sustain long-lasting
infections, often with high parasitaemias but with a rela-
tively mild clinical picture, in the Brazilian Atlantic forest
[3, 11–14].
Trypanosoma cruzi infections have also been reported

in captive Neotropical primates. In the USA, T. cruzi was
found in Saimiri boliviensis imported from Latin America
[15]. Trypanosoma cruzi was detected in captive, wild-born
Callithrix penicillata, Cebuella pygmaea, Saguinus imper-
ator, and S. fuscicollis kept at the Brazilian National Primate
Centre in Pará state [16]. Anti-T. cruzi antibodies were de-
tected in 40 out of 198 captive primates (Cacajao, Callice-
bus, Callithrix, Cebus, Chiropotes, Leontopithecus, and
Saguinus) from the Primatology Centre of Rio de Janeiro,
Brazil, where transmission mediated by Panstrongylus
megistus was suspected [17]. Captive Old World primates,
including lemurs, macaques, baboons, and chimpanzees,
can also become naturally infected with T. cruzi and may
develop severe Chagas disease [18–22].
Infection of captive primates with T. cruzi is relevant in

several respects. First, T. cruzi can kill valuable specimens
including those belonging to endangered species; second,
infection of laboratory primates can distort the results of
animal-based research aimed at other ends; third, infected
individuals in translocation-reintroduction programs can
contribute to the spread of the parasite among free-
ranging populations; finally, and importantly, infection
can result in accidental transmission of the parasite to pri-
mate keepers, handlers, or veterinarians. Here, we com-
bine parasitological and molecular methods to investigate
a focus of T. cruzi infection involving triatomine bugs and
Neotropical primates at a zoo located in the Brazilian Cer-
rado, where T. cruzi circulates extensively among wildlife
and native vectors.

Methods
Ethics statement
This study was approved by the institutional review
board of the Institute of Biological Sciences, University
of Brasília, Brazil (CEUA-UnB No. 155506/2013).

Study site
Brasília, Brazil’s capital city, lies within the Cerrado eco-
region, a mosaic of savannahs, dry forests/shrubs, and
gallery forests originally covering most of central Brazil.

Enzootic T. cruzi cycles are common in the Cerrado [3].
Brasília zoo (ZooB; 15°51’00”S, 47°56’20”W) spans ~140
hectares; to the south and south-west, it is adjacent to a
protected, and hence relatively well-preserved, gallery-
forest patch (~490 hectares) where T. cruzi infection has
been recorded in Didelphis albiventris [23]. The small-
primate unit at ZooB has four lodgings, each with a
wire-mesh–fenced outdoor area and a masonry room
with a wooden-box shelter. In 2012, ZooB keepers de-
tected a triatomine bug colony in the small-primate unit.

Trypanosoma cruzi in triatomine bugs
Triatomines collected in the ZooB small-primate unit
were identified after Lent & Wygodzinsky [24]. Trypano-
soma cruzi infection was first investigated by optical mi-
croscopy (OM) in the bugs that arrived alive to the
laboratory (see Table 1); fresh (400x) and Giemsa-stained
(1000x) hindgut contents were examined. Next, we used
a nested PCR (nPCR) to test for T. cruzi DNA in triato-
mine intestinal tissue. DNA was extracted using Illustra
tissue and cells genomic Prep Mini Spin Kit (GE Health-
care). We first amplified 188 bp from the T. cruzi nu-
clear repetitive satellite region with primers TCZ1 and
TCZ2 [25]; amplicons produced in this PCR were used
in a second PCR with primers TCZ3 and TCZ4 [26]; see
Additional file 1: Table S1). DNA extracted from a T.
cruzi culture (Berenice strain, TcII) was used as a posi-
tive control, and MilliQ water and DNA from lab-
reared, uninfected triatomines as negative controls. PCR
products were resolved in 1.3 % agarose gel, stained with
ethidium bromide, and visualised using UV fluorescence.

Trypanosoma cruzi in primates
Twenty-six Neotropical primates were investigated, six
of which were born at ZooB (see Table 2). Blood samples
(1 mL) were drawn once (nine specimens) or on two oc-
casions separated by ~24 months (17 specimens) for
PCR-based T. cruzi detection and quantification.

