
Architectural Specification, Exploration and

Simulation Through Rewriting-Logic∗

Mauricio Ayala-Rincón † Reiner W. Hartenstein ‡

Rinaldi Maya Neto § Ricardo P. Jacobi ¶ Carlos H. Llanos ‖

Abstract

In recent years Arvind’s Group at MIT has shown the usefulness of term rewrit-
ing theory for the specification of processor architectures. In their approach processors
specified by term rewriting systems are translated into a standard hardware description
language for simulation purposes. In this work we present our current investigation on
the use of Rewriting-Logic, which is a more powerful theoretical framework than pure
rewriting, for specification, exploration and verification of processor architectures at a
higher abstraction level. We adopt the rewriting-logic environment ELAN to specify,
explore and verify architectures without the need to resort to the details of hardware
description languages for simulation purposes. Our investigation shows that simulation
at rewriting-logic level may provide useful insights to guide the architectural design.

Keywords: Rewriting-logic, High Level Specification and Simulation, Design Envi-
ronment.

1 Introduction

Since the seminal paper of Knuth and Bendix [12], the importance and applicability of
Term Rewriting Systems (TRSs) and theory has been made evident in a great variety of
fields of Computer Science. A lot of work has been developed which explores the simplicity
of the computational formal framework given by rewriting for its application in areas such
as automated theorem proving, program synthesis and verification, cryptography and code
theory, development and implementation of higher order programming languages and proof
assistants.

In recent years some work on applying rewriting techniques to model and verification of
digital processors has been developed. In particular, Arvind’s group has treated the design
of processors over simple architectures [13, 14, 1] and synthesis of digital circuits [8]. Their
approach to architectural description was to describe a simple RISC processor using TRS
and to translate it to a standard hardware description language for simulation purposes.
However, this approach introduces the cost of program translation and detailed hardware
simulation, since TRSs are only used to specify, but not to simulate the design.

In this work we address specification and simulation of hardware using a rewriting-logic
programming environment called ELAN [5]. Rewriting-logic extends the computational

∗Work supported by the Brazilian/German cooperation of the CAPES/DFG foundations.
†Corresponding author. Partially supported by FEMAT Brazilian foundation for mathematical research.

Departamento de Matemática, Universidade de Braśılia, Brasil ayala@mat.unb.br
‡Fachbereich Informatik, Universität Kaiserslautern, Germany hartenst@rhrk.uni-kl.de
§Departmento de Ciência de Computação, Universidade de Braśılia, Brasil rinaldi@cic.unb.br
¶Departmento de Ciência de Computação, Universidade de Braśılia, Brasil rjacobi@cic.unb.br
‖IESB Braśılia D.F., Brasil llanos@unb.br

power of purely rewriting by allowing logical control of the application of the rewriting
rules. We present the description and simulation of simple RISC processors and we illustrate
the design exploration of some architectural alternatives, like out-of-order execution and
register renaming using ELAN. The processor behavior is defined by a set of rules and logical
strategies and different architectural components as memory and registers are discriminated
in a natural way taking advantage of the availability of types in the language. Soundness of
the processors is shown by proving that they simulate and are simulated by a basic processor.
In our ELAN approach the separation between logic and rewriting allows us to define rewrite
rules for the instruction set of the processors and to specify strategies describing architectural
characteristics such as the size of the reordering buffer (ROB) of speculative processors.

Since each processor instruction is defined by one rewriting rule, it is very easy to modify
the proposed architecture either by adding new rules to extend the instruction set architec-
ture (ISA) or by modifying them in order to change the behavior of the processor.

To validate the implementation we have simulated the execution of some sample programs
(e.g., generation of the Fibonacci sequence, quick-sort and computation of the Knuth-Morris-
Pratt jump function) in the ELAN environment. We can quickly change the description
and strategies allowing to estimate the most adequate form to implement the architectural
components. Estimations are performed by analyzing the ELAN statistics for the number
of times each rewriting rule (i.e. processor instruction) is applied.

It is interesting to notice that rule application in TRSs is, theoretically, performed in
a nondeterministic way, which helps modeling concurrent processes. In practice, however,
rules are not naturally applied in a nondeterministic manner. In fact, during one step of the
whole rewriting process the rule to be applied is usually selected according to the ordering
they were defined and the selected rule is applied at the first possible position the rule
matches (left-most, inner-most or similarly) [9]. In our approach these problems arise when
important architectural aspects such as out-of-order execution is to be simulated. Although
our implementations are deterministic we comment how we can overcome these problems in
a non purely rewrite based environment like ELAN, where some nondeterministic strategies
are available.

2 Theoretical Background

A Term Rewriting System, TRS for short, is defined as a triple 〈S,R, S0〉, where S and R
are respectively sets of terms and of rewrite rules of the form

s1 → s2 if p(s1)

being s1, s2 terms and p a predicate and where S0 is the subset of initial terms of S. In
the architectural context of [13], terms and rules represent states and state transitions,
respectively.

