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Abstract. Metaheuristic methodologies have been recently proposed for the
minimum sum-of-squares clustering (MSSC) problem and tested on some stan-
dart problems from the literature, showing they have promising computational
results. However it is not known their recovery performances for data samples ran-
domly generated following a multivariate mormal mixture distribution and with
well-separated cluster structures. By generating these kind of samples and com-
puting the Hubert and Arabie recovery measurement, this work presents a per-
formance avaluation of two different versions of the Variable Neighborhood Search
metaheuristic (VNS), a multistart k-Means, the hierarchic agglomerative Group
Average and two hierarchic divisive clustering algorithms. The results indicate
the mean recovery value obtained from the metaheuristics, including multistart
k-Means, are in the most of cases better than those ones presented by the hier-
archical algorithms. By considering its computational simplicity, the multistart
k-Means appears to be a good option for solving MSSC problems, but losing this
position to VNS by a litle difference when increasing the number of clusters.

1. Introduction

Cluster analysis is a general statistical methodology for partitioning a set of entities.
Its goal is often to develop a classification of the entities which normally refers to
their assignment to predefined classes. In this way is useful to emphasize that cluster
analysis preceeds classification in the analysis of a data set by requiring, first of all,
the identification of the classes. Particularly, the objective of cluster analysis is to
assign n entities to k& mutually exclusive groups while minimizing some measure
of dissimilarity, or criteria, among the entities. In most instances, the measure of
dissimilarity is a distance defined by a metric.

Cluster analysis is now used in a wide range of disciplines including archaeology,
astronomy, computer science, geology, market research, medicine and psychiatry.
Despite the ancient age of the problem of classification, it is known that sophis-
ticated methodologies for clustering have only been proposed after the “boom”
of robust computers. This fact is understandable given that clustering problems
present combinatorial nature and, consequently, they demand heavy number of
operations to be solved. Among the earliest methodologies it should be cited those
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methods of classical statistical cluster analysis of Fisher(1958) and Ward (1963) and
of Lance and Williams (1967). Nowaday, the number of methods for clustering and
subsequent, classification abound in the literature; reviews of them may be found
in Gordon (1981), Hand (1981), Hartigan (1975), Anderberg (1973), Everitt (1993)
and Mirkin (1996). Discussions of clustering applications and alternative clustering
criteria can be found in Anderberg (1973), Sokal and Sneath (1973) and Mac Queen
(1979).

The basic premise of the clustering methodologies is to utilize a distance or dis-
similarity matrix to group entities together based upon attributes or characteristics.
The general methodology requires the determination of a distance matrix and the
clustering of entities one by one in a bottom-up approach or decomposing the entire
set of items into two groups successively in a top-down approach. These are the
strategies used by the well-known class of hierarchical methodologies.

Other well-known classes of methodologies for clustering are the partitioning
and heuristics ones. By using different strategies for solving problems, they have
recently been receiving special research attention for their characteristic in spending
less computer memory than the hierarchic methodologies. Particularly, heuristic
methodologies have been intensively applied to acelerate algorithms recently pro-
posed for clustering [19, 11]. In these works, some computational results were
presented showing the proposed methodologies are very promising. Howerver, it
is well-known from the clustering literature, methodologies have been presenting
different performances depending upon the shape of the cluster structures. Meta-
heuristics recently proposed by N. Mladenovic and P. Hansen have been tested for
clustering problems that are described at the end of the next section; however, they
do not yet have been their performances compared neither to classical methodologies
as hierarchical divisive nor agglomerative ones.

