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An Investigation of Singularities in 
Robot Kinematic Chains Aiming at 
Building Robot Calibration Models for 
Off-line Programming 
Robot Calibration is a term applied to the procedures used in determining actual values 
that describe the geometric dimensions and mechanical characteristics of a robot or 
multibody structure. A robot calibration system must consist of appropriate robot 
modeling techniques, accurate measurement equipment, and reliable model parameter 
determination methods. For practical improvement of a robot’s absolute accuracy, error 
compensation methods are required that use calibration results. Important to robot 
calibration methods is an accurate kinematic model that has identifiable parameters. This 
parameterized kinematic model must be complete, continuous and minimal. This work 
concerns to the implementation of techniques to optimize kinematic models for robot 
calibration through numerical optimization of the mathematical model. The optimized 
model is then used to compensate the model errors in an off-line programming system, 
enhancing significantly the robot kinematic model accuracy. The optimized model can be 
constructed in an easy and straight operation, through automatic assignment of joint 
coordinate systems and geometric parameter to the robot links. Assignment of coordinate 
systems by this technique avoids model singularities that usually spoil robot calibration 
results. 
Keywords: Off-line programming, model optimization, robot calibration, kinematic models 
 
 
 

Introduction 

Off-line programming is, by definition, the technique of 
generating a robot program without using a real machine. It presents 
several advantages over the on-line method. However, there are 
inevitably differences between the computer model used to perform 
the graphic simulation and the real world. This is because the 
effective use of off-line programming in industrial robots requires, 
additionally, a knowledge of tolerances of the manufacturing 
components in order to enable realistic planning, i.e. to reduce the 
gap between simulation and reality. In an actual robot system 
programming this is still a relatively difficult task and the generated 
programs still require manual on-line modification at the shop floor. 
A typical welding line with 30 robots and 40 welding spots per 
robot takes about 400 hours for robot teaching (Bernhardt, 1997).  
The difficulties are not only in the determination of how the robot 
can perform correctly its function, but also for it to be able to 
achieve accurately a desired location in the workspace. Robot pose 
errors are attributed to several sources, including the constant (or 
configuration-independent) errors in parameters (link lengths and 
joint offsets), deviations which vary predictably with position (e.g., 
compliance, gear transmission errors) and random errors (e.g., due 
to the finite resolution of joint encoders). Constant errors are 
referred to as geometric errors and variable errors are referred to as 
non-geometric errors (Roth, Mooring and Ravani, 1987). According 
to Bernhardt (1997) and Schröer (1993), constant errors represent 
approximately 90% of the overall robot pose errors. Industrial 
robots usually show pose errors from about 5 to 15mm, even when 
they are new, and after proper calibration these error can be reduced 
to about less than 0.5mm (Bernhardt, 1997, Motta, Carvalho and 
McMaster, 2001).1 

The Robot Calibration problem has been investigated for more 
than one decade, but many of its obstacles are still around. Usually, 
one can tackle the problem implementing model or modeless 
methods. Modeless methods does not need any kinematic model, 
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using only a grid of known points located in the robot workspace as 
a standard calibration board. The robot is moved through all the grid 
points, and the position errors are stored for future compensation by 
using a bilinear interpolation method and polynomial fitting 
(Zhuang & Roth, 1996, Park, Xu and Mills, 2002) or error mapping 
(Bai and Wang, 2004). Although modeless methods are simpler, the 
calibrated workspace region is small, and each time the robot is to 
work off that region the calibration process has to be repeated. On 
the other side, model methods allow a large workspace region to be 
calibrated, leading to full model calibration. However, important to 
model methods is an accurate kinematic model that is complete, 
minimal and continuous and has identifiable parameters (Schröer, 
Albright and Grethlein, 1997). Researchers have used specific 
kinematic models that depend on a particular robot geometry and/or 
calibration method. Model identifiability has already been addressed 
(e.g., Everett and Hsu, 1988, Zhuang, 1992), and Motta and 
McMaster (1999) and Motta, Carvalho e McMaster (2001) have 
shown experimental and simulation results using a rational 
technique to find an optimal model for a specific joint configuration, 
requiring a few number of measurement points (for a 6 DOF robot 
only 15 measurement points) for a model with only geometric 
parameters (30), in opposition to hundreds of measurement points 
claimed by other authors (Drouet et al., 2002, Park, Xu and Mills, 
2002). A model with singularities or quasi-singular parameterization 
turns the identification process to be ill-conditioned, leading to 
solutions that cannot satisfy accuracy requirements when the 
manipulator is to move off the measurement points. Furthermore, 
time to convergence increases or may not exist convergence at all, 
and the number of  measurement points may be ten-fold larger than 
the necessary (Motta, 1999).  