A term s1 can be rewritten to the term s2, denoted by s1 → s2, whenever there exist a
subterm s′1 of s1 that can be rewritten according to some rewrite rule into the term s′2 such
that replacing the occurrence of s′1 in s1 with s′2 gives s2. A term that cannot be rewritten
is said to be in normal or canonical form. The relation over S given by the previous rewrite
mechanism is called the rewrite relation of R and is identified with →. The inverse of this
relation is denoted by ← and its reflexive and transitive closure is denoted by →∗ and its
equivalence closure with ↔∗.

The important notions of terminating property (or Noetherianity) and confluence are
defined as usual (for a detailed presentation of rewriting theory see [4]):

a TRS is said to be terminating if there are no infinite sequences of the form s0 →
s1 → . . .;

a TRS is said to be confluent if for all divergence of the form s →∗ t1, s →∗ t2 there
exists a term u such that t1 →∗ u and t2 →∗ u.

The use of initial terms, S0, representing possible initial states in the architectural con-
text (which is not standard in rewriting theory) is simply to define what is a “legal” state
according to the set of rewrite rules R; i.e., t is a legal term (or state) whenever there is an
initial state s ∈ S0 such that s→∗ t.

Using these notions of rewriting, one can model the operational semantics of the mini-
malistic RISC architecture AX , where all arithmetic operations are performed on registers
and only the Load and Store instructions can access memory, with respect to a base processor
(single-cycle, non-pipelined, in-order execution model) [13].

For example, for the Load-program-counter instruction, denoted by r := Loadpc, the
corresponding rewrite rule is:

Proc(ia, rf, prog) → Proc(ia + 1, rf [r := ia], prog)

if prog[ia] = r := Loadpc

where the processor Proc(pc,rf,prog) consists of a program counter pc, a register file rf and
a program prog, where r is a register of rf . The program counter ia, holds the address of
the instruction to be executed. The register file is a set of registers, where each register has
a register name and a value. The program is a set of instructions, in which each instruction
is associated with an instruction address ia. Thus, the previous rule may be understood
as: whenever the current instruction of the program, prog[ia], is a Load-program-counter
instruction of the form r := Loadpc, store the memory word addresed by the current pc into
the specified register, r, in the register file and proceed to the next step (or equivalently
increment the pc).

3 RISC processor rewrite based specification

In this section we briefly describe the AX RISC architecture [13], the specification in ELAN
of a basic processor that implements this architecture and the specification of a more elab-
orated one that allows speculative execution over a reordering buffer (ROB).

Rules for the processors are specified in the ELAN environment and different archi-
tectural components as memory, registers, etc. are discriminated in a natural way taking
advantage of this typed language.

3.1 AX RISC architecture

AX is a set of RISC instructions where all memory access is done by Load and Store in-
structions and the arithmetic operations are done over the registers. The instructions are
executed in order and after each instruction execution the contents of the program counter
(pc) is incremented by one except for branch (Jz) instructions. The set of instructions is
described below.

INST ≡ r :=Loadc(c) ‖ r :=Loadpc ‖ Jz(r1, r2) ‖
r :=Op(r1, r2) ‖ r :=Load(r1) ‖ Store(r1, r2)

The load-constant instruction, r := Loadc(v), puts constant c into the register r. The
Load-program-counter instruction, r := Loadpc, puts the content of the program counter
into the register r. The arithmetic-operation instruction, r := Op(r1, r2), performs the
arithmetic operation specified by Op on the operands specified by the registers r1 and r2

and puts the result into the register r. The branch instruction Jz(r1, r2), sets the program
counter to the target instruction address specified by register r2 when the contents of the

register r1 is zero and increment the program counter by one otherwise. The load instruction,
r := Load(r1), loads the memory cell specified by register r1 into register r. The store
instruction, Store(r1, r2), stores the contents of the register r2 into the memory cell specified
by the register r1.

3.2 Specification of the basic processor

The operational semantics of the AX instruction set is defined by a single-cycle, non
pipelined, in-order execution processor that we call the basic processor. Figure 1 shows
the architecture at register transfer level - RTL.

+1

Data

Inst.
Mem
im

Reg.
File

rf

Mem.
dm

ALU
pc

Figure 1: Description of the basic processor

The set of the rewriting rules for the basic processor specified in ELAN is given in the
Table 1. The system Sys is described by its memory m and processor Proc which consists of
a program counter ia, a register file rf and a program prog: Sys(m,Proc(ia,rf,prog)). Here
ia is used for distingushing between the program counter pc and its contents, that is the
current instruction address. For understanding these rules compare initially the rewriting
rule for the Load-program-counter instruction explained at the end of the Section 2 with
the Loadpc rule in the table specified in ELAN. The role of the “where :=() ” commands
is to set auxiliary variables. Subsequently, we explain the rule Jz specified for the branch
instruction Jz. Whenever the current instruction given by the instruction of the program
prog at the position given by the program counter ia is a branch instruction (this is detected
by the predicate isinstJz(selectinst(prog,ia))) of the form Jz(r1,r2), the program counter
should be changed by the contents of the register r2 in the case the contents of register r1

equals to zero (detected by the predicate valueofReg(r1,rf) == 0) and by ia+1 otherwise. All
other instructions are specified in a similar way.