This work presents a comparative computational study which reports the reco-
very performances of those recent proposed metaheuristics, a multistart k-Means,
two hierarchical divisive and the agglomerative Group Average methodologies [1].
The clustering test problems are generated by a programming proposed by G.W.
Milligan [17] considering samples that combine both properties of external isolation
and internal cohesion of a multivariate normal mixture model with a free-error
condition. The results are based on the external criterion of Hubert and Arabic
and, separately, of Rand for clustering. Next section gives a view of the state
of the art of some clustering methodologies, section 3 describes briefly the VNS
metaheuristic, the heuristic H-Means, and the new heuristic J-Means, and also the
hierarchic divisive methods by P.Hansen et al [9]. Section 4 shows and analyses
the obtained results and section 5 presents conclusions and discussions about the
results presented and analysed in the earlier section.
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2. State of the Art

2.1. Hierarchical Algorithms

Among the oldest and most used methods of cluster analysis are the agglome-
rative hierarchical ones. As general methodologies, they follow the first strategy
described above for hierarchic classes; the most famous is the Single Linkage (or
nearest neighbor) method in which clusters are formed on the basis of the similarity
between the most similar pair of entities, one of which is in each pair of clusters. The
clusters formed by this methodology have the property that any cluster member is
more similar to at least one member of that cluster than it is to any member of
any other cluster. Single Linkage is just one of a group of hierarchic agglomerative
clustering methods that have been extensively used over the years and that include
the Complete Linkage, the Group Average and Ward methods. All of these methods
differ just in the definition of similarity that is used for the selection of the most
similar pairs of clusters.

The clustering literature seems to indicate that the rank order performance of
these methods is not the same from one defining metric to another and from one
conceptualization of cluster structure to another. In their work, Milligan et al [16]
presented a study using a number of different structures to generate artificial data
with all cluster structures involving a total of 24 points. In this simulation study,
the four hierarchic agglomerative clustering methods cited above were examined
in their ability to recover the true structure in data sets which satisfied both the
ultrametric inequality and the structural model of the clustering procedures. The
Group Average method had the highest recovery rate and it was followed by the
Complete Linkage method. The Ward’s method was placed third and the Single
Linkage was the last. One possible explanation for the Ward’s method performance
is that the ultrametric clusters generated in the condition were not necessarily
minimum variance; thus, the minimum variance criterion as used by the algorithm
was inappropriate for the data. The results indicated that the obtained rank order
performance of the methods differed markedly from the rank order generally found
in multivariate normal mixture model studies.

Agglomerative hierarchical clustering algorithms optimize a criterion locally at
each iteration when two clusters are merged. For a large variety of criteria, agglom-
erative schemes are polynomial of low-order. The classical agglomerative hierarchi-
cal clustering scheme of Lance and Williams (1967) is in O(n?). This complexity
can be reduced to O(n? x logn) by using priority queues as shown by Day and
Edelsbrunner (1984) [20].

Other well-known, but less frequently used, general methodologies are the divi-
sive hierarchical clustering algorithms. They follow the second strategy described in
the earlier section for hierarchic classes: initially there is one cluster containing all n
objects; at each stage in the algorithm an existing cluster is divided into two. Algo-
rithms for dividing a cluster into two involve successively removing entities from the
cluster, or selecting the pair of entities in the cluster with largest pairwise dissimi-
larity to act as the seeds for the two sub-clusters. Algorithms that globally find the
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optimal division are computationally very demanding. Divisive hierarchical clus-
tering algorithms present a NP-hard local optimization problem of bipartitioning
when the variance or the inter-cluster sum-of-dissimilarities criteria are used; but
this computational load is significantly reduced for the diameter criterion or for the
sum-of-diameters criterion [6, 7, 21].