Table 1 Trypanosoma cruzi infection among Panstrongylus
megistus collected in a captive-primate unit at Brasília zoo,
Federal District, Brazil: bug characteristics and results of
optical microscopy and nested PCR

Sex (adults) and stage (nymphs) Optical microscopy Nested PCR

Testeda Positiveb Tested Positive

Female 12 2 13 11

Male 7 1 7 7

Nymph II 0 - 4 3

Nymph III 8 1 18 16

Nymph V 7 1 8 7

Total 34 5 50 44
a:Bugs that arrived dead and dry to the laboratory could not be tested by
optical microscopy
b:Bugs with a positive optical microscopy were all also positive by nested PCR
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Necropsy samples (intestine, heart, and spleen) from one
Saguinus niger and one Callithrix penicillata that died dur-
ing the course of the study were also investigated. DNA
was extracted from blood samples using the WizardTM

Genomic DNA Purification Kit (Promega), and from nec-
ropsy samples using the Mini Spin Plus Kit (Biopur). PCR
reactions were first carried out with primers TCZ1 and
TCZ2 as described above; the products of this PCR were
diluted 1:60 in MilliQ water and 2 μL were used as tem-
plate for real-time quantitative PCR (qPCR) with Power
SYBR© Green chemistry (Applied Biosystems) and primers
TCZ3 and TCZ4 [26]; [see Additional file 1: Table S1]. Re-
actions were run in an ABI 7500 Real-Time PCR System
thermocycler (Applied Biosystems) and the results analysed
using StepOne v2.3 software (Applied Biosystems). We

used MilliQ water and DNA extracted from uninfected
mice blood as negative controls. Absolute quantification of
parasite DNA was achieved by developing a standard curve
with DNA extracted from a Berenice strain T. cruzi culture
(108 parasites/mL) and serially diluted ten-fold to between
105 and 10−2 parasite. The standard curve relates qPCR
threshold cycle values and known log-scale DNA concen-
trations [27, 28]; in our case, theoretical amplification effi-
ciency was ~91 % (slope = −3.6) and the standard curve
coefficient of determination was R2 = 0.99.

Identification of Trypanosoma cruzi lineages
A fragment of the single-copy nuclear glucose-6-phosphate
isomerase (G6pi) gene was PCR-amplified as described in
Brenière et al. [29] (see Additional file 1: Table S1), with

Table 2 Trypanosoma cruzi infection among captive primates kept at Brasília zoo, Federal District, Brazil: primate characteristics and
quantitative real-time PCR (qPCR) results