3.3 Specification of a speculative processor

More sophisticated processors can be described using rewriting rules. Here, we describe the
implementation of a processor with speculative execution over a ROB. Figure 2 illustrates its
architecture in a RTL level. A reordering buffer holds instructions that have been decoded
but have no completed their execution. Conceptually, a ROB divides the processor into two
asynchronous parts. The first one fetches the instruction and after decoding and renaming
registers, dumps it into the next available slot in the ROB. The second one takes any
enabled instruction out of the ROB and dispatches it to an appropriate functional unit,
including the memory system. We can consider the ROB as a list of instruction templates
(each into one ROB slot). Each template contains the instruction address, opcode and
operands. Instructions that update a register have an additional field Wr(r), that records
the destination register r. In branch instructions the Sp(pia) field holds the speculated
instruction address pia that will be used to determine the correctness of the prediction.
Memory address instructions contain an extra flag to indicate whether the instruction is
waiting to be dispatched (U) or has already been dispatched (D). The index of each ROB

[Loadc] Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(ia+1,insertRF(rf,r,v),prog))
where instIa :=() selectinst(prog,ia)
if isinstLoadc(instIa)
where r :=() nameofLoadc(instIa)
where v :=() valueofLoadc(instIa) end

[Loadpc] Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(ia+1,insertRF(rf,r,ia),prog))
where instIa :=() selectinst(prog,ia)
if isinstLoadpc(instIa)
where r :=() nameofLoadpc(instIa) end

[Op] Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(ia+1,insertRF(rf,r,v),prog))
where instIa :=() selectinst(prog,ia)
if isinstOp(instIa)
where r1 :=() reg1ofOp(instIa)
where r2 :=() reg2ofOp(instIa)
where r :=() nameofOp(instIa)
where v:=() valueofOp(r1,r2,rf) end

[Jz] Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(nia,rf,prog))
where instIa :=() selectinst(prog,ia)
if isinstJz(instIa)
where r1:=() reg1ofJz(instIa)
where r2:=() reg2ofJz(instIa)
choose try where nia:=()ia+1

if valueofReg(r1,rf)!=0
try where nia:=()valueofReg(r2,rf)

if valueofReg(r1,rf)==0
end end

[Load] Sys(m,Proc(ia,rf,prog)) =>
Sys(m,Proc(ia+1,insertRF(rf,r0,v0),prog))
where inst :=() selectinst(prog,ia)
if isinstLoad(inst)
where r0 :=() nameofLoad(inst)
where v0 :=() getMem(inst,rf,m) end

[Store] Sys(m,Proc(ia,rf,prog)) =>
Sys(insertMEM(m,valueofReg(rA,rf),
valueofReg(rB,rf)),Proc(ia+1,rf,prog))
where inst :=() selectinst(prog,ia)
if isinstStore(inst)
where rA :=() nameofStoreR1(inst)
where rB :=() nameofStoreR2(inst) end

Table 1: Rules for the basic processor

������������
������������
������������

������������
������������
������������

pc im ROB

BTB

rf

Branch

pmb

ALUs

Commit

Mem mpb

Fetch/Decode/Rename ExecuteKill Kill/Update BTB

Reorder Buffer

Figure 2: Description of the speculative processor

slot serves as a renaming tag and the templates in the ROB always contain tags or values
instead of register names.

Memory access is done through the processor-memory-buffer (pmb) and the memory-
processor-buffer (mpb). The address of a speculative instruction is determined by consulting
the branch target buffer (BTB). If the prediction is wrong the speculative instruction and
all the instructions issued thereafter are abandoned and their future effects on the processor
state nullified. Since in this architecture there is no parallelism, when a speculated address
is wrong the effect is to eliminate the instruction and the next ones in the ROB. The syntax
of the set of instruction templates of the speculative processor is shown below.

ROB ENTRY ≡ Itb(ia, t := v,Wr(r)) ‖
Itb(ia, t := Op(tv1, tv2),Wr(r)) ‖
Itb(ia, t := Jz(tv1, tv2), Sp(pia)) ‖
Itb(ia, t := Load(tv1,mf),Wr(r)) ‖
Itb(ia, t := Store(tv1, tv2,mf))

Itb stands for instruction template buffer (ITB) and t’s and v’s for either a tag or a value.
mf is the memory flag that can be dispatched (D) or is waiting to be dispatched (U).

The complete set of rewriting rules for the speculative processor implemented in ELAN is
given in [3]. Here we explain the operational semantics of three of these rules: PsOp, PsJzIssue
and PsJumpCorrectSpec, whose specification is given in the Table 2.