Few researchers have been proving the superiority of some divisive hierarchic
clustering algorithms over agglomerative ones, mainly when the goal is to reach
partitions of the entities into a few clusters. Experiments with large randomly ge-
nerated data sets reported by Guenoche (1991) tend to confirm this superiority for
the diameter criterion. The explanations for these results are that, as in hierarchi-
cal schemes errors are never corrected, it may be better to obtain partitions in a
few steps than in many; moreover, divisive hierarchical schemes with exact bipar-
titioning procedures of course provide optimal partitions into two clusters. In this
same work the authors compare the results of both divisive and agglomerative hi-
erarchical schemes in terms of the partition diameters; among the tested problems,
they used a larger one with number of entities varying in a range between 200
and 500 and integer dissimilarities randomly generated in a uniform distribution
on [1;100.000]. The proposed algorithms are compared to the agglomerative hierar-
chical clustering algorithms of Benzecri(1982) and Juan (1982). While the latter
is often less time-consuming than the former one, it provides many partitions with
larger diameter than those they give. The authors concluded that the proposed
divisive hierarchical clustering algorithms appear to be as an alternative when sol-
ving minimum diameter clustering problems. Also P.Hansen et al (1993) reported
positive computational results in favour to some hierarchical divisive methodologies
against agglomerative ones. In their work an exact algorithm and a heuristic variant
are proposed for the divisive Average-Linkage hierarchical method. Problems with
up to 500 entities are solved approximately in resonable computing time. Comparing
partitions obtained by the heuristic variant and those obtained by the agglomera-
tive Average-Linkage hierarchical clustering by Benzecri (1982) and Juan (1982),
the authors showed that the partitions given by the former algorithm are usually
better than those provided by the later one for the criterion of average of average
(but usually worse for the minimum average) between pairs of clusters dissimilarity.

2.2. Nonhierarchical Algorithms

Differently to the class of hierarchical algorithms, the methods belonging to the
heuristic class are designed to cluster entities into a single classification of a known
number of clusters which is specified a priori or is determined as part of the clus-
tering method. The central idea in most of these methods is to choose some initial
partition of the entities and then alter cluster memberships so as to obtain a bet-
ter partition. The various algorithms which have been proposed differ as to what
constitutes a “better partition” and what methods may be used for achieving im-
provements. In most cases a technique for stablishing an initial partition is given
as part of the original algorithm, but it is usually provided as a convenience to the
user than as an integral part of the algorithm. Representative samples of initial
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partitioning generators are described by Anderberg (1973).

The heuristic methodologies may be used with much larger problems than the
hierarchical ones because they do not require to store the data set. The simplest
iteractive clustering methods consist of alternating both processes of computing a
set of seed points as the centroids of a set of clusters and of constructing a set of
clusters by assigning each entity to the cluster with the nearest seed point. Among
these methodologies it should be cited the Forgy’s Method and the Jancey’s Variant,
and the MacQueen’s k-means Method [1, 5]

The term “k-means” was used by McQueen (1967) to denote the process of
assigning each entity to that cluster (among k clusters) with the nearest centroid
or mean. By using the first £ data units as seed points and relying on only one
reallocation pass, this method achieves the distinction of being the least expensive
of all heuristic and hierarchical clustering methods cited above. The total effort
from the initial configuration trough to the final clusters involves only k(2n — k)
distance computations, (k — 1)(2n — k) distance comparisons, and (n — k) centroid
updates. This computational workload is only a small fraction of that involved in a
hierarchical cluster analysis because k is usually much smaller than n. Apparently
the method of McQueen gives useful results because most major changes in cluster
memberships occur with the first reallocation. However, a convergent clustering
method using the k-means process can be implemented by mainly introducing a
continued updating of the clusters until no data units change their cluster member-
ships. The Forgy, Jancey and convergent k-means methods all use variations on one
central process and they exhibit hardly any differences in computational workload.
These three methods also converge in the same way, so a final set of clusters pro-
duced by one method would satisfy the convergence criteria of the other methods
[1].

In one of his works, Milligan (1980) conducted an avaluation of several clus-
tering methods. Artificial clusters were generated in a Euclidian Space in which
the approach adopted was to combine the external isolation characteristic with
the internal cohesion properties of multivariate normal mixtures. The simulated
data sets were clustered by those four nonhierarchical heuristic methodologies cited
above and eleven agglomerative hierarchical ones among them the Single Linkage,
Complete Linkage, Group Average and Ward’s methods. An issue which requires
attention is the nature of the starting configuration used for the nonhierarchical
methods. First, randomly selected data units were used as seed points; secondly,
the centroids obtained from a hierarchical clustering of the data were used as starting
centroids. For the purposes of this study the external criterion of Rand (1971) served
as the measure of true cluster recovery. All four nonhierarchical heuristic algorithms
produced recovery mean values about .90 which were significantly worse than 1.0
of the hierarchical methods in the error-free condition when random starting seeds
were used. When rational starting procedures were used, these methods produced
recovery values which were equivalent or superior to the hierarchical methods in all
error conditions. Thus, the starting partition must be close to the final solution
if the heuristic algorithms are to be expected to give good recovery. The Group
Average method did place among the top three methods in eight out of ten error
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condition levels in the experiment. Within the heuristic group, Jancey’s method
seems to be about the best procedure in most error conditions.