Number Species Origin State Year of birth or
arrival at ZooB

qPCRa

First Second

1 Alouatta seniculus IBAMA AC 2010 0.000 ND

2 Aotus nigricepsb Born at ZooB DF 2010 0.003 0.001

3 Aotus nigricepsb Born at ZooB DF 2012 1.051 0.002

4 Aotus nigriceps IBAMA AC 2006 0.000 0.000

5 Aotus nigricepsb Born at ZooB DF 2009 0.000 0.000

6 Aotus nigriceps ND ND 2007 0.000 0.000

7 Callicebus cupreus AIPU MA 2006 0.000 0.000

8 Callithrix geoffroyi Jequitinhonha MG 2010 0.000 0.012

9 Callithrix penicillata IBAMA DF 2012 0.039 ND

10 Callithrix penicillata IBAMA DF 2008 0.025 0.001

11 Callithrix penicillata IBAMA ND 2008 0.029 Dead

12 Callithrix penicillata IBAMA DF 2012 ND 0.105

13 Callithrix penicillata IBAMA DF 2012 0.000 0.000

14 Leontopithecus chrysomelas AIPU MA 2006 0.016 ND

15 Leontopithecus chrysomelas ND ND 2007 0.000 0.000

16 Leontopithecus chrysomelas Born at ZooB DF 1999 0.006 ND

17 Leontopithecus chrysomelasc Born at ZooB DF 2008 0.214 ND

18 Leontopithecus chrysomelasd Born at ZooB DF 2013 ND 0.007

19 Leontopithecus rosalia AIPU MA 2010 0.000 0.000

20 Mico chrysoleucus IBAMA AM 2008 0.025 17.000

21 Mico argentatuse AIPU MA 2007 0.010 0.006

22 Pithecia irrorata BH zoo MG 2012 0.073 0.003

23 Saguinus imperator AIPU MA 2008 0.000 0.000

24 Saguinus niger AIPU MA 2007 0.003 0.018

25 Saguinus niger ND PA 2008 0.042 0.001

26 Saguinus niger AIPU MA 2006 4.000 Dead
a:Parasite equivalents/100 ng DNA; First and Second qPCRs were carried out ~24 months apart. b:Born to qPCR-negative mothers (# 4 and 6). c:Born to qPCR-
positive mother (# 16). d:Born to qPCR-negative mother (#15). e:Died in 2015. IBAMA Instituto Brasileiro do Meio Ambiente e Recursos Renováveis, ZooB Brasília
zoo, AIPU Ararajuba do Ipê primate unit; BH, Belo Horizonte
Brazilian states: AC Acre, AM Amazonas, DF Distrito Federal, MA Maranhão, MG Minas Gerais, PA Pará. ND no data/not done
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positive and negative controls as described above for nPCR.
Amplicons were analysed in 1.0 % agarose gel, stained with
ethidium bromide, and visualised by UV fluorescence. PCR
products were purified with the Illustra GFX PCR DNA &
Gel Band Purification Kit (GE Healthcare) and submitted
to Sanger sequencing. Sequences were edited using Gen-
eious software (Biomatters) and compared with sequences
deposited in GenBank using the BLASTn algorithm
(http:blast.ncbi.nlm.nih.gov).

Results
We collected 20 adult bugs and 30 nymphs at the ZooB
small-primate unit (Table 1, Fig. 1); all were identified as
Panstrongylus megistus. Thirty-four of those triatomines
arrived alive to the laboratory and were examined by
OM; five (14.7 %) were found infected with T. cruzi
(Table 1, Fig. 1). nPCR was positive in the five OM-
positive bugs, in 24 OM-negative specimens, and in 15
bugs not examined by OM; thus, overall nPCR positivity
was 88 % (Table 1).
Trypanosoma cruzi DNA was detected in 17 out of 26

(65.4 %) primates tested by qPCR (Table 2). Qualitative
results from blood samples taken ~24 months apart
were consistent in 16 out of 17 specimens tested twice;
the exception was one Callithrix geoffroyi that became
qPCR-positive over the course of the study (Table 2).
Absolute DNA quantification suggested high parasitae-
mias in one Mico chrysoleucus (17 parasite equivalents/
100 ng DNA) and one Saguinus niger (4 parasite equiva-
lents/100 ng DNA) (Table 2). Three individuals with T.
cruzi DNA-positive blood samples died during the study
(Table 2); necropsy samples from two of them were sub-
mitted to qPCR, which detected small amounts of T.
cruzi DNA (<1 parasite equivalents/100 ng DNA) in the
spleen of one C. penicillata and in the heart, spleen, and
intestine of the highly parasitaemic S. niger mentioned
above. Five out of six primates born at ZooB tested posi-
tive for T. cruzi DNA by qPCR, including three individ-
uals born to qPCR-negative mothers (Table 2).

G6pi sequences from five P. megistus, one S. niger, and
one M. chrysoleucus were all 99-100 % identical to that
of T. cruzi strain OPS21cl11 (TcI lineage, GenBank ac-
cession number AY484472.1; see Broutin et al. [30]).

Discussion
We have presented a detailed description of a T. cruzi
infection focus in triatomine bugs and captive Neotrop-
ical primates at Brasília zoo in central Brazil. Highly-
sensitive molecular assays detected T. cruzi nuclear
DNA in most of the vectors (88 %) and primates
(65.4 %) we tested. Infection was identified in primates
of six genera and eight species, including the endangered
Leontopithecus chrysomelas, the vulnerable Saguinus
niger, and species with unknown preservation status
such as Mico chrysoleucus and Pithecia irrorata (see
www.iucnredlist.org). Infection with T. cruzi is harmful
to the primates and brings about a non-negligible risk of
accidental transmission of the parasite to animal
keepers, handlers, and veterinarians.
Three primates born to qPCR-negative mothers at ZooB

were infected with the same T. cruzi strain as P. megistus
caught in their lodgings. This finding is strongly suggestive
of within-cage, P. megistus-mediated parasite transmis-
sion. Although we did not test for anti-T. cruzi antibodies
through serology, which might have revealed infection in
qPCR-negative individuals [3], the high sensitivity of our
qPCR [28] and the rarity of vertical transmission among
tamarins [14] make us think that vector-borne transmis-
sion was likely the source of most primate infections at
ZooB. Primates including humans can acquire T. cruzi
from triatomines either through direct contact of infected
vector faeces with skin or mucosae or by the oral route
when bugs carrying the parasite are eaten or contaminate
foods or beverages [4, 5, 31]. In addition, that most of the
P. megistus nymphs we collected inside primate lodgings
tested positive for T. cruzi (Table 1) clearly implies within-
cage transmission of the parasite from infected primates
to the vectors – triatomine nymphs lack wings and get T.
cruzi through infected bloodmeals [24].