[PsOp] Sys(m,Proc(ia,rf,ITB(ia1,k,t(k)|-Op(v,v1),wf,sf).itbs2, btb, prog)) =>
Sys(m,Proc(ia,rf,ITB(ia1,k,t(k)|-execOponval(v,v1),wf,sf).itbs2, btb,prog)) end

[PsJzIssue] Sys(m,Proc(ia,rf,itbs,btb,prog)) =>
Sys(m,Proc(pia,rf, insEndITBs(ITB(ia,k,Jz(k0,k1),NoWreg,Spec(pia)),itbs),btb,prog))

where instIa :=() selectinst(prog,ia) if isinstJz(instIa)
where r1 :=() reg1ofJz(instIa) where r2 :=() reg2ofJz(instIa)
where k :=() lengthof(itbs)+1
where k0 :=() searchforLastTag(r1,rf,itbs)
where k1:=()searchforLastTag(r2,rf,itbs)
where pia:=()getbtb(ia,btb) end

[PsJumpCorrectSpec] Sys(m,Proc(ia,rf,ITB(ia1,k,Jz(0,nia),wf,Spec(pia)).itbs,btb,prog)) =>
Sys(m,Proc(ia,rf,itbs,btb,prog)) if pia==nia end

Table 2: Examples of implemented rules for the speculative processor

Arithmetic operation and value propagation rules deal with the computation of arith-
metic operations (PsOp), the propagation of its results through the ITB and the exclusion
of an instruction template from the ITB when the result had already been solved and com-
mitted to the register file (this means that the renaming tag it addresses does not occur

in the ROB anymore). A value is only committed to the register file when the instruction
referencing it is on the head of the ITB. This approach is conservative since it avoids the
need to reconstruct the state of the register file in the event of wrong speculations.

Rules PsJzIssue and PsJumpCorrectSpec (Table 2), belong respectively to the set of issue
rules and to the set of branch completion rules. Issue rules are those used for the issuing
of the instructions which generate templates stored in the ITB and branch completion rules
are those which deal with the resolution of speculations. When a branch instruction is
issued the processor has to know which will be the next instruction to be fetched. The
next predicted instruction is indicated by the BTB that is an indexed list. Let us suppose
the program instruction in the position ia is being issued, the next value of the program
counter, here we will called it pia, is looked up in the BTB using as index the current
program counter (pia :=() getbtb(ia,pia)) and then the execution resumes at the pia value.
When the ITB element containing the branch instruction reaches the head of the ITB it is
the time to check if the speculation was done correctly or if the processor needs to fix the
mistake and restart the execution at the correct program counter value, simply by ignoring
the remaining instructions already in the ITB. The rules PsJumpCorrectSpec, PsJumpWrongSpec,
PsNoJumpCorrectSpec and PsNoJumpWrongSpec deal with this issue (see [3]). Exemplifying, lets
say the head of the ITB is of the form ITB(ia,k,Jz(v,nia),wf,Spec(pia)), the rule has to
check whether the value v is zero or not and then, respectively, check whether either the
speculated address pia coincides with nia or with ia+1. In this event the prediction has been
proved correct and the execution resumes. Otherwise the program counter must be set,
respectively, either to the value of ia+1 or to the correct value of the branch represented by
nia, depending on whether the wrong speculation was a branch or not, and the ITB must
be completely emptied because the remaining instructions should not be executed. These
rules also control the updating of the BTB for dynamic speculation (through the changebtb

rule).
As previously mentioned, one useful feature of rewrite based design of processors is the

possibility to prove the correctness of the implementation of the specified instruction set.
The main idea, according to [13, 14, 1], is to design a function that can extract all the
programmer visible states, i.e., the program counter, the register file and the memory from
the system. In particular, it is easy to show that the speculative processor simulates the basic
one. In fact, a basic processor term can be “upgraded” to one of the speculative processor
simply by adding an empty ITB and an arbitrary BTB to the processor. Contrariwise, the
key observation is that during the execution over an speculative processor, if no instruction is
issued then the ITB will soon become empty. Only instruction issue rules can further expand
the ITB. Thus, we can define another rewriting system which uses the same grammar as the
speculative processor and include all its rules except the instruction issue ones [3].

3.4 Specification of a pipelined processor

To give a flavor about the way pipelined processors can be specified by rewriting rules, we
illustrate how the phases of execution of an instruction of the processor can be specified by
rewriting rules in ELAN. The main objective of presenting this simple description here is to
convince the reader that the designer may refine the processor specification in the level of
detail he wishes.

In pipeline processors the execution of an instruction is divided into a set of successive
subtasks. For instance, the overall execution of one AX instruction can be divided into three
subtasks: fetch, decode and execute. To each subtask is associated one pipeline stage. Each
stage operates in parallel and synchronously to the others. All the pipeline stages operate
like an assembly line, that is, receiving their input typically from the previous stage and
delivering their outputs to the next stage. In the Table 3 we present the ELAN rules for
the pipeline phases of the instructions Loadc, Loadpc and Op. The other instructions may

be similarly implemented. Here we only present the processor Proc containing arguments
which discriminate between the instruction and data memory: Im and dm. The former is
described by the address of the current instruction a, the instruction itself inst and the
contents of the instruction memory cm: Im(a,inst,cm).