Usually heuristics are applied because even when seemingly small problems are
stated, their mathematical programs are large, combinatorial, NP-complete models.
As mentioned above, while heuristic approaches are efficient in terms of computa-
tional workload, they do not produce optimal clusters if random starting seeds must
be used. As local search methods, they proceed by performing a sequence of local
changes in an initial solution which improve each time the value of the objective
function until a local optimum is achieved. That is, at each iteration an improved
solution in the neighborhood of the current solution is obtained until no further
improvements are found.

In recent years, several metaheuristics have been proposed which extend in vari-
ous ways the scheme of nonhierarchical heuristic algorithms and avoid being trapped
in local optima with a poor function value [19, 11]. Using systematically the idea
of changing of neighborhood in the heuristic search, P. Hansen and N. Mladen-
ovic’ proposed a new metaheuristic named Variable Neighborhood Search (VNS for
short). Contrary to other metaheuristics based on local search methods, VNS does
not follow a trajectory, but explores increasingly distant neighborhoods of the cur-
rent solution and jumps from there to a new one if an improvement has been made.
Among several applications, the VNS was also proposed for solving the Minimum
Sum-of-Squares Clustering Problems (MSSC for short) and some results were pu-
blished by the authors showing the quality of the solutions obtained by VNS to be
superior to the quality of the solutions presented by multistart versions of k-Means,
H-Means - a nonhierarchic clustering algorithm that is described in section 3, and
by a composition of both of them [11]. In this work, a new descent local search
heuristic, called J-Means, was proposed; at each step, the cluster centroid is relo-
cated at some entity which does not already coincide with a centroid. This move
may be a large one and corresponds to several K-Means moves. Computational
study compares six local search methods based on equivalent CPU time; i.e’, each
heuristic is restarted until a given time elapses. The results show the VNS is the
best overall for solving test problems as (i) the 3-dimensional 89-Bavarian postal
zones of Spath (1980), (ii) the 4-dimensional 150 Iris of Fisher (1936), (iii) 1060 and
(iv) 3038 points in a plane taken from TSP-LIB data base (Reinolt, 1991).

3. Description of the Algorithms

The objective of this section is briefly to describe the new algorithms proposed
by Hansen and Mladenovic’ [11] and Hansen et al [9] for clustering in order to be
possible to note existing differences between them and classical ones. The first sub-
section describes the VNS Metaheuristic, the J-Means local search and a version of
H-Means, both latest for solving the MSSC problems; and the second one describes
the divisive hierarchical algorithms developed by Hansen et al.
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3.1. Algorithms for MSSC

As mentioned in the earlier section, the main idea in most of heuristic methodologies
for clustering consists of alternating both process of computing centroids of a set of
clusters and of constructing a set of clusters by assigning each entity to the cluster
with the nearest centroid; then, new centroids and objective function values are
updated. Let one defines a “neighborhood” of the current solution by all possible
such exchange.

1. The VNS metaheuristic comprises the following steps:

Let us denote a finite set of pre-selected neighborhood structures by N; ,
(i =1,...,imaz ) and by N;(x) the set of solutions in the i*" neighborhood of
T

Initialization: Select the set of neighborhood structures IN; i = 1, .., {4, and
find an initial solution x. Choose a stopping condition;

Repeat the following steps until the stopping condition is met:
(1) Set i« 1;
(2) Until ¢ = 444 , repeat the next three steps:

e Shaking: generate a point 2’ at random from the i** neighborhood of
(2’ € Ni(z) );

e Local search: apply some local search method with x’ as initial solution;
denote by z” the obtained local minimum;

e Move or not: if this local optimum is better than the incumbent, move
there ( x «— 2” ) and continue the search with Ny , (i« 1); otherwise
set ¢ «— i+ 1.