The objective of this article is to investigate robotic model 
singularities, discuss a method to construct kinematic models for 
robot calibration assuring model continuity, completeness and 
minimality and to present a computer program to carry out this task 
automatically before the identification step. The computer program 
was developed using the API (Application Programming Interface) 
JAVA3D computer language. This language encompasses three 
important needs of off-line programming software: support to 
computer graphics, serial communication and TCP/IP 
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communication. The computer program allows one to build an 
optimized model for any kinematic chain, providing a powerful tool 
for a reliable and a speeded-up robot calibration process. Further 
steps to a full robot calibration process, i.e. measurement, 
identification and compensation will not be discussed in this article. 
The reader can find further discussions in Motta and Sousa (2004), 
Motta and McMaster (1999), Schröer (1993) and Roth, Mooring and 
Ravani (1987). 

A Singularity-Free Approach for Kinematic Models 

Single minimal modeling convention that can be applied 
uniformly to all possible robot geometries cannot exist owing to 
fundamental topological reasons concerning mappings from 
Euclidean vectors to spheres (Schröer, 1993).  However, after 
investigating many topological problems in robots, concerning 
inverse kinematics and singularities, Baker (1990) suggested that the 
availability of an assortment of methods for determining whether or 
not inverse kinematic functions can be defined on various subsets of 
the operational spaces would be useful, but even more important, a 
collection of methods by which inverse functions can actually be 
constructed in specific situations. Another insightful paper about 
robot topologies was published by Gottlieb (1986), who noted that 
inverse functions can never be entirely successful in circumventing 
the problems of singularities when pointing or orienting. 

Mathematically, model-continuity is equivalent to continuity of 
the inverse function T-1, where T is the product of elementary 
transformations (rotation and translation) between joints. From this, 
the definition of parameterization's singularity can be stated as a 
transformation Ts ∈ E (parameterization's space of the Euclidean 
Group - 3 rotations and 3 translations), where the parameter vector p 
∈ R6 (p represents distance or angle) exists such that the rank of the 
Jacobian Js = dTs/dp is smaller than 6. In other way, each 
parameterization T can be investigated concerning their singularities 
detecting the zeroes of determinant det(JT.J) considered as a 
function of parameter p. 

Thus, investigating the main kinematic modeling conventions 
one can represent the transformation between links in the Euclidean 
Group as 

 
T = Tx(px).Ty(py).Tz(pz).Rz(γ).Ry(β).Rx(α) (1) 

 
where px, py, pz are translation coordinates and α, β, γ are rotation 
coordinates for the axes x, y and z respectively. Then, 
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where C=cos( ) and S=sin( ). 

In a more simple symbolic form it can be represented as 
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which after the decomposition of the singularities through the 
Jacobian determinant results in a manifold of singularities 
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This manifold represents γ =  ± π/2 and  β = ± π/2 (eq. 2), 

which means there is a singularity when y and z axes are parallel. 
The Denavit-Hartemberg convention (parameterization) (Paul, 

1981) leads to an elementary transformation represented by 
 

T(θ,pz,px,α) = Rz(θ).Tz(pz).Tx(px).Rx(α) (5) 
 
Following the same procedure as before the manifold of 

singularities is 
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This result consists of all elements represented as parallel rotary 

joints. This can be verified by observing the third column showing 
the representation of one joint axis (z) into the previous one. 