[Fetch] Proc(ia,Im(a,inst,cm),rf,alu,dm) => Proc(ia+1,Im(ia,FetchInst(ia,cm),cm),rf,alu,dm)

end

[Decode] Proc(ia,Im(a,inst,cm),
Rf(oldvalue1,oldvalue2,oldvalue3,oldvalue4,oldvalue5,oldvalue6,reg),alu,dm) =>

Proc(ia,Im(a,inst,cm),Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,reg),alu,dm)
where firstop:=()DecodeOp(1,inst,a) where secondop:=()DecodeOp(2,inst,a)
where regdest:=()DecodeOp(3,inst,a) where firstvalue:=()ValueOfReg(firstop,reg)
where secondvalue:=()ValueOfReg(secondop,reg) where data:=()DecodeOp(4,inst,a) end

[Execute] Proc(ia,Im(a,inst,cm),Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,reg),
Alu(oper,op1,op2,opout),dm) =>

Proc(ia,Im(a,inst,cm),
Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,Ins(reg,regdest,opresult)),
Alu(1,firstvalue,secondvalue,opresult),dm)
where opresult:=()op(1,firstvalue,secondvalue) if isinstAdd(inst) end

[Execute] Proc(ia,Im(a,inst,cm),Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,reg),

alu,dm) =>
Proc(ia,Im(a,inst,cm),

Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,Ins(reg,regdest,data)),alu,dm)
if isinstLoadpc(inst) end

[Execute] Proc(ia,Im(a,inst,cm),Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,reg),

alu,dm) =>
Proc(ia,Im(a,inst,cm),

Rf(firstop,secondop,regdest,firstvalue,secondvalue,data,Ins(reg,regdest,data)),alu,dm)
if isinstLoadc(inst) end

Table 3: Examples of implemented rules for pipelined processors

In the rule Fetch, the function FetchInst(ia,cm) fetches the code of the instruction
at address ia from the instruction memory cm. In this way instructions can be given more
realistically by binary codes and not symbolically as in the previous specifications. The
instruction is divided in fields from which operands are selected.

In the rule Decode, the function DecodeOp decodes the register addresses of the first
and second operand and the destination register. In this function each register is identified
by a different index. The function ValueOfReg selects the contents of the first and second
operands given by the corresponding registers from the list of registers reg of the register file
Rf. The function DecodeOp is also used to obtain the constant value of the current instruction
(used in the Loadc and Loadpc instructions), this value is put in the data register. Observe
that in this specification the register file consists of six fields for these register addresses and
values and the list of registers itself: Rf(, , , , , ,reg).

In contrast to the fetch and decode phases, which are identical for the three instruc-
tions, the execute phase should discriminate the instructions of the processor. In fact,
there are three Execute rules each corresponding to one of the three illustrated instruc-
tions: Loadc, Loadpc and Op. The Execute rules are conditional rewriting rules and the
premises isinstLoadc, isinstLoadpc and isinstAdd are satisfied according to the in-
struction inst being processed. Observe that except for the conditions, the Execute rules
for Loadc, Loadpc are identical and consequently they can be merged into a sole rule with
the premise isinstLoadc(inst) or isinstLoadpc. The Execute rule for the Op instruction
uses the arithmetic logic unit Alu to produce the result of the abstract operation between
the firstvalue and secondvalue operands. The result is computed via the op function and
set in the opresult variable. The Alu combined with the op function enable the execution
of different arithmetic operands. The case here presented is the one of the addition that is

discriminated by the “1” as first operand of the Alu and of the op function.
As here presented rewriting rules can be applied in any ordering. In the next section we

will explain how logical strategies are used to give the correct ordering to the simulation of
the phases of the execution of instructions of pipelined processors.

Well-known problems such as pipeline stalls caused by RAW dependencies and their
typical solutions such as bypassing used to solve define-use and load-use conflicts [15] could
be specified and simulated in our rewriting-logic approach.

4 Results

4.1 Rewriting-logic based simulation

The natural separation available in ELAN between rewriting and logic strategies makes it
possible to control in an adequate way the application of rules and for many aspects of
hardware the controlled simulation of them. For instance, one of the basic hardware aspects
in our implementation of the speculative processor that can be controlled by the logic and
strategies is the size of the buffer. It is enough to define adequate strategies that control
the application of a limited (by the size of the desired buffer to be simulated) number of the
issue rules. Suppose you want to simulate a ROB of size n, whose control is done by filling
and emptying it completely alternately. Then the following strategy can be used:

repeat ∗

first one(issue rules);
first one(issue rules ∪ id);

.

.

.
first one(issue rules ∪ id);

 n-1

normalise(first one(non issue rules))

where firstone is a strategy that takes, among several candidates, the first rule that apply.
In a similar way one can implement other strategies for controlling the ROB in different
forms [3]. For example, for maintaining a ROB of size n filled during the whole execution,
one can start as before and between the normalization via non issue rules all these rules are
treated individually according to being rules that either maintain or decrease the number
of instruction templates in the ROB. For instance, after a wrong branch speculation the
ROB is emptied and immediately it should be filled. For giving the correct ordering to the
simulation of the execution of the phases of the instructions of pipelined processors we use
the following obvious strategy:

repeat ∗ (Fetch; Decode; Execute)