The stopping condition may be e.g. maximum CPU time allowed, maximum
number of iterations, or maximum number of iterations between two improve-
ments. In their work, the authors pointed out that point z’ is generated at
random in step 2 in order to avoid cicling, which might occur if any deter-
ministic rule is used. It is worth noting that several variants of the VNS
metaheuristic can be obtained by using different local search heuristic algo-
rithm in the third part of the step (2). Clearly, the performance of the VNS
Metaheuristic depends upon the number of neighborhood it might visit and
explore, and, importantly, the “quality” of the defined neighborhood.

2. The heuristic H-Means

The iterations of the H-Means heuristic consist of alternating entity allocation
and centroid relocation; so, it is similar to Cooper’s Alternate heuristic for
the Multisource Weber Problem (1963). Its main steps can be described in
the following way:

(1) Let X be a set of n entities, {C;, i=1,....k} and Z;, i=1,... )k, its initial
partition and corresponding centroids;
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(2) Assign each entity z;, j=1,...,n, to its closest centroid ;, i=1,....k;

(3) If no change in assignments occurs, a locally optimal partition is found
and stop;

(4) Update centroids Z; of each cluster C; and return to step (2)

It should be noted that the solution obtained by H-Means can be improved
by heuristic £ -Means. In the later one, reassignments of one entity at a time
are considered and the centroids of the new clusters can be easily obtained
from updating formulas. Tt should also be noted that the step (1) described
above is strongly different to the k-Means first step.

. The heuristic J-Means

In some problem instances, particularly when the number of clusters is large,
existing points, or entities, could be centroids of some clusters in the current
solution. These points are refered as “occupied points”.

In order to get a neighboring solution of the current one, the centroid T; of
a cluster C; is relocated to some unoccupied entity location and all entities
relocated to that cluster centroid. All possible such moves constitute the
“‘jump” neighborhood of the current solution.

It is possible to describe the main steps of the method as follows:
(1) (Initialization)
e Let PM = {C}, i=1,....k}, T;, i=1,..k, and fopt, be the initial partition of

the set X, the corresponding centroids, and the current objetive function
value, respectively;

(2) (Occupied points)

e Under appropriate criterion, find unoccupied points, i.e., entities which
do not coincide with a cluster centroid;

(3) (Jump Neighborhood)
Find the best partition PM’ in the jump neighborhood of the current solution
PM in the following way:
e Add a new cluster centroid Zy41 at some unoccupied entity location z;
and find the index “i"" of the best centroid deletion;

e For each point find its closest centroid and calculate the change in the
objective function value (optionally, improve the solution by using some
fast local search heuristic);

e Keep the pair (i,j') for which the improvement is better and denote
the corresponding solution and objective function value with PM’ and f’
respectively;

(4) (Termination or move)
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o If f/ > f,pt, stop - a local minimum was found in previous iteration
(optionally, an improvement of the obtained solution could be possible
by using some other heuristic before stoping);

e Otherwise, move to the best neighboring solution PM’ (PM = PM’), set
Jopt < [ and return to step (2).

It should be noted that the main step of J-Means is the step (3) and its relocation
part, the first one, can be implemented in O(n). Several variants of this heuristic
can be developed, one of them by using k -Means and/or H-Means to improve each
jump neighborhood solution or some other heuristic.

The sections 4 and 5 present computational results that are obtained from com-
positions of VNS metaheuristic with the local search algorithms H-Means and k -
Means, named by VNS+H+k -Means, and VNS with the new local search J-Means,
the later denoted by VNS+J-Means. In the former composition it is supposed k
-Means should be applied in order to improve the solution obtained by H-Means.

3.2. Divisive Hierarchical Algorithms

The two divisive hierarchical algorithms tested in this work have differences on
the criterions to be optimized. Both schemes utilize the Tabu Search heuristic
for optimizing the local criterion for clustering [9]. The Tabu Search heuristic
was adapted to average-linkage divisive hierarchical clustering scheme with the aim
of solving an unconstrained quadratic problem in 0-1 variables which defines the
bipartition problem for the chosen cluster at each iteration. In order to get an
improved initial solution the heuristic may be run several times with different initial
random solutions.