The Hayati-convention (Hayati & Mirmirani, 1985) can be 
represented by 

 
T(θ,px,α,β) = Rz(θ).Tx(px).Rx(α).Ry(β) (7) 

 
There are two manifolds of singularities, 
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These representations show that if the distal z axis is in the same 

x-y plane of the proximal coordinate system (so perpendicular) or 
points to its origin, then there is a singularity. 

The Veitschegger convention (Veitschegger & Wu, 1986) is a 5-
dimensional parameterization as 

 
T = Rz(θ).Tz(pz).Tx(px).Rx(α).Ry(β) (9) 

 
The manifolds of singularities are 
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These representations show that if the origin of the distal joint 

coordinate system is on the z-axis of the proximal one, or the z axes 
are perpendicular and intercept each other, then there is a 
singularity. However this convention is not minimal. 

Using the same technique presented so far for prismatic joints 
sets of parameterizations can be used so fourth. The results can be 
outlined in a list together with their application ranges. The set is a 
complete, minimal and model-continuous kinematic model 
(Schröer, Albright and Grethlein, 1997). The transformations are 
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modeled from a current frame C to a revolute joint, JR, or to a 
prismatic joint, JP, or a fixed and arbitrarily located target frame, 
TCP-frame. Some of them are not unique since other solutions can 
fulfill the requirements. Additional elementary transformations are 
possible, but any added elementary transformation is redundant and 
thus, cannot be identified. A non-expanded model can always be 
found, which describes the same kinematic structure as the 
expanded model.  

Elementary transformations that are part of the complete, 
minimal and model-continuous sub-model being identified are 
marked bold, i.e. those elementary transformations including model 
parameters to be identified (errors): (symbols ⊥ and ⏐⏐ mean 
orthogonal and parallel axes respectively) 

 

• Transformation from robot base frame (B) to first joint where 
joint is translational (JT): 

 
   B  ⊥  JT :  P = ( TX, TY, TZ, RZ, RX) (11) 

 
 B ⏐⏐ JT :  P = ( TX, TY, TZ, RX, RY) (12) 

 
And, if first joint is rotational (JR): 
 

B  ⊥  JR :   PX  =  ( TY, TZ, RZ, RX )   
(If joint axis is near x-axis of frame B) (13) 

 
PY  =  ( TX, TZ, RZ, RX ) 

(If joint axis is near y-axis of frame B) (14) 
 

 B ⏐⏐ JR :   PZ  =  ( TX, TY, RX, RY ) (15) 
 
• Transformations between consecutive joint frames: 
 

JR  ⊥ JR :     P = ( RZ, TZ, TX, RX, TZ) 
  (Denavit-Hartemberg parametrization) (16) 

 
JR ⏐⏐JR :    P = ( RZ, TX, RX, RY, TZ) 

(assumption: joint axes are not identical) 
(Hayati parametrization) (17) 

 
JT  ⊥ JR :     P = ( TZ, RZ, TX, RX, TZ) (18) 

 
JT ⏐⏐JR :    P = ( TZ, TX, TY, RX, RY, TZ) (19) 

 
JT  ⊥  JT :    P = (TZ, TX, TY,  RZ, RX ) (20) 

 
JT ⏐⏐ JT :    P = ( TZ, TX, TY, RX, RY ) (21) 

 
JR  ⊥ JT :     P = ( RZ, TX, TY, TZ, RX) (22) 

 
JR ⏐⏐JT :    P = ( RZ, TX, TY, TZ, RX, RY) (23) 

 
Transformation from last joint to TCP (Tool Center Point) : 
 

JT  ⊥ TCP:  P = ( TZ, TY, TX, [RZ, RY, RZ] ) (24) 
 

  JT  ⏐⏐ TCP:  P = ( TZ, TY, TX, [RZ, RY, RX] ) (25) 
 

   JR  ⊥ TCP:  P = ( RZ, TX, TY, TZ, [RZ, RY, RZ ] ) (26) 
 

  JR  ⏐⏐ TCP:  P = ( RZ, TX, TY, TZ, [RZ, RY, RX] ) (27) 
 