In contrast to the control of the ROBs other interesting aspects of speculative processors
like the method of branch prediction may be controlled directly by the rewriting rules. The
advantages of having ROBs is that instruction templates may be charged and these templates
partially executed by the pipeline control, until the branch is resolved. When a branch
instruction template Jz(r1,r2) is charged into the ROB, the next instruction template to
be loaded is unknown since at this point of the execution the values of the tags associated
with the registers r1 and r2 are not necessarily resolved. In speculative processors a decision
about which is the next instruction to be executed must be taken according to the contents
in a table known as the branch template buffer (BTB). Some well-known dynamic branch
prediction schemes are easy to simulate by including simple rewrite rules. We mention two
of these that are called 1-bit and 2-bit dynamic prediction [15]. An initial prediction is
given in the BTB. You can explicitly give, for instance, pairs (1, 2), ..., (j, j + 1), ..., (n, n + 1)
meaning that after execution of each rule the initial prediction is to jump to the following
instruction (actually, this is only necessary for branch instructions). Predictions are based
on the execution history. In 1-bit dynamic prediction, the predictions for the nth instruction

Size 10 ran 10 ord 20 ran 20 ord 30 ran 30 ord
1-bit correct 51 60 128 225 218 490

wrong 29 34 66 74 106 114
2-bit correct 50 73 134 258 216 543

wrong 30 21 60 41 108 61
Size 40 ran 40 ord 50 ran 50 ord

1-bit correct 324 855 398 1320
wrong 148 154 194 194

2-bit correct 323 928 404 1413
wrong 149 81 188 101

Table 4: ELAN statistics for quick-sort executed with 1-bit and 2-bits dynamic predictions

are based on the last branch, indicating if it was taken or not. Once one detects that a
prediction fails the corresponding value in the BTB is changed to the correct address of the
next instruction to be executed. The 2-bits dynamic prediction can be modeled as a finite
state machine with four different states for a prediction: strongly taken, weakly taken, weakly
not taken, strongly not taken. If the branch prediction is either strongly taken (strongly not
taken) or weakly taken (weakly not taken) and the prediction is correct, then the state is
changed to strongly taken (strongly not taken). If the branch prediction is strongly taken
(strongly not taken) and fails, then the state is changed to weakly taken (weakly not taken)
. If the branch prediction is weakly taken (weakly not taken) and fails, then the BTB is
changed to the next instruction (to the address of the jump) and the state of the prediction
is changed to be weakly not taken (weakly taken). Of course, the rewrite based manipulation
of these strategies controls only the own strategy, but not the way in that the BTB has to be
updated once a prediction fails.

4.2 Analysis of performance of processors

We can estimate and compare the performance of different implementations of AX architec-
ture by codifying programs in AX assembly language and executing them with the ELAN
description of the processors. Some algorithms like quick-sort, generation of the Fibonacci
sequence and the computation of the Knuth-Morris-Pratt jump function were used for this
purpose.

The performance of proposed processors or of different ways to implement them may
be determined by analyzing the ELAN statistics. For instance, one can estimate whether
1-bit performs better than 2-bits prediction in the execution of an assembly description
of quick-sort over the speculative processor implemented with the strategy of filling and
emptying alternatively the ROB. The total number of wrong and correct predictions with
the two methods for ordered and random lists are given in the Table 4. Observation of the
differences between the wrong number of predictions for both methods gives an important
insight about the advantages of 2-bits over 1-bit prediction, since in the worst case a wrong
prediction flushes ROB which has been filled with instruction templates over which previous
operations have been executed. One can check on the table that the difference in the number
of wrong predictions is much more significant with ordered lists than with random lists.

Another advantage of rewrite based descriptions is that, according to the strategy to
be adopted, the rules may be selected in a non deterministic way. This is specially useful
when modeling the natural concurrency of hardware modules. For example, out-of-order
execution of instruction templates on ITB may be simulated by allowing true nondeter-
ministic application of rewrite rules over ITB during any time of the execution. For that,
instead of the usual cons operator “.” of instruction templates and ITBs (which appears as

[PsOp]Sys(m,Proc(ia,rf,itbs1#ITB(ia1,k, t(k)|-Op(v,v1),wf,sf)#itbs2,btb,prog)) =>

Sys(m,Proc(ia,rf,itbs1#ITB(ia1,k,t(k)|-execOponval(v, v1),wf,sf)#itbs2,btb, prog)) end

Table 5: Non deterministic rewrite rule for [PsOp]

inst temp.itbs in our implementation) one can define a new operator “#” for concatenating
ITBs and/or instruction templates. Then ITBs are represented as itbs1#inst temp#itbs2
being itbs1 and itbs2 lists of instruction templates and inst temp a sole instruction tem-
plate. Rules of our rewriting system are modified by replacing all their ITBs with this new
representation as we illustrate by showing the new rule for [PsOp] in the Table 5. The new
[PsOp] rule may be applied by matching ITB(ia1,k,t(k)|-Op(v,v1),wf,sf), the instruc-
tion template, not only at the first but at any position of the current ITB: itbs1#ITB(ia1,k,
t(k)|-Op(v,v1),wf,sf)#itbs2.

The rewriting system obtained by changing all rules as suggested above solves the prob-
lem of having out-of-order execution, since in the theory rules are applied nondeterministi-
cally. But in the practice, in purely rewrite based systems, this solution does not work since
the application of a rule is decided by searching for either left-most or right-most (inner-
most) redices over the ITBs (according to the way the constructor “#” is defined) [9]. To
make effective use of the natural concurrency of rewriting-logic descriptions, availability of
true nondeterministic strategies are necessary to decide which rule to apply and at which
position. With some additional effort, ELAN strategy constructors like don’t know choose
(that gives all possible reductions) can be adapted to simulate the needed nondeterminism
of the ROBs [16, 10, 11].