The main part of any average-linkage divisive clustering method is a heuristic
or exact method for solving the problem of bipartitioning the selected cluster at
each iteration. Because this problem is NP-hard, and it is difficult to be solved in
practice, instances of large data sets cannot be expected to be solved exactly in
reasonable computing time.

The criterions to be optimized by the algorithms are defined as follows:

e D), - average of between cluster average dissimilarities. This criterion, to be
maximized, is an average case type of measure of separation between clusters;

e ;s - minimum interior variance.

These criterions were chosen by the authors because, contrary to other global
criteria used in clustering, they do not suffer from distorsion effects due to the size
of the clusters [9] such as the within-clusters sum of dissimilarities.

The algorithms that utilize the Dy; and dj; criterions will be called AVHT and
VAHT, respectively.
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4. Computational Results

The algorithms described in earlier section have been running on the SPARC SUN
STATION IPX at GERAD - Groupe d’Etudes et de Recherche en Analyse des Deci-
sions, Montreal, Canada, with exeption to the hierarchical agglomerative one. The
later algorithm is a version of the Group Average methodology and was obtained
from a package by G. Milligan and R. Cheng, Ohio State University, 1993, which
requires DOS environment to be run. The parameters that are used to measure and
compare the performances of these algorithms are of Hubert and Arabie and, sepa-
rately, of Rand external recovery measurements, what can explains the possibility
of running the studied algorithms in different computational enviroments.

Six algorithms are analysed in this work: three metaheuristics, two hierarchical
divisive and one hierarchical agglomerative ones which are listed below.

1. multistart k-Means;

2. metaheuristic VNS composed with H-Means and k& -Means, which is named
VNS+H+k-Means;

3. metaheuristic VNS using J-Means as a local search, which is named VNS+J-
Means;

4. average-linkage hierarchical divisive AVHT described in section 3.2;
5. average-linkage hierarchical divisive VAHT described in section 3.2;

6. hierarchical agglomerative Group Average.

The softwares of the three first algorithms were obtained from their authors [11],
the forth and fifth algorithms were run from SPHINX1 package at GERAD, and
the last one is a version by G. Milligan and revised by R. Cheng.

Before displaying the data results on tables, it is important to make known the
procedure of initialization that was applied for each of those algorithms. Meta-
heuristics 1, 2 and 3, as mentioned above, are initialised from a solution obtained
by random. Parameters defining an upper bound for the number of generated ini-
tial solutions are necessary to run the multistart k-Means algorithm as well as to
obtain the number of neighborhood to be explored by the metaheuristic VNS, and
also to control the process of changing neighborhood. For the multistart k-Means it
was used a parameter that controlled the time for generating and comparing initial
solutions among the best one should be chosen. For the tests displayed on tables
below the time parameter was fixed to be 0.5 seconds for n = 50 ( Table 1 ), and
2.0 seconds for n = 200 ( Table 2 ).

It is worth pointing out that the version VNS+J-Means algorithm uses in a first
and unique iteration the heuristic k-Means to obtain an initial solution for the local
search procedure J-Means. Relating to the hierarchical divisive algorithms refered in
section 3.2, the initialization process of the adapted heuristic Tabu Search was also
a random one. The hierarchical agglomerative algorithm Group Average of Lance
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and Williams is a classical one and, as well-known, it is initialized by merging a new
cluster from the two “closest” clusters among all existing ones in a fixed iteration,
having the measure of similarity characterized by the average of all links within the
merged cluster [1].