Parameters in brackets are not identifiable without TCP-

orientation measurements. As an example of the application of the 
equations above a case using eqs. (16) and (17) is shown below, 
namely, the known Denavit-Hartemberg (D-H) and Hayati 

parameterizations. The equations are referred to Fig. 1. For the D-H 
case one can define four cases: 

 
1 – ZR(2) is parallel in the same direction as Xr: 
 

P =  RZ(90º).TZ(pz).TX(py).RX(90º).TZ(px) (28) 
 
2 - ZR (3) is parallel in the opposite direction of Xr: 
 

P = RZ(90°).TZ(pz).TX(py).RX(-90°).TZ(-px)  (29) 
 
3 - ZR (4) is parallel in the same direction as Yr: 
 

P = RZ(0°).TZ(pz).TX(py).RX(-90°).TZ(-py) (30) 
 
4 - ZR (5) is parallel in the opposite direction of Yr: 
 

P = RZ(0°).TZ(pz).TX(px).RX(90°).TZ(-py) (31) 
 
For the case of the Hayati parameterization (eq. 17) (valid only 

for TX ≠ 0) if a joint subsequent position needs two translation 
parameters to be located, (i. e. in the X and Y direction) one of the 
two has to be vanished, locating the joint frame in a position such 
that only one remains. Four cases may be assigned: 

 
Supposing only px: 
 

1 – ZR(0) is in the same direction as Zr: 
 

P =  RZ(0º).TX(px). RX(0º).RY(0º).TZ(pz)  (32) 
2 – ZR(1) is in the opposite direction of Zr: 

 

  P =  RZ(0º).TX(px). RX(180º).RY(0º).TZ(-pz) (33) 
 
Supposing only py: 
 

3 – ZR(0) is in the same direction as Zr: 
 

 P =  RZ(90º).TX(py). RX(0º).RY(0º).TZ(pz) (34) 
 

4 – ZR(0) is in the opposite direction of Zr: 
 

P =  RZ(90º).TX(py). RX(0º).RY(0º).TZ(-pz) (35) 
 
Figure 1: Frames showing the D-H and Hayati parametrizations 

Kinematic Modelling - Assignment of Coordinate Frames 

The first step to  kinematic modeling is the proper assignment of 
coordinate frames to each link. Each coordinate system here is 
orthogonal, and the axes obey the right-hand rule. 

For the assignment of coordinate frames to each link one may 
move the manipulator to its zero position. The zero position of the 
manipulator is the position where all joint variables are zero. This 
procedure may be useful to check if the zero positions of the model 
constructed are the same as those used by the controller, avoiding 
the need of introducing constant deviations to the joint variables 
(joint positions). 

The first step to assign coordinate frames to joints is to make the 
z-axis coincident with the joint axis. This convention is used by 
many authors and in many robot controllers (McKerrow, 1995, Paul, 
1981). For a prismatic joint, the direction of the z-axis is in the 
direction of motion, and its sense is away from the joint. For a 
revolute joint, the sense of the z-axis is towards the positive 
direction of rotation around the z-axis.  The positive direction of 
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rotation of each joint can be easily found by moving the robot and 
reading the joint positions on the robot controller display. 

According to McKerrow (1995) and Paul (1981), the base 
coordinate frame (robot reference) may be assigned with axes 
parallel to the world coordinate frame. The origin of the base frame 
is coincident with the origin of joint 1 (first joint). This assumes that 
the axis of the first joint is normal to the x-y plane. This location for 
the base frame coincides with many manufacturers’ defined base 
frame. 

Afterwards coordinate frames are attached to the link at its distal 
joint (joint farthest from the base). A frame is internal to the link it 
is attached to (there is no movements relative to it), and the 
succeeding link moves relative to it. Thus, coordinate frame i is at 
joint i+1, that is, the joint that connects link i to link i+1. 

The origin of the frame is placed as following: if the joint axes 
of a link intersect, then the origin of the frame attached to the link is 
placed at the joint axes intersection; if the joint axes are parallel or 
do not intersect, then the frame origin is placed at the distal joint; 
subsequently, if a frame origin is described relative to another 
coordinate frame by using more than one direction, then it must be 
moved to make use of only one direction if possible. Thus, the 
frame origins will be described using the minimum number of link 
parameters. 