5 Future work

5.1 Circuit design

Circuit design may be addressed by rewriting. In the sequel we illustrate how rewriting may
be used as an assistant tool for deducing appropriate algebraic terms with many regularities
that result adequate for circuit design. We use an example of multiplication presented
in [2]. The desired multiplication may be established as

∑3
i=0 2i ·(yi ·X) that is equal to

20 ·(y0 ·X) + 21 ·(y1 ·X) + 22 ·(y2 ·X) + 23 ·(y3 ·X).
Properties of shift-left (shl) and shift-right (shr) binary operators used in algebraic cir-

cuits synthesis can be naturally described in a rewriting-based language. The set of rewriting
rules below describes some properties of these operators over binary number variables w, u
and v, that will be further showed useful in this context.

2 · w → shl(w) shr(u) + shr(v)→ shr(u + v)
shl(shr(w))→ w shl(u) + shl(v)→ shl(u + v)
shr(shl(w))→ w

In addition to the rules for shl and shr , algebraic rules for the operation of selection of
the ith less significant bit of a binary number Y , Π(Y, i), can be stated as

Π(Y, 0)→ lsb(Y) Π(Y, succ(n))→ Π(shr(Y), n)

where lsb denotes the least significant bit operator and succ and 0 are the usual constructors
for the natural numbers. Then y0 corresponds to lsb(Y); y1 to lsb(shr(Y)), y2 to lsb(shr2(Y))
and y3 to lsb(shr3(Y)).

By applying the rewrite rules for shl and shr; the multiplication can be formulated as
∑3

i=0 2i ·(yi ·X)→∗

y0 ·X + shl(y1 ·X) + shl2(y2 ·X) + shl3(y3 ·X)→∗

y0 ·X + shl(y1 ·X + shl(y2 ·X + shl(y3 ·X)))

were by shln and shrm we denote n and m compositions of the operators shl and shr,
respectively.

Replacing adequately the previous patterns at the expression y0 ·X + shl(y1 ·X + shl(y2 ·
X + shl(y3 ·X))), we obtain

∑3
i=0 2i ·(yi ·X)→∗

y0 ·X + shl(y1 ·X) + shl2(y2 ·X) + shl3(y3 ·X)→∗

y0 ·X + shl(y1 ·X + shl(y2 ·X + shl(y3 ·X)))

from which we can notice the regularities that will be useful for the construction of the
desired circuit schema:

lsb(Y)·X + shl(lsb(shr(Y))·X +︸ ︷︷ ︸
CondAddShift

shl(lsb(shr2(Y))·X +︸ ︷︷ ︸ shl(lsb(shr3(Y)))·X+︸ ︷︷ ︸�0)))

CondAddShift CondAddShift

In order to obtain more regularity than in the previous expression we can precede the whole
expression with “shr(shl(”. But the main problem of the resulting expression is that the
first CondAddShift port has as input y3, that is the last of the four bits of Y that can be
computed with sequences of the form lsb(shr(shr(. . . (Y) . . .))). To avoid this problem from
the pure beginning observe that

∑3
i=0 2i ·(yi ·X) = 24 ·∑3

i=0 shr4−i(yi ·X)→∗

shl4(shr(y3 ·X) + shr2(y2 ·X)+
shr3(y1 ·X) + shr4(y0 ·X))→∗

shl4(shr(y3 ·X + shr(y2 ·X + shr(y1 ·X + shr(y0 ·X)))))
= shl4(shr(lsb(shr3(Y))·X+shr(lsb(shr2(Y))·X+

shr(lsb(shr(Y))·X+shr(lsb(Y)·X)))))

Regularities of the internal expression (without the external shr4) can be described as

shr(lsb(shr3(Y))·X+︸ ︷︷ ︸ shr(lsb(shr2(Y))·X+︸ ︷︷ ︸
CondAddShift CondAddShift

shr(lsb(shr(Y))·X+︸ ︷︷ ︸ shr(lsb(Y)·X +�0)︸ ︷︷ ︸)))

CondAddShift CondAddShift

And from that expression one can straightforwardly build and schema for the desired circuit
schema presented in the Figure 3.

One of the interesting particularities of rewriting that emerges in this context is that
rewriting should be directed to normal forms that are not simplified as usual. Namely,
rewriting should be guided here in such a way that the obtained canonical forms are simple
from the point of view of hardware implementation. That is not the standard in what we
could call classical algebraic rewriting, where terms are simplified to shorter and simpler
forms.

shr

lsb

shr

lsb

shr

lsb

shr

lsb

shr

lsb

shr

lsb

shr

lsb

shr

lsb

shr

+

01

X 0

shr

+

01

0X

C
Y

shr

+

01

X 0

shr

+

01

0X

y

y
1

y
0

y
2

3

Figure 3: Circuit schema for 4-bit numbers multiplication

5.2 Reconfigurable architectures

We are currently investigating the modeling of more complex processor organizations, and
future research will address in particular modeling and simulation of reconfigurable archi-
tectures [6], which are non-standard models of computing where two layers of programming
are needed (the one for the run time operation and the other for the processor reconfigu-
ration). Two kinds of machine paradigms have to be explored: reconfigurable instruction
stream processors as well as data stream processors based on very powerful reconfigurable
data path arrays (rDPUs) [7]. Working on data stream processors also includes distribuited
memory architectural exploration. This all is of great interest, since no simulation is possible
over standard hardware description languages such as Verilog and VHDL. For discriminat-
ing these two layers higher-order rewriting-logic based simulation appears to be an adequate
theoretical framework.