For the results that are displayed in Table 1 and Table 2 below, samples of dis-
tinct sizes were generated by a generator program by G.W. Milligan [17] exhibiting
the properties of internal cohesion and external isolation. The data generation pro-
cess used in the present study corresponds to the error-free data conditons, where
the distribution of points within clusters follows a truncated multivariate normal. In
this way, it was obtained a data set of 72 samples with 50 entities and another one of
72 samples with 200 entities, which were embedded in either a m=4 or m=6 dimen-
sional Euclidian space. The generated samples with 50 entities were distributed
into groups presenting true cluster structure containing either 2, 3 or 4 clusters.
Twelve different samples were generated and tested for each group characterized
by both the true number of clusters and the characteristic number of entities. A
similar procedure was applied to generate data samples with 200 entities differing
from the former in terms of both the true number of clusters and the number of
generated data samples per each group. In the last case, samples were generated
presenting cluster structure containing either 2, 3, 4, or 5 clusters, and nine different
data samples were generated and tested for each group characterized by both the
true number of clusters and the characteristic number of entities. Thus, each line
of Table 1 and Table 2 below shows the mean recovery value of Hubert and Arabie
external measurement that had been found for those data samples with 50 and 200
entities, respectively.

m = 4*
Metaheuristics Divisive Agglom.
k k-Mean VNAS+H+ VNS+J-| VAHT AVHT | Group
k-Means Mean Average
2 .937 937 937 1.0 677 1.
3 91 91 91 .b86 .607 .7
4 .85 .85 .85 .b54 .628 .7
mean .90 .90 90 713 .637 .846
m = 6"
2 .99 .99 99 .95 .807 1.
3 1.0 1.0 1.0 .668 .826 .97
4 .75 .75 746 .44 .666 .68
mean 913 913 912 .686 .766 .883
total .90 .90 90 .699 .701 .864

Table 1: Mean recovery values for data samples with 50 entities

By observing the results displayed on Table 1, it is clear that the recovery value
presented by all of the studied algorithms worsens when increasing the number of
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clusters, and generally improves when a larger number of characteristics is used in
exception to VAHT algorithm. This results are compatible to the analysis presented
by Milligan and Sokol (1983). Concerning to the number of characteristics, it is not
possible to have the same conclusions when observing the recovery values displayed
on Table 2 below. For all algorithms, excepting AVHT, the mean values obtained
for m =4 presented better recovery than those ones obtained for m = 6.

Clearly, VAHT and AVHT divisive hierarchical algorithms presented worst per-
formance when compared to those metaheuristics ones. For two clusters VAHT
algorithm performance is very good, and its recovery is perfect for m = 4. Meta-
heuristic algorithms showed to have, among themselves, similar performances for
any number of characteristics and any number of clusters. Moreover, it is worth
pointing out the good performances obtained by them for data samples with true
structure of either two or three clusters, in any case. An explanation for this si-
milarity can be found by observing their initialization process and the importance
of k -Means methodology for all metaheuristics studied in this work. However, it
is possible to observe little difference between their performances for larger data
samples as it is displayed on Table 2.

m =4
Metaheuristics Divisive Agglom.
k k-Means VNAS+H+ VNS+J-| VAHT AVHT Group
k-Mean Mean Average
2 1.0 915 915 905 .640 1.
3 .99 .99 .99 .602 .678 97
4 .826 .840 .826 bT7 .b82 .79
5 .89 91 91 462 .620 .86
mean 926 913 910 .636 .630 .905
m = 6*
2 914 914 .996 .996 .671 .99
3 954 954 954 671 .865 .99
4 .820 785 .825 473 576 .85
5 673 .646 .648 .390 .486 .81
mean .840 .824 .855 .633 .649 .885
total .883 .868 .882 .634 .639 .895

Table 2: Mean recovery values for data samples with 200 entities

In many cases metaheuristic methodologies presented better mean recovery va-
lues than the hierarchical agglomerative one, but more detailed observations should
be done:

e the divisive VAHT and the agglomerative Groupe Average showed to have
better recovery index than the metaheuristics for samples with only two clus-
ters independent on the sample size and the characteristic number of entities;
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e Group Average algorithm presented the best recovery index for n = 200,
m = 6 and any k;

e metaheuristic algorithms exibited better recovery index than the hierarchical
ones for cluster numbers higher than two;

e the hierarchichal divisive VAHT and AVHT algorithms showed to be the worst
for increasing number of clusters.