The x-axis or the y-axis have their direction according to the 
convention used to parameterize the transformations between links 
(e.g. equations 16 to 23). At this point the homogeneous 
transformations between joints must have already been determined. 
The other axis (x or y) can be determined using the right-hand rule. 

A coordinate frame can be attached to the end of the final link, 
within the end-effector or tool, or it may be necessary to locate this 
coordinate frame at the tool plate and have a separate hand 
transformation. The z-axis of the frame is in the same direction as 
the z-axis of the frame assigned to the last joint (n-1). 

The end-effector or tool frame location and orientation is 
defined according to the controller conventions. Geometric 
parameters of length are defined to have an index of joint and 
direction. The length pni  is the distance between coordinate frames 
i - 1 and i , and n is the parallel axis in the coordinate system i - 1. 
Figures 2 and 3 shows the above rules applied to a PUMA-560 and a 
ABB IRB-2400 robots with all the coordinate frames and geometric 
features, respectively. 

 

 
Figure 2. Skeleton of the PUMA 560 Robot with coordinate frames in the 
zero position and geometric variables for kinematic modeling. (Out of 
scale). 

 

 
Figure 3. Skeleton of the ABB IRB-2400 Robot with coordinate frames in 
the zero position and geometric variables for kinematic modeling. (Out of 
scale). 

Results 

The computer program for construction of kinematic models for 
robot calibration was developed in API-JAVA3D language. Figure 4 
illustrates the input window for entering model parameter data. As 
shown in the figure, the system needs 3 types of information about 
the robot joints. The first is concerned to the type of joint: prismatic 
or revolute. The second refers to the position of the joint coordinate 
system origin relative to the previous joint system, measured 
according to the Base Coordinate System (BCS). The last input 
information is the joint axis orientation ( z axis ), measured relative 
to the BCS. 

 

 
Figure 4. Input data window for entering robot model joint positions. 
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Model joint data are entered one by one up to the TCP (Tool 
Center Position), which is the last point in the model geometric 
sequence. 

Figure 5 and 6 show the final models obtained by the computer 
program, showing the complete robot model for the PUMA-560 and 
the ABB IRB-2400 robots on the screen. All kinematic parameters 
and homogeneous transformations are already determined at this 
stage. The model is then ready for the parameter identification step. 

 

 
Figure 5. PUMA 560 Robot model obtained by the software. 

 

 
Figure 6. ABB IRB-2400 Robot model obtained by the software. 

 
Comparing the models shown in Fig. 2 and Fig. 3 to the models 

shown in Fig. 5 and Fig. 6 respectively it is easy to see that they are 
the same. 

The software was tested with many different robot systems as 
IRB-2000, IRB-6400 and specially designed ones. Up to date all 
tests were well succeeded. 

Conclusions 

It was discussed a method to construct optimized kinematic 
models specifically for robot calibration, i. e. a model where 
geometric error parameters may be assigned to avoiding singular 
configurations. The model can be easily constructed joint by joint in 
a progressive way. The rules adopted to select proper joint 
coordinate systems in the kinematic model are based on a 
singularity-free approach that avoids ill-conditioned mathematical 

models in the identification process. The system has been tested in 
many robot topologies and results show coincidence between the 
computer program outputs and predicted models. So the way is 
paved for a complete robot calibration system encompassing 
modeling, data acquisition from measurements, parameter 
identification and model compensation, bringing about a system that 
can be linked to robot off-line programming systems, allowing 
considerable improvements to the accuracy of this type of robot 
programming. 

References 
Bai, Y and Wang, D., 2004, “Improve the Robot Calibration Accuracy 

Using a Dynamic Online Fuzzy Error Mapping System”, IEEE Transactions 
on System, Man, And Cybernetics – Part B: Cybernetics, Vol. 34, No. 2, pp. 
1155-1160. 