6 Conclusions

We showed how processors may be specified using rewriting-logic systems and illustrated why
the rewriting part as well as the logical part of ELAN result adequate for the simulation of
hardware components, using as an example the simulation of branch prediction in speculative
processors (that was done in our case by pure rewriting) and the control of the size of ROBs
(which was done in our case by logic strategies). After having specified the rules for the
instructions of a processor, the intrinsic separation between logic and rewriting in ELAN
results versatile enough for dealing with different ROBs designs without additional effort
over these rewrite specification. Additionally, we illustrated how statistics of application of
rewrite rules may be used for estimating and comparing performance of different processors.

Through rewriting-logic one can describe an architecture as precisely as one wants. For
example, rules of the speculative processor may be atomized in order to reflect the behavior
of lower-level hardware components as pipelines and functional units of processors like fetch,
decode and execution units as shown in the Section 3.4.

References

[1] Arvind and X. Shen. Using Term Rewriting Systems to Design and Verify Processors.
Technical Report 419, Laboratory for Computer Science - MIT, 1999. in IEEE Micro
Special Issue on ”Modeling and Validation of Microprocessors”, 1999.

[2] M. Ayala-Rincón, R. W. Hartenstein, R. Jacobi, and C. Llanos. De-
signing Arithmetic Digital Circuits via Rewriting-Logic. Available at
www.mat.unb.br/∼ayala/publications.html, 2002.

[3] M. Ayala-Rincón, R. M. Neto, R. Jacobi, C. Llanos, and R. W. Hartenstein. Applying
ELAN Strategies in Simulating Processors over Simple Architectures. In B. Gramlich
and S. Lucas, editors, Proc. 2nd Workshop on Reduction Strategies in Rewriting and
Programming, ENTCS volume 70(6):16 pages. Elsevier 2002.

[4] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge University Press,
1998.

[5] P. Borovanský, C. Kirchner, H. Kirchner, P.-E. Moreau, and C. Ringeissen. An overview
of ELAN. In C. Kirchner and H. Kirchner, editors, ENTCS, volume 15. Elsevier, 1998.

[6] R. W. Hartenstein. A decade of reconfigurable computing: a visionary retrospective.
In Proceedings of the DATE 2001 on Design, automation and test in Europe, pages
642–649. IEEE Press, 2001.

[7] R. W. Hartenstein. (Invited paper): Trends in Reconfigurable Logic and Reconfigurable
Computing. In Proceedings of the Ninth IEEE Int. Conf. on Electronics, Circuits and
Systems - ICECS 2002, Dubrovnik (Croatia), 2002.

[8] J. C. Hoe and Arvind. Hardware Synthesis from Term Rewriting Systems. Technical
Report 421 A, Laboratory for Computer Science - MIT, 1999.

[9] H. Hussmann. Nondeterminism in Algebraic Specifications and Algebraic Programs.
Birkhäuser, 1993.

[10] H. Kirchner and P.-E. Moreau. Non-deterministic computations in ELAN. In J. Fi-
adeiro, editor, Recent Developments in Algebraic Specification Techniques, Proc. 13th
WADT’98, volume 1589 of LNCS, pages 168–182. Springer, 1998.

[11] H. Kirchner and P.-E. Moreau. Promoting Rewriting to a Programming Language: A
Compiler for Non-Deterministic Rewrite Programs in Associative-Commutative Theo-
ries. Journal of Functional Programming, 11(2):207–251, 2001.

[12] D. E. Knuth and P. B. Bendix. Computational Problems in Abstract Algebra, chapter
Simple Words Problems in Universal Algebras, pages 263–297. J. Leech, ed. Pergamon
Press, Oxford, U. K., 1970.

[13] X. Shen and Arvind. Design and Verification of Speculative Processors. Technical
Report 400 A, Laboratory for Computer Science - MIT, 1998.

[14] X. Shen and Arvind. Modeling and Verification of ISA Implementations. Technical
Report 400 B, Laboratory for Computer Science - MIT, 1998.

[15] D. Sima, T. Fountain, and P. Kacsuck. Advanced Computer Architectures: a Design
Space Approach. Addison-Wesley, 1997.

[16] M. Vittek. A Compiler for Nondeterministic Term Rewriting Systems. In H. Ganzinger,
editor, Proc. Seventh Int. Conf. on Rewriting Techniques and Applications RTA-96,
New Brunswick, NJ, USA, volume 1103 of LNCS, pages 154–168. Springer, July 1996.