The results displayed on both tables suggest the superiority of multistart k-
Means and VNS metaheuristics over the other metodologies when increasing number
of clusters are considered. These results can be explained by noting the good
capability of VNS of exploring farthest neighborhoods of a current solution, and
the efficiency of k-Means to converge when starting solutions are closed to the
global one. Furthermore, the heuristics k-Means, H-Means and J-Means have good
flexibility of changing cluster structures at each step.

Despite its simple multistart random initialization, which does not control ex-
plorations of farthest neighborhoods as VNS does, the k-Means algorihm appears
aside to the other metaheuristics. The simplicity of initializing multistart k-Means
turns the algorithm the most interesting among the six tested in this work when
considering both together implementation complexity and attainment of good re-
sults. The superiority of the Group Average over the other algorithms for n = 200
and m = 6 can found explanation by noting that it invokes the mean instead of the
variance criterion, and this fact appears to influence the algorithm to become more
suitable when the clusters are of unequal size [18].

Tables 1 and 2 show hierarchical divisive VAHT and AVHT algorithms are
clearly worse than metaheuristics and hierarchichal agglomerative ones. Just VAHT
algorithm presented good performance for data samples with true structures of two
clusters. These not good results presented by VAHT and AVHT can be explained
by attesting both facts: they were implemented into a non-exact TABU heuristic
of searching new clusters at each stage, and, furthermore, they have the property
of acumulating errors into their stages.

Some comments concerned to the Rand measurement of recovery are also made
in the next section, with the aim of comparing the results obtained by Milligan [15]
and the results obtained by the metaheuristics studied in this work.

5. Conclusion and Discussion

The recovery index of Rand was also computed for all of the six algorithms studied
in this work. As expected the analysis of algorithm performances does not change
when applying the Rand recovery measurement. The total average of indexes are
obtained: .95 for multistart k-Means, .944 for VNS+H-+k-Means, .951 for VNS+J-
Means and .954 for Group Average algorithms. By using the same sample generator
program with the ”error free condition”, G.W. Milligan [15] showed in his work that
Group Average algorithm presented the best Rand recovery index among thirteen
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different hierarchical agglomerative and four different nonhierarchical clustering al-
gorithms. In this work, a single starting k-Means heuristic algorithm was listed
among those nonhierarchical ones, and its performance placed among the worst,
when starting solutions were not enough closed to the global one. So, it is worth
underlining the possibility of geting very different results from k-Means algorithm
when not considering a multistart process.

In the present work the metaheuristics showed to get good results even for
samples not large and few number of clusters. Interestingly, the version of multistart,
k-Means presented performance similar to the new VNS. It seems this similarity
could be explained by noting both the importance of local k-Means methodology
for the structure of all metaheuristics studied and their initialization processes.
Undoubt, for the data samples considered, simple random multistart procedure has
generated good starting solutions for k-Means algorithm.

As few researchers already pointed out, algorithms for clustering should have
their performances more frequently analysed from computing recovery index values.
The reasons of using external measurements without underlying the computational
workload of the algorithms have statistical support interests: in this case, more ac-
curate solution can means to get a much better cluster structure. In cluster analysis
computational workload does not matter when considering both good classical al-
gorithm and problems with small-medium size. Metaheuristics have benn proposed
with the aim of improving resolutions of large problems where classical algorithms
do not work well. Fortunately, the results presented in this work showed meta-
heuristics that are implemented into the classical heuristic k-Means have very good
room, even for problems that had already been solved efficiently by the hierarchical
agglomerative Group Average. Adding to the obtained results the fact that the local
heuristics k-Means, H-Means and J-Means have good flexibility of changing cluster
structure at each step, it is expected VNS metaheuristics could also reach good so-
lutions for problems presenting different cluster structures of those generated in this
work. Particularly, it should be a interesting work to develop a recovering compa-
rative study between the multistart k-Means, VNS metaheuristics and hierarchical
agglomerative clustering algorithms by exploring different structures of clusters.
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