Baker, D.R., 1990, “Some topological problems in robotics”, The 
Mathematical Intelligencer,Vol.12, No.1, pp. 66-76. 

Bernhardt, R., 1997, “Approaches for commissioning time reduction”, 
Industrial Robot, Vol. 24, No. 1, pp. 62-71. 

Drouet, Ph., Dubowsky, S., Zeghloul, S. and Mavroidis, C., 2002, 
“Compensation of geometric and elastic errors in large manipulators with an 
application to a high accuracy medical system”, Robotica, Vol. 20, pp. 341-
352. 

Everett, L.J. and Hsu, T-W, 1988, “The Theory of Kinematic Parameter 
Identification for Industrial Robots”, Transaction of ASME, No. 110, pp. 96-
100. 

Gottlieb, D.H., 1986, “Robots and Topology”, Proceedings of the IEEE 
International Conference on Robotics and Automation, pp. 1689-1691. 

Hayati, S. and Mirmirani, M., (1985), "Improving the Absolute 
Positioning Accuracy of Robots Manipulators", Journal of Robotic Systems, 
Vol. 2, No. 4, pp. 397-413. 

McKerrow, P. J. (1995), "Introduction to Robotics",  1st ed., Ed. Addison 
Wesley, Singapore. 

Motta, J. M. S. T., 1999, “Optimised Robot Calibration Using a Vision-
Based Measurement System with a Single Camera”, Ph.D. thesis, School of 
Industrial and Manufacturing Science, Cranfield University, UK. 

Motta, J. M. S. T. and McMaster, R. S., 1999, "Modeling, Optimizing 
and Simulating Robot Calibration with Accuracy Imporovements", Journal 
of the Brazilian Society of Mechanical Sciences, Vol. 21, No. 3, pp. 386-
402. 

Motta, J. M. S. T., Carvalho, G. C. and McMaster, R. S., 2001, "Robot 
Calibration Using a 3-D Vision-Based Measurement System With a Single 
Camera ", Robotics and Computer Integrated-Manufacturing, Ed. Elsevier 
Science, U.K., v. 17, n. 6, p. 457-467. 

Motta, J. M. S. T., Sousa, C. A. G., 2004, “A Dedicated Welding Off-
line Programming  System with Robot Calibration Accuracy Improvements”, 
Revista Soldagem e Inspeção, São Paulo, Brazil, V. 9, n. 2, pp. 96-102. 

Park, E. J., Xu, W and Mills, J. K., 2002, “Calibration-based absolute 
localization of parts for multi-robot assembly”, Robotica, Vol. 20, pp. 359-
366. 

Paul, R. P., (1981), "Robot Manipulators - Mathematics, Programming, 
and Control", Boston, MIT Press, Massachusetts, USA. 

Roth, Z.S.,  Mooring, B.W. and Ravani, B., 1987, “An Overview of 
Robot Calibration”, IEEE Journal of Robotics and Automation, RA-3, No. 3, 
pp. 377-85. 

Schröer, K., 1993,  “Theory of kinematic modeling and numerical 
procedures for robot calibration”, Robot Calibration, edited by R. Bernhardt 
and S. L. Albright, Chapman & Hall, London. 

Schröer, K., Albright, S. L. and Grethlein, M., 1997, “Complete, 
Minimal and Model-Continuous Kinematic Models for Robot Calibration”, 
Robotics & Computer-Integrated Manufacturing, Vol. 13, No. 1, pp. 73-85. 

Veitscheggar, K. W. and Wu, C. W., (1986), "Robot Accuracy Analysis 
based on Kinematics". IEEE Journal of Robotics and Automation, Vol. 2, 
No. 3, pp. 171-179. 

Zhuang, H., 1992, “A Complete and Parametrically Continuous 
Kinematic Model for Robot Manipulators”,  IEEE Transactions on Robotics 
and Automation, Vol. 8, no. 4, pp. 451-63. 

Zhuang, H. and Roth, Z. S. (1996), "Camera-Aided Robot Calibration",  
1st ed., CRC Press, Boca Raton, Fla, USA. 

 