Fig. 1 Trypanosoma cruzi infection among Panstrongylus megistus collected in a captive-primate unit at Brasília zoo, Federal District, Brazil. a Captive-
primate unit where P. megistus specimens were collected. b Adult specimen of P. megistus. c Trypomastigotes detected in P. megistus feces after
Giemsa staining
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Captive-breeding and translocation-reintroduction
programs are important for the management (and pos-
sibly recovery) of endangered species such as the flag-
ship lion tamarins [32–34]. Preventing or limiting
infectious disease spread is one crucial component of
such programs [33, 34]. Although T. cruzi occurs natur-
ally across the range of all continental American primate
species, and although infection with the parasite seems
common in many wild populations, the release of in-
fected specimens can be problematic in at least three
relevant ways. First, T. cruzi is a highly diverse parasite
[8, 35], so that foreign strains can be introduced into an
area where they do not circulate naturally. Second, T.
cruzi infection seems to be strongly focal among free-
ranging Neotropical primate populations [11, 14]; in-
fected individuals introduced into a low-prevalence site
can hence contribute to spreading the parasite. Finally,
T. cruzi-infected individuals may have relatively low
odds of surviving when released into the wild, which
may threaten reintroduction success [36]. By showing
how high T. cruzi infection rates can be among captive
Neotropical primates, our results underscore the need to
carefully test specimens scheduled for release in the con-
text of endangered-species translocation-reintroduction
programs [3, 14].
On a more local scale, we found a thriving P. megistus

colony within the small-primate unit at ZooB. Infected
bugs were found inside primate wooden shelters resem-
bling the hollow-tree vertebrate nests and refuges P.
megistus occupies in the wild [37]. Although widely dis-
tributed, P. megistus is primarily associated with the
humid Brazilian Atlantic forest [38, 39]; in the Cerrado
and other seasonally dry eco-regions, it occurs
mainly in moister forest patches. The close proxim-
ity of ZooB to a preserved gallery-forest patch where
T. cruzi (TcI lineage) has been shown to circulate
[23] suggests a likely origin for the bugs (and pos-
sibly also the parasites) we found. Panstrongylus
megistus, one of the most important vectors of hu-
man Chagas disease, can also colonise in and around
human dwellings [9, 24, 37, 38]. Our findings warn
about the possibility of domestic or peridomestic, P.
megistus-borne T. cruzi transmission foci in the
vicinity of preserved forest patches in Brasília [39]
and elsewhere across the Cerrado [37, 38].
Finally, our results highlight the latent risk of acciden-

tal T. cruzi transmission from infected primates (and
probably other mammals) to zoo workers including
keepers and veterinarians. If unaware of the infection
status of the animals they handle, these workers may be
at risk of acquiring the infection while drawing or ma-
nipulating biological samples, during surgical or dental
procedures, or even when performing necropsies on
fresh carcasses. Although needles are involved in most

of the accidents reported, T. cruzi transmission can also
occur through intact mucosae or apparently intact skin,
and possibly via droplets or aerosols [40]. Zookeepers
may undergo additional risks if they have contact with
infected triatomines infesting animal facilities.

Conclusions
The findings we have presented strongly suggest vector-
borne T. cruzi transmission within a small-primate unit
at Brasília zoo. We suspect that the vectors, and possibly
also the parasites, originally came from nearby gallery
forest – a hypothesis that can be tested with samples
from both habitats and high-resolution molecular
markers [35]. In practical terms, we suggest that periodic
checks for triatomine infestations and T. cruzi infections
should become routine practice in captive-animal facil-
ities located near known or suspected vector habitat.
Pyrethroid insecticide spraying yields efficient, short-
term infestation control; in the long run, the use of bug-
refractory animal lodgings – i.e., with fewer potential
bug-hiding sites (crevices, cracks…) and easier to inspect
and treat – could help prevent or slow re-infestation.
Early detection and elimination of T. cruzi transmission
foci should be of particular interest for captive-breeding
and translocation-reintroduction programs involving en-
dangered mammal species. Together with specific train-
ing on Chagas disease and T. cruzi-related biohazards,
this would also help reduce the risk of accidental T.
cruzi transmission from infected mammals or vectors to
captive-animal handlers, keepers, and veterinarians.

Additional file

Additional file 1: Table S1. PCR conditions and primers used for
Trypanosoma cruzi detection. (DOC 69 kb)
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